
Paper ID #30501

Integrating Role-Playing Gamification into Programming Activities to
Increase Student Engagement

Mr. Zhiyi Li
Prof. Stephen H Edwards, Virginia Tech

Stephen H. Edwards is a Professor and the Associate Department Head for Undergraduate Studies in the
Department of Computer Science at Virginia Tech, where he has been teaching since 1996. He received
his B.S. in electrical engineering from Caltech, and M.S. and Ph.D. degrees in computer and informa-
tion science from The Ohio State University. His research interests include computer science education,
software testing, software engineering, and programming languages. He is the project lead for Web-CAT,
the most widely used open-source automated grading system in the world. Web-CAT is known for al-
lowing instructors to grade students based on how well they test their own code. In addition, his research
group has produced a number of other open-source tools used in classrooms at many other institutions.
Currently, he is researching innovative for giving feedback to students as they work on assignments to
provide a more welcoming experience for students, recognizing the effort they put in and the accomplish-
ments they make as they work on solutions, rather than simply looking at whether the student has finished
what is required. The goals of his research are to strengthen growth mindset beliefs while encouraging
deliberate practice, self-checking, and skill improvement as students work.

c©American Society for Engineering Education, 2020

Integrating Role-Playing Gamification into Programming
Activities to Increase Student Engagement

Abstract

A number of gamification approaches have been used to encourage greater student motivation and
engagement in the classroom. This paper examines a gamification strategy that is less common in
the classroom, despite its prevalence in successful games: role playing. Role playing games
(RPGs) use a combination of character traits, experience points, and character leveling to illustrate
how a character evolves and grows stronger as the character progresses through the game. By
providing strong connections between the player’s behavior and choices and how their in-game
character develops, RPGs encourage players to identify with and develop a sense of ownership
over their in-game character or persona. In order to encourage adoption of positive student habits
and encourage belief in positive values of student behavior, we describe how RPG elements such
as experience points, leveling, and character traits can be adapted for use in computer
programming activities. By providing feedback on time management behavior, use of incremental
software development practices, and consistent self-checking of one’s work, gamification
elements can be strategically structured to reinforce specific behaviors and to communicate that
specific student practices or work habits are valued. By structuring RPG character traits to convey
an implicit model of “desirable” or “strong” student behavior, students can use their character
development status to track how well they are modeling these behaviors. Further, by providing a
way for a student to identify with an empathize with an “in-assignment” representation of their
personal behavior, RPG elements promote greater student ownership over their own experiences
and greater personal investment in improving their work habits. We rely on existing measures of
student effort as they develop their solutions that are intended to measure productive work the
student invests, and to promote growth mindset beliefs. We show how these measures can be used
to provide gamification-based rewards for target behaviors, such as time management choices,
incremental development, and self-checking. Finally, we show how these elements can be
embedded in an automated grading tool to provide a platform for embedding RPG-like
experiences in assignment feedback. We apply these techniques to a historical data-set of student
activities including 257 students to verify the feasibility and suitability of the design.

Keywords: Assessment, RPGs, XPs, Levels, Traits(Characters), Growth Mindset,
Engagement

1 Introduction

Feedback information in automatic grading systems such as Web-CAT9 usually aids students
when learning programming. Examples of such information include a score of program
correctness, percentage of test coverage, and hints for software errors, etc. However, this
information is machine generated, performance-based, impersonal, and often negative. Such
feedback can easily discourage, frustrate, or even turn off students, especially novice
programmers. These negative effects may lead students to belief in a fixed mindset–believing
intelligence and ability is something you’re either born with, or without7. Fixed mindset belief
can have serious effects in computer science education such as low CS major enrollment/retention
rate, and stereotype threat to minority/female students, etc2.

One way to counteract these effects is to design automated feedback that encourages belief in
growth mindset—believing that ability and skill can be improved through practice and hard
work7. Edwards et al. designed and implemented a suite of fifteen indicators to reflect students’
progress and effort based on students’ submissions8. These indicators span different aspects of
students programming activities and measure positive trends of students’ effort. Another example
effort is that Goldman developed daily missions tasks based on these indicators in Web-CAT.
Students were provided the opportunities to accomplish daily missions tasks to win rewards such
as extra submission energy11.

Studies indicate that gamification can motivate and engage students in their learning process20 16.
Especially Toth et al. integrated Role-Playing Game (RPG) elements into computer science
education experiences to improve the learning environment24. Inspired by their work and
previous effort to improve feedback in automatic grading tools, we demonstrate a strategy for
incorporating Role-Playing Games (RPGs) elements into automated grading feedback to help
student learning. The research question is how can we motivate students with these new RPG
elements, and whether this RPG-based strategy is feasible and rational. We first designed RPG
elements such as Experience Points (XPs) and levels as rewards and recognition of progress as
students work. Then we designed RPG-style character traits to reflect expected programming
behavior patterns we want students follow. Examples of these expected behavior patterns are
good time management, incremental development, etc. In the design scenario, the values of these
integrated RPG elements improve gradually and visible as students make progress in working on
their assignments. Positive information such as earning experience points (XP), level up, increase
characters(traits) value were conveyed to students to encourage and motivate students.

Then we validate the design of these RPG elements against a historical CS2 programming data set
including 257 students and 981 separate submission sequences. The design constraints and details
such as traits range value change, level numbers, and earning experience points (XP) numbers are
decided or tuned in the simulation.

Together with previous efforts, the main goal of these new RPG elements is to provide an
integrated, multi-pronged strategy to engage students and convey positive information to
encourage them towards the belief in a growth mindset–intelligence and ability can be improved
by practice and hard work.

The remaining of this paper is structured as follows. Section 2 discusses related work to improve

feedback in Web-CAT and applications of gamification in education area. Section 3 is to show the
design of RPG elements and how to integrate them into the feedback in Web-CAT. Section 4 is
evaluation part to demonstrate the simulation of our designed RPG elements with a historical
programming data set. Section 5 is conclusions and future work.

2 Background and Related Work

2.1 Previous Effort to Improve Feedback
In order to improve feedback mechanism in assessment tools such as Web-CAT, encourage
students with positive information especially lead to growth mindset belief, Recently effort were
made. A suite of fifteen indicators were designed and implemented to reflect students’ progress
and effort based on their program submissions8. These fifteen indicators compose of seven
general purpose and eight software testing indicators. The main purpose of these fifteen indicators
is to measure students’ positive trend of effort by comparing difference between current
submission with previous submissions. The suitability of these fifteen indicators were verified by
a two semester historical CS2 programming data set. Goldman 11 developed daily missions in
feedback to encourage students based on these indicators. Students can accomplish a small set of
tasks in daily time period (24 hours). These daily mission tasks were designed based on a subset
of indicators. Once students accomplish daily tasks, they will be awarded extra submission
energy—more submission opportunities than regular in a limited time period. Mukund et al. 19

designed a virtual teaching assistant (TA) named Maria in Web-CAT to help students alleviate
negative emotions toward programming. Maria also give motivating or encouraging comments to
move students towards growth mindset trend. Kazerouni et al. 14 15 designed and implemented
metrics to reflect students’ expected programming behaviors such as time management and
incremental development, based on log information collected by Eclipse plugin
DevTracker.

2.2 Applications of Gamificaton in Education Area

Gamification is defined to apply game design elements in non-game contexts5. Gamification in
education is an approach to increase learners’ motivation and engagement by incorporating game
design elements into educational environments 6. In Gamification of education, game design
elements may include: avatar, badges, leaderboards, levels, points, and virtual goods, etc. Goehle
applied video game elements levels and achievements with online homework program WeBWorK
to increase student motivation and engagement10. Li et al. developed a tutorial system named
GamiCAD for first-time AutoCAD users. They applied gamified components challenging levels,
rewards in form of bonus levels and bonus missions, etc to increase student engagement17.
Studies examine the impact of gamification on students’ learning activities in different
perspectives such as performance, engagement, behavior, motivation, participation, and retention,
etc6 13 4 12. However, gamification in education does not always work and sometimes even has
negative effects. Their effect vary in different educational learning contexts 4.23.

3 Design

Our main objective is to augment current feedback in Web-CAT with RPG elements to encourage
growth-mindset belief and encourage positive behavior patterns such as time management.
Inspired by gamification education work6 13 4 12, we have several candidate RPG components to
select from, such as: leaderboards, scores, rewards, avatars, progress bars, experience
points/levels etc. However, we should be careful to select and design appropriate RPG elements
to avoid performance-based game elements leading to students’ fixed mindset or stereotype threat.
For example, Christy showed leaderboards in the classroom may have unexpected effects. They
may lead to stereotype threat for female students, based on women’s math performance
information3. Initially we design three game components: experience points (XP)/levels, and
traits (characters) together towards our goal. However, these RPG elements were purposely
designed individualized and to avoid competition among students. Students can only visualize
and compare their individualized performance with their own historical performance in feedback
and not compare with their peers. Since similar to leaderBoard, RPG competition among students
may frustrate lagged students to lead fixed mindset trend. One of characters of students with fixed
mindset is they feel threatened by the success of others 1.

3.1 Experience Points (XP) and Levels
In RPGs, experience points (XP) and levels are often used to reward players and demonstrate their
progress through the game. Players earn XP and level up by accomplishing tasks such as
defeating enemies, overcome obstacles, pick up trophies, etc. We design XP and levels in a
similar way but in an educational context.

The first design consideration is whether XP/levels are applicable for only a single course or
transferable across multiple courses. In RPGs, XP/levels are not transferable between games
since different games have different mechanisms. However, XP/levels inside one game can be
consecutive in different phases since the mechanism are similar. For example, Dungeons &
Dragons has three tiers for levels: ”Heroic” for levels 1–10, ”Paragon” for levels 11–20, and
”Epic” for levels 21–3025. In our university, the computer science curriculum is designed to teach
students in ascending difficulty levels. Freshman students normally take introductory
programming courses like CS1. Then sophomore and junior students level up to take intermediate
data structures and architecture courses. Finally senior students accomplish advanced level
courses such as system/database/network courses and capstone project courses. In RPGs,
experience points (XP) are used to quantify a player’s (or character’s) progression through the
game. XP can be implemented in different ways. Level-based progression XP are widely applied:
Players win enough XP as rewards to reach next higher level27. Players in the next level will have
increased ability. We want to design level-based XP to reflect students’ progress through their
courses. However, we want to avoid associating XP directly with performance-based criteria such
as students’ assignment scores, since this may cause unexpected negative effects. A suite of
indicators that assess students’ progress and effort based on their submissions8 are a possible
candidate measure for XP. However, the triggered indicator information is hidden from students.
If we associate indicators with XP/levels directly, students are not aware of them and cannot
associate XP changes with indicators’ triggered information. We have to somehow connect XP

Figure 1: An example of daily missions interface, from Goldman et. al’s work11

Figure 2: An example of notification to a student, after a daily mission task accomplished.

with students’ visible and understandable gains. Fortunately, Goldman et al.11 designed daily
missions in Web-CAT to challenge students with small, achievable goals, based on a subset of
indicators’ triggered information during each 24-hour time period. The daily mission tasks span
aspects of software design, implementation, and testing activities when students work on their
assignments. Examples of daily missions are improving code modularity, improving
documentation, and increasing self-testing, etc. Each day, a randomly selected set of 5 sub-tasks
are presented to students to accomplish. If students accomplish daily missions, they will be
awarded with perks that give extra submission opportunities for their assignment for that day.
Figure 1 shows a daily missions interface11. We design XP to work together with this daily
missions interface: rewarding students through an XP increase, such as 20 XP points, when they
accomplish a daily missions task. Figure 2 shows the designed feedback dialog box to students
when they accomplish a daily missions task.

Once we designed XP, we continue to design levels. Recall that the objective of XP/level design
is to reward students to show their progress and recognize their effort. The naive strategy is to
divide XP range by levels evenly. e.g., XP from 1 to 100 is specified level 1, XP from 101 to 200
is specified as level 2, and so on. However, this evenly division strategy is boring and don’t have
effect we desired. In current RPG games such as Dungeon & Dragon, Pokemon, and Final
Fantasy, as players progress, it becomes harder to reach next level: more XP increase are needed.
These RPG games apply exponential or quadratic XP increase to level up. We design exponential
next level function similar to Final Fantasy as22:

f u n c t i o n n e x t L e v e l (l e v e l)
l o c a l e x p o n e n t = 1 . 5
l o c a l baseXP = 10
r e t u r n math . f l o o r (baseXP ∗ (l e v e l ˆ e x p o n e n t))

end

Parameter exponent defines the difficulty between levels and how difficulty increases as level up.
If exponent is 1, the level change aren’t getting increasingly harder. If exponent is very large ¿= 5,
the difficulty of level change will be very hard. We tune and find these parameters in next level

Figure 3: Web-CAT feedback main interface

Figure 4: Student profile with traits(characters)

function.

3.2 Students Traits(Characters)
In Role-Playing Games (RPGs), players’ attribute normally is a data to define how far to reach
certain fictional ability or character. e.g., in Dungeons & Dragons games player has six attributes:
Strength, Intelligence, Wisdom, Constitution, Dexterity, Charisma26. In educational game design,
progress bar is often used to reflect students’ status in learning process16. Inspired by RPGs and
progress bar, we design students’ traits(characters) to reflect expected programming behaviors we
want to students work towards. Similar to experience points(XP) and levels, students traits value
is designed in range from 0 to 100 and spans five CS courses and each course with four
assignments. For each assignments students are expected to get 5 points traits value gain at most.
Figure 4 demonstrates six traits (characters) we designed in student profile interface. We design
student profile interface can be accessed from detail button in top right corner of main feedback
interface in Web-CAT. Student profile interface shows basic information of a student such as
avatar, XP/Levels, rank, badges, and traits(characters).

The six students traits are:

• Time Manager: students’ efficient time management behavior pattern.

It is based on metric Working Early and Often in Kazerouni et al work15. In their work,
Metric Working Early and Often was originally defined as mean and median of time period
of between students’ edit events and project due time, captured by Eclipse Plugin
DevEventTracker when students submit their assignments. The larger the metric Working
Early and Often ’value, the better students’ time management and avoidance of
procrastination.

• Incremental Developer: students work their assignment incrementally.

Similarly, this trait is also based on metrics from Kazerouni et al. work14. They designed
three metrics: Incremental Checking, Incremental Test Checking, and Incremental Test
Writing to reflect students’ incremental effort. All these three metrics are also based on
events captured by DevEventTracker, but in the range of intervals between events.

• Bug Stamper: students’ ability to find and fix program bugs.

This trait Bug Stamper is designed to base on the indicator Increasing Correctness. For
each submission, we calculate sum of the indicator Increasing Correctness triggered in
current and historical submissions. Then apply normalization to get the value of the trait
Bug Stamper.

• Persistence: students’ continuous effort or work even facing on difficulties and obstacles.

We define measurable students’ persistence pattern in two phases: Phase 1: Non-progress.
Students make sequential submissions showing no-progress(stuck) based on measurable
parameters such as indicator Increasing Correctness8; Phase 2: Breakthrough. Students
finally make progress in coming submission reflected by obvious positive change in
measurable parameters. The frequency of persistence pattern in students is used for this
student trait.

• Syntax Mastery: Students’ proficiency to find and correct syntax errors.

Syntax errors can be detected in program compile and execution time. Students’ program
will not compile and execute correctly until syntax errors were fixed. Normally students fix
syntax errors by compile and test their solutions with IDEs before make their submissions
in Web-CAT. But in some conditions students make submissions even their program cannot
compile or execute, especially when project deadline is approaching or testing time.
Web-CAT can compile and execute students’ solutions. Syntax Mastery can be measured
directly in Web-CAT as ratio of submissions of program of successfully compile and
execute to all submissions for each assignment.

• Self-Regulator: students’ strategy to work their assignments wisely.

Self-regulation is originally defined as the ability to be aware of one’s thoughts and actions
and evaluate how well they are moving towards a goal 21. In the contexts of students’ learn
programming process, in order to accomplish a program solution, self-regulation can be
composed of multiple phases activities such as reiterating problem, search for analogous
problems, implement and evaluate solutions, etc 18. One of self-regulation element is

monitoring process towards a solution. Web-CAT main feedback interface provides rich
information to let students trace and compare the change of their submissions. Currently
We design Self-Regulator as how often students check Web-CAT feedback interface in their
whole submission period and how much parameter score change between adjacent
submissions.

These six students traits are designed to monotonous increasing and span multiple courses and
assignments. Student can visualize them in profile interface when they are working on their
assignments.

3.3 Automatic Integration of RPGs into Web-CAT
We design RPG elements XP, levels and traits(characters) together and integrate them into
feedback mechanism in automatic grading system web-CAT. When students work on their
assignment to make submissions in Web-CAT, in the backend, Web-CAT automatically monitor
triggered indicators’ information in their submissions. Based on these triggered indicators’
information, RPG elements were calculated. Students can earn experience points(XP), level up,
improve their traits value as they make progress when working assignments. On top-right corner
of main Web-CAT main feedback interface, there is a profile button. When students click the
profile button, as shown in Figure 3. Students can view profile interface when they are work on
their assignments, as shown in Figure 4. The profile interface basically shows ranking
information reflected by XP, levels, traits value. At the same time, students will also be provided
daily missions opportunity to improve their status demonstrate by RPG elements value.

4 Evaluation of Suitability

4.1 Evaluation of Experience Points and Levels
Before integrating the designed XP/levels into feedback in Web-CAT, we evaluated these new
components’ rationalization and feasibility, with a historical students program cohorts. Recall in
design part XP/Levels span through multiple courses instead of a single one. Let’s say five
courses in total. However, we only have one historical data set available, collected from two
semesters of CS2 Data Structure and Algorithm course at XXX XXX. In this cohort total 257
students made 981 separate program solutions with total 20,363 submissions. Each students made
approximate 4 assignment submissions. We simulate to have five sequential courses of data set by
applying one copy of our available data set for each five individual courses. Although the
difference between these five sequential courses such as difficulty levels may exist, they are
ignored in our evaluation.

We designed students can win XP through multiple ways: either change their behaviors in
expected patterns such as more efficient time management, or accomplish daily missions tasks. In
order to simplify our simulation, the former case is left for future and currently we only consider
the latter case: students were provided daily missions tasks opportunities and accomplish them to
win XP. A student can earn 20 XP once they finish a daily missions task.

Table 1 shows statistic results for XP earned at the end of each five courses in our

Table 1: Statistic results for XP distribution at the end of each course in simulation.
name mean sd

End of course 1 100.69 52.53
End of course 2 201.46 102.28
End of course 3 302.38 150.94
End of course 4 402.99 201.66
End of course 5 505.21 250.85

Table 2: Level/XP distribution in courses 1-5 in simulation
Course1 Course2 Course3 Course4 Course5
Level XP Level XP Level XP Level XP Level XP
1 10 6 150 9 270 12 415 15 580
2 30 7 185 10 320 13 470 16 640
3 50 8 230 11 365 14 525 17 700
4 80 9 270 12 415 15 580 18 765
5 110
6 150

Notes: XP value is upper bound students can reach in corresponding level.

simulation.

Recall in the design part we use exponential level up function to calculate levels. We tuned level
up function parameters baseXP and exponent value correspondingly based on statistic results of
XP in tables 1, especially mean values of each five courses. We find BaseXP value 10, exponent
value 1.5 meet with our design goal. We calculate the distribution of levels/XP in courses 1-5 in
simulation, as shown in table 2.

From table 2 we can see students’ levels gradually span courses 1-5 to reach up to level 18.
Students level up approximate 4 levels for each five courses.

We also plot a histogram of students numbers percentage vs levels at the end of each five courses,
as shown in figure 5. The horizontal axis is level number, vertical axis is percent of students
number. From figure 5 we can see as students work from course 1 to course 5, major students
gradually move from low levels to high levels.

4.2 Evaluation of Students’ traits
Six students traits were designed to encourage expected programming patterns we want students
follow. Similar to experience points (XP) and levels, we run simulation to validate these traits
value and range change, to find appropriate threshold value and any constraints. We applied same
historical CS2 programming dataset used before in experience points(XP) and levels

5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Student distribution in levels at the end of Courses 1−5

Levels

P
er

ce
nt

 o
f s

tu
de

nt
s

● ●

●

●

●

●

●

●

●

●

● ●

●

● ●

● ● ●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

l
o
b
c
l

End of Course 1
End of Course 2
End of Course 3
End of Course 4
End of Course 5

Figure 5: Histogram of students distribution in five courses

simulation.

For traits Time Manager, Increment Developer, and Bug Stamper, we simulate to generate
snapshot of traits value gain change for each students submissions, based on indicators triggered
information and time information. In each submission, students make some traits gain if they
make progress. In simulation 257 students take 5 continuous courses and each course include 4
assignments. Figure 6-8 show the snapshots of traits gain at the end of five courses for these three
traits, in coarse-grain perspective. Students traits value gradually increases as they work from
course 1 until course 5. TimeManager trait gains is low, compared with IncrDeveloper and
BugStamper.

In addition to coarse-grained perspective of these three traits gains with mean and standard
deviation shown in Figure 6-8. We also plot fine-grained perspective of these three traits gains
with students distribution at the end of each five courses, as shown in Figure 9-11.

For traits Persistence, we want to validate rationality of parameters for students
non-progress(stuck) phase: how many submissions and how much time period. We run
simulation with a historical two semester CS2 programming data set including 257 students made
by 981 separate submission sequences. In this simulation, we select an example criteria to reflect
students make non-progress or breakthrough: Indicator Increasing Correctness which shows
students’ solution in current submission passed more instructor-provided reference tests than
before8. If Indicator Increasing Correctness does not change significant in current submission
compared adjacent previous submission, we treat current submission in non-progress(stuck)
status; otherwise, students make breakthrough. From common sense, the duration time of
Persistence pattern cannot be too short or too long. We limit non-progress time period in a range

●

●

●

●

●

0

10

20

30

40

1 2 3 4 5
Course No

M
ea

n

Mean and SD of TimeManager value
 at then end of five courses

Figure 6: Mean and SD for TimeManager trait gains at the end of five courses

●

●

●

●

●

25

50

75

1 2 3 4 5
Course No

M
ea

n

Mean and SD of IncrDeveloper at the end of five courses

Figure 7: Mean and SD for IncrDeveloper trait gains at the end of five courses

●

●

●

●

●

20

40

60

1 2 3 4 5
Course No

M
ea

n

Mean and SD of BugStamper at the end of five courses

Figure 8: Mean and SD for BugStamper trait gains at the end of five courses

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

● ● ● ● ●
● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●● ● ● ● ●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ●●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●● ● ● ● ●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ●● ● ● ● ●

●

●

●

●

●

● ● ● ● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

● ● ● ● ●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

● ● ● ● ●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●● ● ● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ● ● ● ●●
●

●
●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●● ● ● ● ●● ● ● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●
●

●
●

● ● ● ● ●

●

●

●

●

●

● ● ● ● ●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ●●
●

●
●

●

● ● ● ● ●
● ● ● ● ●

●

●

●

●

●

● ● ● ● ●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

1 2 3 4 5

0
20

40
60

80
10

0

TimeManager trait gains in student distribution
 at the end of five courses

Course No

Tr
ai

ts
 g

ai
ns

Figure 9: TimeManager trait gains in students distribution at the end of five courses

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5

0
20

40
60

80
10

0

IncrDeveloper trait gains in student distribution
 at the end of five courses

Course No

Tr
ai

ts
 g

ai
ns

Figure 10: IncrDeveloper trait gains in students distribution at the end of five courses

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

1 2 3 4 5

0
20

40
60

80
10

0

BugStamper trait gains of student distribution
 at the end of five courses

Course No

Tr
ai

ts
 g

ai
ns

Figure 11: BugStamper trait gains in students distribution at the end of five courses

Distribution of number of continuous submissions for all
 non−progress(stuck) phase submission sequences

No. of continuous non−progress submissions

P
er

ce
nt

0 5 10 15 20 25 30 35

0

10

20

30

40

50

Figure 12: Histogram of continuous submission numbers in non-progress phase

at least 30 minutes and no more than daily work time (8 hours).

We calculate distribution of non-progress submission numbers and time period, as shown in figure
12 and 13.

Figure 5 shows histogram of percent of submissions vs No. of continuous submissions among all
candidate non-progress submissions. Students normally make 20 to 50 submissions in a single
assignment. Percent of submissions decreases as No. of continuous submissions increases. Major
80 percent qualified non-progress submissions with non-progress(stuck) phase have No. of
continuous submissions less than 10. We can use a value range from 5-10 as parameter for No. of
continuous non-progress submissions.

Figure 6 shows histogram of percent of submissions vs time period of non-progress phase. We
can see percent of submissions decreases as time period of non-progress phase increases. Major
80 percent qualified non-progress submissions is within 200 minutes(around 3 hours).

We have not validate traits Self-Regulator and Syntax Master. We leave these three traits’
evaluation in future once we collect data in classroom after we deploy these traits in Web-CAT.

5 Conclusions

This paper demonstrates initial work to design RPG elements character traits, experience
points(XP), and levels together to integrate them into feedback of an automatic program
assignment grading tool. These RPG elements together were validated by using a data set of
historical programming data to assess its rationality and feasibility.

Distribution of time period for all non−progress(stuck)
 phase submission sequences

Time period of non−progress phases (mins)

P
er

ce
nt

0 100 200 300 400 500

0

5

10

15

20

25

Figure 13: Histogram of time period in non-progress phase

Together with prior work to improve feedback in automatic assessment tools, these RPG elements
aim to communicate visible information when students make progress on their assignments, with
the goal of engaging students and leading students towards growth mindset beliefs and adoption
of positive development behaviors.

Among these RPG elements, six characters(traits) were chosen to lead students towards expected
behavior patterns such as time management and incremental developments, self-checking, etc.
experience points(XP) and levels are designed as visible rewards and reflect a student’s status
when they make progress such as accomplishing daily missions tasks or demonstrating positive
changes in targeted behavioral traits. All these RPG elements were designed span through
multiple courses and assignments.

We validate four of six traits with a historical CS2 programming data set to find appropriate
threshold parameters relate character traits value gain. In similar way we also validate the design
of XP and levels with same historical CS2 programming data set. The simulation spans through
multiple courses and multiple assignments. The simulation helps us to find appropriate threshold
parameters value in these RPG elements design. Simulation results mainly meet our design
expectation for these RPG elements.

We plan to implement and deploy these new designed RPG elements in CS1/CS2 courses to
conduct a usability study for these elements in classroom.

References

[1] [n.d.]. Growth Mindset Toolkit.
http://www.transformingeducation.org/growth-mindset-toolkit

[2] Joshua Aronson, Carrie B. Fried, and Catherine Good. 2002. Reducing the Effects of
Stereotype Threat on African American College Students by Shaping Theories of
Intelligence. Journal of Experimental Social Psychology 38, 2 (2002), 113 – 125.
https://doi.org/10.1006/jesp.2001.1491

[3] Katheryn Christy and Jesse Fox. 2014. Leaderboards in a virtual classroom: A test of
stereotype threat and social comparison explanations for women’s math performance.
Computers & Education 78 (09 2014), 66–77.
https://doi.org/10.1016/j.compedu.2014.05.005

[4] Katheryn R. Christy and Jesse Fox. 2014. Leaderboards in a virtual classroom: A test of
stereotype threat and social comparison explanations for women’s math performance.
Computers & Education 78 (2014), 66 – 77.
https://doi.org/10.1016/j.compedu.2014.05.005

[5] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. From Game
Design Elements to Gamefulness: Defining ”Gamification”. In Proceedings of the 15th
International Academic MindTrek Conference: Envisioning Future Media Environments
(MindTrek ’11). ACM, New York, NY, USA, 9–15.
https://doi.org/10.1145/2181037.2181040

[6] Christo Dichev and Darina Dicheva. 2017. Gamifying education: what is known, what is
believed and what remains uncertain: a critical review. International Journal of Educational
Technology in Higher Education 14, 1 (20 Feb 2017), 9.
https://doi.org/10.1186/s41239-017-0042-5

[7] C. S. Dweck. 1999. Self-theories: Their Role in Motivation, Personality and Development.
Taylor & Francis, Philadephia, PA, New York, NY, US: Psychology Press.

[8] Stephen Edwards and Zhiyi Li. 2016. Towards Progress Indicators for Measuring Student
Programming Effort During Solution Development. In Proceedings of the 16th Koli Calling
International Conference on Computing Education Research (Koli Calling ’16). ACM, New
York, NY, USA, 31–40. https://doi.org/10.1145/2999541.2999561

[9] S. H. Edwards. 2004. Using software testing to move students from trial-and-error to
reflection-in-action. In Proceedings of the 35th ACM Technical Symposium on Computer
Science Education (SIGCSE ’04). ACM, New York, NY, USA, 26–30.

[10] Geoff Goehle. 2013. Gamification and Web-based Homework. PRIMUS 23, 3 (2013),
234–246. https://doi.org/10.1080/10511970.2012.736451
arXiv:https://doi.org/10.1080/10511970.2012.736451

[11] Andrew Goldman. 2019. Using Daily Missions to Promote Incremental Progress on
Programming Assignments. Master’s thesis. Virginia POlytechnic Institute and State
University. An optional note.

[12] Tatsuhito Hasegawa, Makoto Koshino, and Hiromi Ban. 2015. An English vocabulary
learning support system for the learner’s sustainable motivation. SpringerPlus 4, 1 (27 Feb
2015), 99. https://doi.org/10.1186/s40064-015-0792-2

[13] Jincheul Jang, Jason J. Y. Park, and Mun Y. Yi. 2015. Gamification of Online Learning. In
Artificial Intelligence in Education, Cristina Conati, Neil Heffernan, Antonija Mitrovic, and
M. Felisa Verdejo (Eds.). Springer International Publishing, Cham, 646–649.

[14] Ayaan M. Kazerouni, Stephen H. Edwards, T. Simin Hall, and Clifford A. Shaffer. 2017.
DevEventTracker: Tracking Development Events to Assess Incremental Development and
Procrastination. In Proceedings of the 2017 ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’17). ACM, New York, NY, USA, 104–109.
https://doi.org/10.1145/3059009.3059050

[15] Ayaan M. Kazerouni, Stephen H. Edwards, and Clifford A. Shaffer. 2017. Quantifying
Incremental Development Practices and Their Relationship to Procrastination. In
Proceedings of the 2017 ACM Conference on International Computing Education Research
(ICER ’17). ACM, New York, NY, USA, 191–199.
https://doi.org/10.1145/3105726.3106180

[16] Petros Lameras, Sylvester Arnab, Ian Dunwell, Craig Stewart, Samantha Clarke, and
Panagiotis Petridis. 2017. Essential features of serious games design in higher education:
Linking learning attributes to game mechanics. British Journal of Educational Technology
48, 4 (2017), 972–994. https://doi.org/10.1111/bjet.12467
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/bjet.12467

[17] Wei Li, Tovi Grossman, and George Fitzmaurice. 2012. Gamicad: a gamified tutorial
system for first time autocad users. In In Proc. of ACM UIST. ACM, New York, 103–112.

[18] Dastyni Loksa and Amy Ko. 2016. The Role of Self-Regulation in Programming Problem
Solving Process and Success. 83–91.
https://doi.org/10.1145/2960310.2960334

[19] Mukund Babu Manniam Rajagopal. 2018. Virtual Teaching Assistant to Support Students’
Efforts in Programming. Master’s thesis. Virginia POlytechnic Institute and State
University. An optional note.

[20] Michael Sailer, Jan Ulrich Hense, Sarah Katharina Mayr, and Heinz Mandl. 2017. How
gamification motivates: An experimental study of the effects of specific game design
elements on psychological need satisfaction. Computers in Human Behavior 69 (2017), 371
– 380. https://doi.org/10.1016/j.chb.2016.12.033

[21] R. K. Sawyer. 2006. Introduction: The new science of learning. The Cambridge handbook
of learning sciences (1-18), New York: Cambridge University Press.

[22] Dan Schuller. 2017. How to Make an RPG: Levels.
http://howtomakeanrpg.com/a/how-to-make-an-rpg-levels.html

[23] Steven J. Spencer, Claude M. Steele, and Diane M. Quinn. 1999. Stereotype Threat and

Women’s Math Performance. Journal of Experimental Social Psychology 35, 1 (1999), 4 –
28. https://doi.org/10.1006/jesp.1998.1373

[24] David Toth and Mary Kayler. 2015. Integrating Role-Playing Games into Computer Science
Courses As a Pedagogical Tool. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (SIGCSE ’15). ACM, New York, NY, USA, 386–391.
https://doi.org/10.1145/2676723.2677236

[25] Wikipedia contributors. [n.d.]. Epic level.
https://en.wikipedia.org/wiki/Epic_level

[26] Wikipedia contributors. 1999. Description of Attributes in RPGs.
https://en.wikipedia.org/wiki/Attribute_(role-playing_games)

[27] Wikipedia contributors. 1999. Experiencepoints2019.
https://en.wikipedia.org/wiki/Experience_point

