

Proceedings of the 2010 ASEE North Midwest Sectional Conference

Intelligent Control on the S12 Microcontroller
Using Fuzzy Logic Instructions

Christopher R. Carroll

University of Minnesota Duluth

Introduction

Intelligent Control is a modern phrase that implies using creative algorithms in computer control
applications to address problems in unusual, or “intelligent,” ways. One tool that is used to
implement Intelligent Control is Fuzzy Logic, a scheme by which computer applications can
make decisions on imprecise, incomplete, or “fuzzy” information. This approach to Intelligent
Control has seen application in various commercial products, from home appliances to
sophisticated system designs. The value of using Fuzzy Logic in such applications depends on
the situation. Using Fuzzy Logic to detect and control the “darkness” of a piece of toast in a
toaster seems to be a force-fit application, but in more complex situations, Fuzzy Logic allows
implementation of non-linear control without complicated mathematical support.

The Freescale S12 microcontroller includes specific instructions in its instruction set to support
Fuzzy Logic applications. The presence of these four instructions as primitive operations in the
S12 makes that microcontroller unique, and especially well-suited to Intelligent Control
applications. This paper details those instructions in the S12’s instruction set that implement
Fuzzy Logic operations, and provides some applications in which the S12’s Fuzzy Logic
capabilities are used.

During Spring semester, 2010, a Design Workshop course was offered in which students used
the S12 microcontroller to implement applications of Intelligent Control. Based on the
experience of teaching that workshop, a similar Design Workshop course is scheduled for Fall
semester, 2010. This paper will include some results from the design projects conducted during
the Spring workshop as examples of Intelligent Control applications using Fuzzy Logic.

The Freescale S12 processor is probably the most popular general-purpose 16-bit microcontroller
currently on the market. It is used as the focus for microprocessor/microcontroller courses in
many Electrical or Computer Engineering programs across the country. However, the four
instructions in the instruction set that implement Fuzzy Logic primitives are often omitted from
discussion because their use requires an understanding that exceeds normal microcontroller
applications. This paper tries to remove the mystery surrounding the Fuzzy Logic capabilities of
the S12 microcontroller, and demonstrates how they can be used for Intelligent Control.

Overview of the Fuzzy Logic Instructions

The S12 microcontroller includes four primitive instructions in its instruction set specifically
intended to support Fuzzy Logic operations. These are MEM, REV, REVW, and WAV, and
they are introduced briefly below. Following sections of this paper will discuss the instructions
in more detail.

Proceedings of the 2010 ASEE North Midwest Sectional Conference

The MEM (membership) instruction performs the first step in Fuzzy Logic operations known as
fuzzification of the external crisp input values. This produces a set of fuzzy input variables that
are later combined to produce fuzzy output values.

The REV and REVW (rule evaluation and weighted rule evaluation) instructions perform the
meat of the fuzzy calculations, using the fuzzy input variables produced by MEM and generating
fuzzy output values.

The WAV (weighted average) instruction performs the final step of Fuzzy Logic operations
known as defuzzification. It takes the fuzzy output variables and transforms them into crisp
system outputs that can then be used in traditional processing.

These three steps, fuzzification, rule evaluation, and defuzzification, form a brief outline of any
Fuzzy Logic application, and each step is implemented by a primitive instruction in the S12
microcontroller’s instruction set.

MEM Instruction

The MEM (membership) instruction takes crisp input values received from transducers or other
devices and generates fuzzy input variables that represent the extent to which the crisp input
values belong to certain fuzzy categories, or labels. The crisp input can be fully a member of a
certain category, partially a member of that category, or not a member at all. To be specific,
imagine a system that controls the water temperature in a shower for people of various ages.

Labels are implemented via trapezoidal membership functions, as depicted in Figure 1. This
figure shows five labels for water temperature, each with an associated trapezoidal membership
function, to take an input water temperature from a sensor and categorize the temperature as
cold, cool, warm, hot, or scalding. It also shows a second set of trapezoidal membership
functions that depict three labels, young, adult, and senior, based on the age of the shower user.
In each case, the crisp input, (water temperature or age) is represented by a one-byte number in
the range 0 to 255 on the horizontal axis, and the resulting fuzzy values are also represented by
one-byte numbers in the range 0 to 255 on the vertical axis.

 255 cold cool warm hot scalding

 0
 0 40 50 60 70 80 90 100 110 255

 255 young adult senior

 0
 0 10 15 60 80 255

 Figure 1. Membership functions that fuzzify two crisp input values, water temperature and age,

and produce eight fuzzy input values, cold, cool, warm, hot, scalding, young, adult, and senior.

Proceedings of the 2010 ASEE North Midwest Sectional Conference

To use the MEM instruction, the trapezoidal membership functions must be described in the
microcontroller. This is accomplished via a data structure that records four numbers for each
trapezoid: left x-axis intercept, right x-axis intercept, left slope, and right slope (negated). Thus,
the “cool” trapezoid in Figure 1 would be described with the data structure 40, 70, 25, 25 in the
S12’s memory. Infinite slopes are represented by a special-case slope value of 0. The four
values for each trapezoid are stored sequentially in memory.

Before executing MEM, three registers in the S12 CPU must be initialized. Register A holds the
crisp value being fuzzified. Register X holds the address of the first byte of the trapezoidal
function being evaluated. Register Y holds the address in memory where the resulting fuzzy
input value is to be stored. MEM is executed once for each trapezoid in the set of membership
functions. In this example, eight separated MEM instructions must be executed, five with
register A holding the crisp water temperature, and three with register A holding the crisp age of
the shower user.

The result of executing MEM for each of the trapezoids is a list in memory of fuzzy input values
representing the extent to which each crisp input is a member of the associated fuzzy category
identified by each trapezoid. These fuzzy input values are then used in the next step of the
processing.

REV and REVW Instructions

The REV and REVW (rule evaluation and weighted rule evaluation) implement the meat of the
Fuzzy Logic processing. Through these instructions, fuzzy inputs produced by MEM are
combined using a set of rules to produce fuzzy outputs. The rules are a collection of statements
that describe the fuzzy output based on characteristics of the fuzzy inputs. In the example
discussed here, the single fuzzy output describes how to change the shower water temperature,
given the fuzzy inputs that describe the characteristics of the current measured temperature and
the age of the shower user.

Figure 2 shows a typical set of rules that might be used in this shower temperature control
example. In the table, the action required to adjust the water temperature is identified for each of
the possible categories of water temperature and age of the shower user. Entries in the table
mean the following: ĹĹ = raise temperature quickly, Ĺ = raise temperature slowly, ļ = leave
temperature unchanged, Ļ = lower temperature slowly, and ĻĻ = lower temperature quickly.

 cold cool warm hot scalding

young
adult
senior

ĹĹ

Figure 2. Rules used by REV and REVW to generate fuzzy outputs from fuzzy inputs

ĹĹ
ĹĹ

Ĺ
ĹĹ
Ĺ

ļ
Ĺ
ļ

Ļ

ļ
ĻĻ

ĻĻ

ĻĻ

ĻĻ

Proceedings of the 2010 ASEE North Midwest Sectional Conference

To use the REV and REVW instructions, the list of rules shown in Figure 2 must be stored in the
S12 memory in another data structure. Each box in Figure 2 is represented with a list of bytes
that record the statement “If the water temperature is (…) AND the showerer is (…) THEN
adjust the water temperature in this way (…)” where each of the (…) represents a fuzzy input
produced by MEM or a fuzzy output generated by the REV or REVW instructions. Thus, a
sample rule would be “If the water temperature is cool AND the showerer is young THEN raise
the temperature slowly.”

The difference between REV and REVW is that REV allocates the same “weight” to each rule,
meaning that each rule has equal impact on the resulting fuzzy output. By contrast, REVW
allows the programmer to assign weights to the various rules so that some rules have more
impact on the fuzzy output result than others. The data structures in memory for REV and
REVW differ in order to accommodate this weighting feature. In order to avoid confusion,
suffice it to say that the data structure specifying the list of rules identifies, for each rule, the
fuzzy inputs that are combined with the AND operator, and identifies the fuzzy output that is
produced by that rule. Rules are stored consecutively in memory, and are separated by special
“marker” values stored between the rules in the data structure. Results of the rules are combined
with the OR operator to determine the final value of the fuzzy outputs. In this example, there are
five fuzzy outputs: raise the temperature quickly, raise the temperature slowly, leave the
temperature unchanged, lower the temperature slowly, and lower the temperature quickly.

Numerically, the AND operator in Fuzzy Logic is implemented as an arithmetic minimum
operator, so that the AND of two fuzzy inputs is just the minimum value of the two fuzzy values.
The OR operator in Fuzzy Logic is implemented as an arithmetic maximum operator, so that
when rule results are combined by ORing them, the fuzzy output value is just the maximum
value produced by each of the rules being combined.

The result of rule evaluation is a set of fuzzy output values indicating the extent to which each of
the output actions should be taken. Thus, in this example, five numbers are produced in the
range 0 to 255, one for each of the five actions that should be taken on adjusting the water
temperature. This form of the result is not particularly useful for the system that actually must
control the water temperature. Thus, there is one more step in the process.

WAV Instruction

The WAV (weighted average) instruction takes the fuzzy outputs produced by REV or REVW
and combines them to produce a crisp output value that can then be used in further traditional
processing. This is accomplished by assigning a set of ideal values, known as “singletons,” to
each of the fuzzy outputs, and then performing a weighted average calculation using the fuzzy
outputs as “weights” to condition the singleton values associated with each fuzzy output. This
calculation is much the same as a “center of mass” calculation in a mechanical system. The
resulting number is a value somewhere within the limits established by the specified singleton
values, determined by the fuzzy outputs that specify the extent to which the output should
represent each of the fuzzy output labels.

Proceedings of the 2010 ASEE North Midwest Sectional Conference

In this example, if the fuzzy outputs say that the water temperature should be raised slowly to a
large degree, left unchanged to a small degree, and lowered not at all, the resulting value after
WAV will be a value between the singleton values for raise slowly and leave unchanged, shaded
toward the raise slowly singleton according to the weights identified in the fuzzy output
variables.

Example Applications

Students in the Electrical and Computer Engineering Design Workshop course during Spring
semester, 2010, used the S10 microcontroller and its Fuzzy Logic instructions to implement
various applications of Intelligent Control. Some of these student projects are described here.

In the “Intelligent Greenhouse” project, students designed a system that controls the environment
of growing plants. The system measures temperature and humidity in a greenhouse atmosphere
and uses those values as crisp inputs to the system. Employing Fuzzy Logic, the system
generates signals to control heat and ventilation of the greenhouse to optimize conditions for
plant growth. The results of this project were hard to demonstrate, but plants did grow, so
something must have been right.

In the “Color Recognition for Tracking Robots” project, students designed a typical line-
following robot, but added a twist. The color of the line being tracked controlled the speed of the
robot. A green line indicated full speed. A blue line slowed the robot, and a red line caused the
robot to stop. Filtered sensors were used to detect the color of the line, and Fuzzy Logic was
used to combine the crisp sensor outputs and to generate the control signal to specify robot
speed. This project worked well, after some difficulty in properly sensing the different colors.

The “Path Tracking” project was also based on a line-following robot, but in this case the line
sometimes included alternate paths which could be selected by the robot, based on the
surrounding environment and the intended destination. The robot used infrared sensors to detect
the line, and ultrasonic sensors to detect surrounding obstacles. By combining the line-tracking
sensor information with information about surrounding obstacles, the robot was able to make
intelligent decisions when faced with a bifurcation in the path it was following.

Two projects attempted to use spoken commands to control a system. One project included a
multi-color light display, and the user could light one or more colors of lights by speaking the
color. Colors could be brightened or darkened by speaking “more” or “less” as well. This
project did not function well. The second voice-control project did better, using spoken
commands to control the speed and direction of a motor. The S12 processor does not have any
special support for signal processing, so these projects attempted to just capture the frequency
pattern of spoken input and analyzed that pattern to determine appropriate actions.

A final project equipped a motorcycle helmet with ultrasonic sensors to detect surrounding
obstacles. A “threat level” indication was provided for the helmet wearer to indicate the
presence and direction of detected obstacles. Intelligent Control attempted to analyze the threat
situation and report the severity of the threat via lights in the peripheral vision of the user.

Proceedings of the 2010 ASEE North Midwest Sectional Conference

Student reactions to using Fuzzy Logic to implement control systems for their projects ranged
widely. Some students appreciated the opportunity to implement a control scheme using a state-
of-the-art technique, and eagerly dove into their projects. Other students were not convinced that
the use of Fuzzy Logic in their projects justified the added complexity in their software required
to support that approach. It is true that with the level of complexity addressed here in these
student projects, the full benefit available through the power of Fuzzy Logic systems is not
realized. In more complicated cases, however, Fuzzy Logic can be used effectively to
implement cleanly a control system that otherwise would require many levels of mathematical
modeling and simulation.

Summary

Intelligent Control applications were successfully implemented by students in the Design
Workshop Class during Spring semester, 2010, using the Fuzzy Logic capabilities of the S12
microcontroller. No conclusion is drawn here that Fuzzy Logic is the best, or even an
appropriate vehicle for solving these problems, but the availability of Fuzzy Logic support
instructions in the S12’s instruction set makes the approach at least viable. Experience with
these primitive applications of intelligent control using Fuzzy Logic demonstrated the processing
power that is available through special features of today’s systems. That experience may
encourage instructors in microprocessor classes using the S12 processor to address the
capabilities available through the Fuzzy Logic instructions in its instruction set.

References

1. Carroll, C. R., and M. Stachowicz, “Fuzzy Logic on the MC68HC12 Microcontroller: A Student Design
Workshop,” Computers in Education Journal, Vol XI, No. 1, January-March (2001).

2. Stachowicz, M. and C. R. Carroll, “Fuzzy Logic on Motorola’s Microcontroller,” 3rd Working Conference

on Engineering Education: Engineering Education for the 21st Century, Sheffield Hallam University,
England (2000).

3. Stachowicz, M. and C. Carroll, “Intelligent Systems on Motorola’s Microcontroller: A Team Design
Workshop,” Proceedings of the ICEE-2000, Taipei, Taiwan (2000).

4. Carroll, C. R., and M. Stachowicz, “Fuzzy Logic on the MC68HC12 Microcontroller: A Student Design
Workshop,” 2000 ASEE Annual Conference Proceedings, St. Louis, MO (2000).

Biography

CHRISTOPHER R. CARROLL received a Bachelor degree from Georgia Tech, and M.S. and Ph.D. degrees from
Caltech. After teaching at Duke University, he is now Associate Professor and Assistant Head of Electrical and
Computer Engineering at UMD, with interests in special-purpose digital systems, VLSI, and microprocessors.

