
AC 2008-3: INTEGRATION OF PROGRAMMABLE LOGIC CONTROLLER
PROGRAMMING EXPERIENCE INTO CONTROL SYSTEMS COURSES

Thomas Cavicchi, Grove City College
Thomas J. Cavicchi received the B. S. degree in electrical engineering from the Massachusetts
Institute of Technology, Cambridge, in 1982, and the M. S. and Ph. D. degrees in electrical
engineering from University of Illinois, Urbana, in 1984 and 1988, respectively. He is a Professor
of Electrical Engineering at Grove City College, Grove City, PA, where he teaches year-long
courses on digital communication systems, digital and analog control systems, and the senior labs
(including co-teaching the senior capstone design projects). He also has recently taught courses
on signals and systems and electrical engineering for nonelectrical engineering majors. He is the
author of Digital Signal Processing (New York: John Wiley & Sons, 2000) and Fundamentals of
Electrical Engineering: Principles and Applications (Englewood Cliffs, NJ: Prentice-Hall, 1993).
He has taught graduate classes on digital signal processing and digital spectral analysis, and has
conducted research on DSP and ultrasonic diffraction scattering for medical imaging. Dr.
Cavicchi is a member of Sigma Xi.

© American Society for Engineering Education, 2008

P
age 13.776.1

Integration of Programmable Logic Controller Programming

Experience Into Control Systems Courses

Department of Electrical and Computer Engineering

Grove City College

Grove City, PA 16127

Abstract

The two-semester senior electrical engineering course in control systems includes a segment on

the programmable logic controller (PLC). The PLC is a valuable educational venue because it

includes a variety of aspects that can prepare the budding engineer for the real world. Some of

these are: the learning how to use and the features of massive industry-standard application

programs (including digging through lengthy online manuals), the exposure to highly versatile

and complex hardware that is ubiquitous in industrial automation, learning to work with other

colleagues in a situation of limited resources (only one PLC, though there are multiple copies of

the software, including an emulator), a new kind of programming—ladder logic in

RSLogix500—that at the senior year can be refreshing now that the main programming

languages in coursework are all too familiar (and at times frustrating), use of local area

networking both for programming and running the PLC, learning and using a highly developed

human-machine interface (RSView32), experimenting with the concept of simulation of the real

world (via the debug file in RSEmulate), demonstrating in real time one’s work to the professor

and being ready to answer questions about that work, appreciating the versatility of the PLC to

do control and measurement of analog and digital systems, implementation of

classroom/textbook concepts such as PID control in a real-world system with relative ease

(RSLogix has a PID instruction), creation of professional-looking technical reports and the

satisfaction of completing, as a result of much work, a successful project such as temperature

control—and the realization that one is then just a few steps away from being able to succeed in

a more elaborate project typical of post-graduate work either in industry or graduate school. The

present paper expands on these ideas and briefly presents the three projects assigned to students

for learning to use a PLC.

Background

At Grove City College, the senior year has a two-semester course sequence on control systems

(typical student class size is 15 – 25 students). The main topics covered are modeling, lead/lag

Bode design
1
, the programmable logic controller (PLC)

2,3
, digital control

1,3,4
, state-space

representation
1
, state-space pole placement

3,4
, optimal control

3,5
, and analytical robotics

6
, with

introductory presentations on fuzzy logic
3
 and neural network control

3
. Within the senior lab

course, there are five-week lab sequences on signal processing
7
 (using SigLab data acquisition),

digital communication systems (two five-week sequences), microwave/waveguide systems,

analog communication systems, microprocessors, and analog/digital control servo systems.

Within the control system lecture courses, the PLC is taught in lecture and experienced hands-on

by the students in three projects described later in this paper (one in the fall semester and the

other two in the spring semester).

P
age 13.776.2

Some of our graduates have communicated back to us that they have jobs working with PLCs

and students show a lot of interest in PLCs in class because of their practical, hands-on nature

and because of the programming interest and challenge they offer. Our PLC is an Allen-Bradley

SLC 5/05 and for programming we use Rockwell Software applications: RSLogix500,

RSLogix500 Emulate, RSLinx, and RSView32. The PLC is connected to the college Ethernet

LAN. The department has several PC workstations set up with the licensed software and they

can be accessed after hours via Remote Desktop from the students’ dorm rooms.

Our usage of the PLC began with an automated greenhouse temperature control system that was

a senior design project. The greenhouse is a plexiglass/wood scale model about 4’x4’x2’.

RSLogix500 ladder logic programming was used to program the SLC 5/05 to open/close louvers,

turn on/off circulation fans, turn on/off exhaust fans, and turn on/off heaters to control the

temperature, which is measured by three RTD sensors (a fourth sensor outside the greenhouse

measures the ambient temperature). The set point is entered via RSView32 and real-time trend

plots are generated as well as an animated state-of-system graphic.

Instruction

The software is taught to the students in lecture and a hardware demonstration is presented using

the classroom projection system and Remote Desktop to a PC with the software. The lectures

provide instruction on many important aspects for learning to understand and use PLCs. The

following summary of topics covered provides a well-rounded view of both PLCs in general and

SLC500 programming in particular:

• A brief historical context of the PLC is given

• The Rockwell Software CD “An Introduction to Industrial Automation” is presented

• The unique concepts of basic ladder-logic programming are reviewed

• The three-stage sequential operation of PLC programs is discussed

• The equivalence between ladder logic and digital combinational logic and state machines

is emphasized to help students connect this unfamiliar programming method to more

familiar materials they have learned in prior courses

• The proper channel to use is selected (e.g., Ethernet versus the internal connection to a

software emulator, or an RS232/DF1 serial connection with a hand-held terminal or

direct serial communication between the PC and the PLC). The Ethernet connection

naturally provides an opportunity for briefly discussing IP addressing

• The status of all channels is displayed in RSLinx

• Diagnostic information including faults is included in the Processor Status window

• The various input/output modules in the PLC rack and associated data files are described

• Software associated with the power supply module performs a “budget” calculation

concerning whether the power supply has sufficient current capacity to power the system;

the students are told that such a budget is crucial to calculate when designing/selecting

power supplies for their senior projects, which are in their early stages at this point in the

academic year.

• Addressing syntaxes for input and output data files are presented.

• The usage of data files both for data and for device configuration are discussed.

P
age 13.776.3

• The specification and operation of timers, counters, and the control data block for the PID

command are considered, as well as a detailed study of the RTD sensor specifications

booklet including 2-, 3-, and 4-wire connections.

• The following important tools for successfully programming and using the PLC are

presented:

o uploading/downloading of programs

o cross referencing

o single-stepping/single scanning of programs for debugging (including the

somewhat tricky testing of programs that have timers),

o title/rung comment documenting

o program version labeling with version notes

o symbol/description variable labeling

o navigational/search features

o desktop workspace customization

o extensive reporting options

o backup/archiving options

o custom data monitoring/multipoint monitoring in which selected variables can be

monitored simultaneously and in some cases changed in value in a special small

window

o database management

o rung- and project-verification

o input/output forcing as a data-table-overriding feature

o the multiple means of obtaining help (including annotations of the help files)

o drag-and-drop of instructions and addresses and mouse-driven rung construction

show the students that the software is modern.

o Emulation: The emulator is presented as an essential means of debugging

programs as well as a way that industrial engineers can avoid shutting down

systems during software development as they mimic the real-world system in

software. In the classroom setting, the hardware is turned off at night to force

students to use the emulator for program development and to avoid resource

contention.

o Online edits: Another way that PLC engineers can reduce shut-downs of their

system is via online edits (actually adding and/or modifying programming rungs

while the program is running), which are demonstrated in real time in lecture.

o The “Histogram”—poorly named—is discussed and used to show real-time

waveform time plot generation.

o Using DDE/OPC functionality, numerical values of variables displayed in Excel

files update live according to their changing values within RSLogix500 in a

demonstration that students find quite interesting.

o Report generation is discussed and illustrated live; within RSLogix500 there are

many options for creating professional-looking project reports.

• Of course, the special features of ladder logic that allow one to read, understand, and

write a program are described in detail. One theme that shines through the discussions is

the high level of organization and documentation that is desirable and possible in

RSLogix500, which is worth emphasizing given the large number of variables, devices,

and even PLCs that are present in real-world industrial applications of PLCs.

P
age 13.776.4

• Following a detailed presentation of RSLogix500 programming, attention is then turned

to the human-machine interface software RSView32. This application allows real-time

monitoring and changing of variable values within the SLC 5/05 in a highly graphical,

user-friendly environment by means of data tags. Features of the application such as

trending (multi-variable real-time temporal plots), data logging, alarm setup, display, and

acknowledgement, and animation of variable values (e.g., representations of operating

gages) are demonstrated live in the classroom and these generate a lot of student interest.

For students using LabVIEW, learning RSVIew32 (as well as SigLab and Simulink) can

prove helpful for getting started. Just as was done for the RSLogix500 software, many

details of programming are covered in real time in class, such as:

o the Program Manager

o channel and driver specification

o scan class selection

o the tag database and tag monitor

o activity and data log setup

o the method for adding tags and testing communications

o creation of graphics

o buttons/their functionality

o trends

o animation

o window navigation and printing

With the major programming issues having been discussed in detail, an example program is

presented. The program is entered into ladder logic a rung at a time as the logic behind it is

discussed, wherever possible with student participation. The project presented is a full-step

stepper motor controller. The joke is made that this stepper motor controller is a rather

expensive one, but everyone realizes that the selection of this program brings together several

important aspects of PLC programming. These include:

• the operation of timers

• bit- versus word-length instruction

• scan order and scanning operation of the PLC

• examination of stepper motor switching tables and converting them into simple logic and

then implementing that logic in rungs

• use of solid-state isolated relays and need for power buffering between weak control

signals and the powerful equipment they control

• online editing to change the direction of the motor via rung replacement.

One interesting side topic is the use of protective diodes. In Fig. 1a, in the steady-state ON

condition, i = 5 V/RL and vL = Ldi/dt = 0 V.

P
age 13.776.5

Fig. 1a Lossy inductor driven by 5-VDC voltage source.

When the switch is opened, i immediately drops from 5 V/RL to zero, so that di/dt and thus vL

are huge negative. The large spike across the electronic switch (solid state relay) could be

harmful to it. A solution shown for the stepper motor switch network is shown in Fig. 1b.

Fig. 1b Stepper motor switching circuit with protective diodes.

In the PLC code, switches 0 and 3 open before 1 and 2 close. Thus with VAAbar << 0 V, there is,

via diodes 2 and 1, already in place a voltage-limiting conduction path to discharge the inductor

energy. With contact potential of 0.6 V per diode, VAAbar is thus safely limited to –(5 + 1.2) V,

and all associated solid state relays are protected. Figures 2a and 2b show, respectively, the

situation before and after addition of the diodes via oscilloscope traces of a PLC-driven stepper

motor waveform. Notice that the spikes are of the polarity that Lenz’s law predicts (vself << 0

upon opening of switches 0 and 3), with exceptions when there was probably some contact

bounce that was captured. Students often use H-bridges in their senior projects, and this

discussion helps them see why the application circuits include such diodes.

P
age 13.776.6

Fig. 2a Actual PLC-driven stepper motor coil voltage waveform before addition of diodes.

Fig. 2b Actual PLC-driven stepper motor coil voltage waveform after addition of diodes.

P
age 13.776.7

Another interesting problem in this project is the limitation on “Histograms” (time waveform

plots). If the stepper motor speed is low, the binary coil waveforms appear exactly as expected,

but if the motor speed is increased (by means of a timer preset setting), the “Histogram”

waveform pulsewidths may become distorted. The problem usually arises from inadequate

sampling or from Windows processes interfering to result in irregular sampling—the latter of

which may be more likely in cases where sometimes the plotted waveform is normal and

sometimes it is distorted. Observation of the oscilloscope waveforms shows that the actual

binary coil waveforms still appear exactly as expected, despite the distorted waveshapes

presented in the “Histogram” window. In other environments such as Matlab’s Real-time

Windows Target, the kernel takes over the PC, over Windows, and so the desired sampling

interval is always maintained (though of course nothing can correct for too long a sampling

interval).

The Student PLC Projects

Three projects have been assigned to students: A half-stepping stepper motor controller, a lead

screw/limit switch control device, and a closed-loop heating/cooling temperature control system.

The full-step stepper motor controller presented in lecture is a good basis from which students

can create the code necessary to drive the stepper motor with half-stepping waveforms, yet the

requirements for half-stepping do provide a moderate programming challenge to the students.

Details such as the fact that “A bar” is no longer necessarily the logical complement of A

because both “A” and “A bar” may be required to simultaneously be zero, the determination of

the speed in rpm from a knowledge of the degrees per full step and parameters within their

program (speed was not addressed in the lecture demo), the fact that some instructions are word-

level rather than bit-level, and so on force students to think through the given problem carefully.

A wide variety of approaches has been used by students to achieve half-stepping, including bit-

shifting, direct writing of the switching table into code for each time interval, logic/range testing

for each switch individually, and use of the sequencer output (SQO) instruction. Similarly,

counting up/counting down are implemented various ways, such as running a counter up or

down, subtracting the preset from an only up-counting counter, or just using a different set of

rules on the upward-counting variable from that for the down-counting variable to determine

which solid-state relay switches must be closed. Students are required to plot out “Histograms”

of the four stepper motor coil waveforms for both clockwise and counterclockwise operation.

They must also predict by calculation and verify by measurement the achieved speed of the

motor. They are required to meet or exceed a specified speed, which is possible only if their

code is reasonably efficient. For example, certain ways of writing code that involve integer

division of preset times lead to failure of the motor to spin rapidly (i.e., at low timer preset

values) or even work at only a few different speeds (associated with the different selectable time

bases) if the code depends on a timer value rather than a counter value. During the fall 2007

semester, a student found a bug in his code when his code caused the motor to run too slowly.

For the second project, a DC motor-driven lead screw moves a small block along the lead screw

as the latter rotates; see Fig. 3. Upon pressing of a pushbutton, the block is driven to a limit

switch and upon hitting it, the motor must be reversed (same speed in the opposite direction) and

the block is to be returned to its original position; there is not a second limit switch at the original

P
age 13.776.8

position. The starting position of the block may be varied from run to run so that the time from

start to limit switch is unknown to the programmer; the block must always be returned to the

original position for that run. A timer is used within the PLC program to determine how long to

move the block back after the limit switch is hit. That part of the programming is reasonably

straightforward.

Fig. 3 Circuitry for PLC project with pushbutton-initiated traversal of block along lead screw to

end, sensed by limit switch, upon which block is returned to arbitrarily selectable starting

position.

Many students have a little difficulty with using the debug file properly within RSEmulate, in

which the emulator and not the hardware is used. The debug file is a model of the outside world

providing sensor data to and being affected by the PLC and its peripherals—in this case, the limit

switch and the motor/lead screw. Despite being warned to base action only on actual outputs

and that the only connection between the PLC main program and the debug file is to be

inputs/outputs, students initially have a tendency to, in their debug file, use internal variables

within their PLC ladder logic file, which are not available in the real world. They must view the

P
age 13.776.9

PLC ladder logic file / emulation debug file interface as the same as that between the PLC and

the real world. The PLC output (motor drive signal) is the input to the debug file and the PLC

inputs (the pushbutton and limit switch states) are the debug file outputs. Thus in the debug file,

upon start, the pushbutton switch is to be held high for about one second, mimicking how long a

person holds down a pushbutton. The PLC receives this input (in emulation) and turns on the

forward motor output. The debug file senses the forward motor output signal high and begins a

timer, with its preset set to a time that one would expect the block to typically take to move from

its original starting point to the limit switch, e.g. 10 seconds. Upon conclusion of that traveling

time interval, the debug file asserts the limit switch for about 1 second (by running another

timer) and the PLC senses that and reverses the motor direction (meanwhile, with its own timer,

the PLC program has effectively measured the preset of the debug file timer). In this way, one

has been able to try out the PLC ladder logic program in which the real world to which the PLC

interfaces is well modeled by the debug file.

The final PLC project is a PID-controlled temperature control system, which makes use of the

PID instruction in RSLogix. A water-filled metal cylinder with platinum RTD sensor is attached

to a heating bar, which has a voltage-controlled heating element, and a small computer fan

whose voltage is continuously variable is used for cooling (one can actually hear the changes in

the signal controlling it, as the fan speed changes). For the particular heating/cooling elements,

the time constants for heating and cooling are respectively about 15 minutes and 5 minutes. A

schematic diagram of the hardware is shown in Fig. 4.

Fig. 4a RTD sensor signal conditioning circuit for PLC temperature control system project.

P
age 13.776.10

Fig. 4b Heater/fan output circuits for PLC temperature control system project.

Students must do a little digging to properly set up for PID control in RSLogix 500. A control

file dedicated to the PID instruction must be created and appropriate integer variables used for

the set point and other variables. The PLC instruction has only nonnegative integer output

values, yet in order for the final power amplifier circuitry to function with only one PID

instruction, bipolar results are required. In addition, the analog output for our analog I/O card is

a current output rather than a voltage output. The bipolar requirement was achieved by

constructing a current source to subtract off enough current to create negative or positive

actuating voltages to be amplified with a bipolar power amplifier. A bias must be added onto the

output number from the PID calculation; otherwise RSLogix outputs zero when a negative value

would normally be generated.

First the students are assigned to perform proportional-only control with a moderate value of

gain such as 10 or 15; in the example below, 10 is chosen to provide a relatively marked

performance improvement using PID compared with proportional-only. This gain value

provides a modest amount of overshoot and a steady-state error of about 2.0 degrees Celsius for

a set point of 35 degrees C (95 degrees F) under proportional-only control. Students are to

evaluate the percent overshoot, the settling time, and the steady-state error from their plots.

Using RSView32, floating-point temperatures in degrees Celsius are to be displayed both in

numerical fields and in real-time trend plots that show desired/actual temperatures and an

P
age 13.776.11

appropriately scaled version of the actuating signal all as functions of time. Contrarily, positive

integer values for temperature are required in the PID instruction, corresponding to the valid

range of 0 to 16383. Students must be able in RSView32 to enter desired temperature in degrees

Celcius, print out the plot using a print button they create, and have a “home page” and trend

page that can be navigated by buttons.

Next, students are asked to try PID control, which has already been discussed in class. Students

must recognize that the default in RSLogix500 is to differentiate the output without negation,

whereas conventional PID control has the derivative of the error signal (which negates the

derivative of the output). One often omits including the set point in the derivative calculation to

remove spikes when the set point is changed suddenly, but having the wrong polarity on the

derivative term of the process variable (both seen in the RSLogix documentation and observed in

actual system operation and Simulink simulations) is known to increase overshoot or even

destabilize the closed-loop system—defeating the purpose of the derivative control term. The

particular temperature control system studied is so sluggish that the derivative term has been

found to make little difference one way or the other for the usual PID parameter values, but it is

important for the student to learn the correct polarity.

Either a seat-of-the-pants or a more systematic approach is done to tune the PID gains. One way

of tuning the parameters is to perform open-loop testing and follow the Zeigler-Nichols tuning

rules. In this particular application example, the Zeigler-Nichols rules (performed for heating)

turn out to result in greater overshoot and oscillation than desired, but at least they give an order-

of-magnitude starting place for a parameter search for “best” PID performance. In particular, the

integral reset time of 6 minutes and the derivative scaling time of 2 minutes with a proportional

gain of 10 were selected instead of the Ziegler-Nichols values. For use of the PID instruction

with these tuning parameters, the steady-state error was indeed practically eliminated with only a

modest amount of overshoot., as shown in the example PID run presented below.

A typical set of trend plots is as follows. In Fig. 5, an open-loop test is performed to obtain an

estimate of the delay and rise/fall times of the system (about 2 minutes and 22 minutes,

respectively for heating; negligible delay time and only about a 6-minute fall time for cooling),

which are used to generate Ziegler-Nichols initial PID test parameters (Kc = 17 [using the

average of rise/fall times], TI = 4 min., Td = 1 min.) . The maximum temperature at saturated

output for this heating system is approximately 48 degrees C and the minimum is of course the

ambient room temperature.

P
age 13.776.12

Fig. 5 Open-loop heating/cooling test. Waveform shown is actual temperature in degrees

Celcius versus time.

In Fig. 6 is shown a warming cycle for proportional-only control. The final value of temperature

is about 33 degrees C, which corresponds to a steady-state error of 2 degrees C. The control

signal is the one beginning saturated and then falling below saturation and mildly oscillating; the

bar temperature is the rising waveform.

P
age 13.776.13

Fig. 6 Heating cycle for proportional-only control (Kc = 10) for constant 35-degrees Celsius set

point.

With PID control, the steady-state error can be eliminated, as shown in Fig. 7 using the non-

Ziegler-Nichols PID parameters discussed previously (Kc = 10, TI = 6 min., Td = 2 min.).

P
age 13.776.14

Fig. 7 Heating cycle for PID control (Kc = 10, Ti = 6 minutes, TD = 2 minutes) for constant 35-

degrees Celsius set point.

Side Benefits of the PLC Projects

As well as being a multifaceted programming experience, the student work on the PLC forces

students to adopt some important behaviors. Students must also plan properly and treat their

classmates with respect in a situation of limited resources. Grove City College has purchased

several copies of the software but has only one PLC. Students are able to log in remotely at

night to lab PCs that have the software on them to develop and test code (using the emulator).

As only one student can use a PC at a time, there must be time-sharing and such etiquette as

being patient with each other when one is on a machine that someone else wants to use, not

locking up the PC under his/her name, remembering to log off, refraining from using remote

login for many hours at a time during the day (when there is physical access to the lab PC),

scheduling their hardware usage and demonstrations in harmony with each other, leaving the lab

when another student is demonstrating her/his project so that there is a level playing field of

evaluations, heeding warnings to avoid certain actions that could jeopardize the system, etc.

Personal integrity is essential and emphasized, and code is checked for originality. Integrity is

P
age 13.776.15

also assessed via the demonstrations, where students must not only demonstrate that the

hardware works according to stated specifications but also explain how their code works (“walk

the instructor through their code”) and answer questions about the code and the assignment.

Also, PLC problems may appear on exams (e.g., programming a washing machine cycle or other

process control sequencing, concepts or terms presented in lecture, etc.) that expose how well

students have been learning and how independently they have been working. Planning and the

avoidance of procrastination are also critical in order to avoid “crunch-time” near the due date of

the projects. Students are given the assignments at the beginning of the semester and have a very

large amount of time (months) more than is necessary to complete the projects. If substantial

procrastination occurs among many students, then there can be contention and/or missed

deadlines. Thus even though the projects are not team efforts, important interpersonal skills are

developed through the assignments. Although all working code is accepted, excessively long

code may be penalized; a “Lord of the Rungs” award is given for the most concise and/or

effective code.

In addition, students must become resourceful in doing these projects. Although all of the basics

are presented thoroughly in lecture, implementation details must be found in the extensive

documentation, which has been placed in a folder on the PCs containing the software (in the

form of PDF files). In students’ work after graduation, often they will be required to learn on

their own how to use software. Through the trio combination of Matlab and PLC assignments as

well as senior design projects, students have ample opportunity to become resourceful in

extracting relevant information from large volumes of documentation. In all these three

endeavors, students must use industry-standard software with far more capability than is used in

the assignment, as opposed to watered-down, simplified software that sometimes comes in

textbooks. Again, alumni periodically note that they have used specific software such as the

PLC software in their postgraduate work; having already used such software in an educational

setting can clearly be highly advantageous later.

Student Opinion and Conclusion

The first semester that the PLC projects were offered, the percentage of student evaluation

comments that were negative was very high—71% negative, but improvements were made

quickly. For the ten semesters since then, the percentage of student evaluation comments that

were positive has been very high—88% positive; these exclude 9 student comments in which

students asked for more lab stations with the software, a situation that has since been rectified by

purchasing more Rockwell Software licenses. Some of the words that students have used in their

course evaluation comments to describe the PLC projects are: cool, great, practical, relevant,

informative, challenging, fun, interesting, liked, enjoyed, helpful, educational, worthwhile, a nice

break from usual assignments. In addition, an employer survey (2002) listed “PLC

troubleshooting” as a technical skill especially desirable for electrical engineers in his/her field.

In alumni surveys (2005, 2002 graduates), “PLC background (projects and lectures) was

excellent—used PLCs briefly at my time at (student’s company name) working with some

automated welding robots” and RSLogix was listed by two alumni in their postgraduate work; a

current student notes that in his job after graduation he will be using PLCs for dairy processing

and he said he is excited about doing the upcoming temperature control project.

P
age 13.776.16

References

1. N. S. Nise, Control Systems Engineering, 5

th
 Ed. New York: Wiley, 2008.

2. Rockwell Software, Inc., numerous on-line guides and reference manuals.

3. T. J. Cavicchi, Lecture notes for ELEE421/422. Grove City College.

4. C. L. Phillips, H. T. Nagle, Digital Control System Analysis and Design, 3rd edition. Englewood Cliffs,

NJ: Prentice Hall, 1995.

5. P. N. Paraskevopoulos, Modern Control Engineering. New York: Marcel Dekker, Inc., 2002.

6. S. B. Niku, Introduction to Robotics. Upper Saddle River, NJ: Prentice Hall, 2001.

7. T. J. Cavicchi, “Experimentation and analysis: SigLab/MATLAB data acquisition experiments for signals

and systems, IEEE Trans. on Education, Vol. 48, No. 3, Aug., 2005, pp. 540-550.

P
age 13.776.17

