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Introduction 
 
Intelligent Control is a modern phrase that implies using creative algorithms in computer control 
applications to address problems in unusual, or “intelligent,” ways.  One tool that is used to 
implement Intelligent Control is Fuzzy Logic, a scheme by which computer applications can 
make decisions on imprecise, incomplete, or “fuzzy” information.  This approach to Intelligent 
Control has seen application in various commercial products, from home appliances to 
sophisticated system designs.  The value of using Fuzzy Logic in such applications depends on 
the situation.  Using Fuzzy Logic to detect and control the “darkness” of a piece of toast in a 
toaster seems to be a force-fit application, but in more complex situations, Fuzzy Logic allows 
implementation of non-linear control without complicated mathematical support. 
 
The Freescale S12 microcontroller includes specific instructions in its instruction set to support 
Fuzzy Logic applications.  The presence of these four instructions as primitive operations in the 
S12 makes that microcontroller unique, and especially well-suited to Intelligent Control 
applications.  This paper details those instructions in the S12’s instruction set that implement 
Fuzzy Logic operations, and provides some applications in which the S12’s Fuzzy Logic 
capabilities are used. 
 
During Spring semester, 2010, a Design Workshop course was offered in which students used 
the S12 microcontroller to implement applications of Intelligent Control.  Based on the 
experience of teaching that workshop, a similar Design Workshop course is scheduled for Fall 
semester, 2010.  This paper will include some results from the design projects conducted during 
the Spring workshop as examples of Intelligent Control applications using Fuzzy Logic. 
 
The Freescale S12 processor is probably the most popular general-purpose 16-bit microcontroller 
currently on the market.  It is used as the focus for microprocessor/microcontroller courses in 
many Electrical or Computer Engineering programs across the country.  However, the four 
instructions in the instruction set that implement Fuzzy Logic primitives are often omitted from 
discussion because their use requires an understanding that exceeds normal microcontroller 
applications.  This paper tries to remove the mystery surrounding the Fuzzy Logic capabilities of 
the S12 microcontroller, and demonstrates how they can be used for Intelligent Control. 
 
Overview of the Fuzzy Logic Instructions 
 
The S12 microcontroller includes four primitive instructions in its instruction set specifically 
intended to support Fuzzy Logic operations.  These are MEM, REV, REVW, and WAV, and 
they are introduced briefly below.  Following sections of this paper will discuss the instructions 
in more detail. 
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The MEM (membership) instruction performs the first step in Fuzzy Logic operations known as 
fuzzification of the external crisp input values.  This produces a set of fuzzy input variables that 
are later combined to produce fuzzy output values. 
 
The REV and REVW (rule evaluation and weighted rule evaluation) instructions perform the 
meat of the fuzzy calculations, using the fuzzy input variables produced by MEM and generating 
fuzzy output values. 
 
The WAV (weighted average) instruction performs the final step of Fuzzy Logic operations 
known as defuzzification.  It takes the fuzzy output variables and transforms them into crisp 
system outputs that can then be used in traditional processing. 
 
These three steps, fuzzification, rule evaluation, and defuzzification, form a brief outline of any 
Fuzzy Logic application, and each step is implemented by a primitive instruction in the S12 
microcontroller’s instruction set. 
 
MEM Instruction 
 
The MEM (membership) instruction takes crisp input values received from transducers or other 
devices and generates fuzzy input variables that represent the extent to which the crisp input 
values belong to certain fuzzy categories, or labels.  The crisp input can be fully a member of a 
certain category, partially a member of that category, or not a member at all.  To be specific, 
imagine a system that controls the water temperature in a shower for people of various ages. 
 
Labels are implemented via trapezoidal membership functions, as depicted in Figure 1.  This 
figure shows five labels for water temperature, each with an associated trapezoidal membership 
function, to take an input water temperature from a sensor and categorize the temperature as 
cold, cool, warm, hot, or scalding.  It also shows a second set of trapezoidal membership 
functions that depict three labels, young, adult, and senior, based on the age of the shower user.  
In each case, the crisp input, (water temperature or age) is represented by a one-byte number in 
the range 0 to 255 on the horizontal axis, and the resulting fuzzy values are also represented by 
one-byte numbers in the range 0 to 255 on the vertical axis. 
 
 
 255 cold    cool   warm   hot   scalding 
 
 
 0 
   0  40 50 60 70 80 90 100 110  255 
 
 255 young  adult     senior 
 
 
 0 
   0 10 15    60  80   255 
 
 Figure 1.  Membership functions that fuzzify two crisp input values, water temperature and age, 

and produce eight fuzzy input values, cold, cool, warm, hot, scalding, young, adult, and senior.
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To use the MEM instruction, the trapezoidal membership functions must be described in the 
microcontroller.  This is accomplished via a data structure that records four numbers for each 
trapezoid:  left x-axis intercept, right x-axis intercept, left slope, and right slope (negated).  Thus, 
the “cool” trapezoid in Figure 1 would be described with the data structure 40, 70, 25, 25 in the 
S12’s memory.  Infinite slopes are represented by a special-case slope value of 0.  The four 
values for each trapezoid are stored sequentially in memory. 
 
Before executing MEM, three registers in the S12 CPU must be initialized.  Register A holds the 
crisp value being fuzzified.  Register X holds the address of the first byte of the trapezoidal 
function being evaluated.  Register Y holds the address in memory where the resulting fuzzy 
input value is to be stored.  MEM is executed once for each trapezoid in the set of membership 
functions.  In this example, eight separated MEM instructions must be executed, five with 
register A holding the crisp water temperature, and three with register A holding the crisp age of 
the shower user. 
 
The result of executing MEM for each of the trapezoids is a list in memory of fuzzy input values 
representing the extent to which each crisp input is a member of the associated fuzzy category 
identified by each trapezoid.  These fuzzy input values are then used in the next step of the 
processing. 
 
REV and REVW Instructions 
 
The REV and REVW (rule evaluation and weighted rule evaluation) implement the meat of the 
Fuzzy Logic processing.  Through these instructions, fuzzy inputs produced by MEM are 
combined using a set of rules to produce fuzzy outputs.  The rules are a collection of statements 
that describe the fuzzy output based on characteristics of the fuzzy inputs.  In the example 
discussed here, the single fuzzy output describes how to change the shower water temperature, 
given the fuzzy inputs that describe the characteristics of the current measured temperature and 
the age of the shower user. 
 
Figure 2 shows a typical set of rules that might be used in this shower temperature control 
example.  In the table, the action required to adjust the water temperature is identified for each of 
the possible categories of water temperature and age of the shower user.  Entries in the table 
mean the following:  ĹĹ = raise temperature quickly, Ĺ = raise temperature slowly, ļ = leave 
temperature unchanged, Ļ = lower temperature slowly, and ĻĻ = lower temperature quickly. 
 
  cold   cool  warm   hot scalding 
 
young 
adult 
senior 
 
 
 
 

ĹĹ

Figure 2.  Rules used by REV and REVW to generate fuzzy outputs from fuzzy inputs 
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To use the REV and REVW instructions, the list of rules shown in Figure 2 must be stored in the 
S12 memory in another data structure.  Each box in Figure 2 is represented with a list of bytes 
that record the statement “If the water temperature is (…) AND the showerer is (…) THEN 
adjust the water temperature in this way (…)” where each of the (…) represents a fuzzy input 
produced by MEM or a fuzzy output generated by the REV or REVW instructions.  Thus, a 
sample rule would be “If the water temperature is cool AND the showerer is young THEN raise 
the temperature slowly.” 
 
The difference between REV and REVW is that REV allocates the same “weight” to each rule, 
meaning that each rule has equal impact on the resulting fuzzy output.  By contrast, REVW 
allows the programmer to assign weights to the various rules so that some rules have more 
impact on the fuzzy output result than others.  The data structures in memory for REV and 
REVW differ in order to accommodate this weighting feature.  In order to avoid confusion, 
suffice it to say that the data structure specifying the list of rules identifies, for each rule, the 
fuzzy inputs that are combined with the AND operator, and identifies the fuzzy output that is 
produced by that rule.  Rules are stored consecutively in memory, and are separated by special 
“marker” values stored between the rules in the data structure.  Results of the rules are combined 
with the OR operator to determine the final value of the fuzzy outputs.  In this example, there are 
five fuzzy outputs:  raise the temperature quickly, raise the temperature slowly, leave the 
temperature unchanged, lower the temperature slowly, and lower the temperature quickly. 
 
Numerically, the AND operator in Fuzzy Logic is implemented as an arithmetic minimum 
operator, so that the AND of two fuzzy inputs is just the minimum value of the two fuzzy values.  
The OR operator in Fuzzy Logic is implemented as an arithmetic maximum operator, so that 
when rule results are combined by ORing them, the fuzzy output value is just the maximum 
value produced by each of the rules being combined. 
 
The result of rule evaluation is a set of fuzzy output values indicating the extent to which each of 
the output actions should be taken.  Thus, in this example, five numbers are produced in the 
range 0 to 255, one for each of the five actions that should be taken on adjusting the water 
temperature.  This form of the result is not particularly useful for the system that actually must 
control the water temperature.  Thus, there is one more step in the process. 
 
WAV Instruction 
 
The WAV (weighted average) instruction takes the fuzzy outputs produced by REV or REVW 
and combines them to produce a crisp output value that can then be used in further traditional 
processing.  This is accomplished by assigning a set of ideal values, known as “singletons,” to 
each of the fuzzy outputs, and then performing a weighted average calculation using the fuzzy 
outputs as “weights” to condition the singleton values associated with each fuzzy output.  This 
calculation is much the same as a “center of mass” calculation in a mechanical system.  The 
resulting number is a value somewhere within the limits established by the specified singleton 
values, determined by the fuzzy outputs that specify the extent to which the output should 
represent each of the fuzzy output labels.  
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In this example, if the fuzzy outputs say that the water temperature should be raised slowly to a 
large degree, left unchanged to a small degree, and lowered not at all, the resulting value after 
WAV will be a value between the singleton values for raise slowly and leave unchanged, shaded 
toward the raise slowly singleton according to the weights identified in the fuzzy output 
variables. 
 
Example Applications 
 
Students in the Electrical and Computer Engineering Design Workshop course during Spring 
semester, 2010, used the S10 microcontroller and its Fuzzy Logic instructions to implement 
various applications of Intelligent Control.  Some of these student projects are described here. 
 
In the “Intelligent Greenhouse” project, students designed a system that controls the environment 
of growing plants.  The system measures temperature and humidity in a greenhouse atmosphere 
and uses those values as crisp inputs to the system.  Employing Fuzzy Logic, the system 
generates signals to control heat and ventilation of the greenhouse to optimize conditions for 
plant growth.  The results of this project were hard to demonstrate, but plants did grow, so 
something must have been right. 
 
In the “Color Recognition for Tracking Robots” project, students designed a typical line-
following robot, but added a twist.  The color of the line being tracked controlled the speed of the 
robot.  A green line indicated full speed.  A blue line slowed the robot, and a red line caused the 
robot to stop.  Filtered sensors were used to detect the color of the line, and Fuzzy Logic was 
used to combine the crisp sensor outputs and to generate the control signal to specify robot 
speed.  This project worked well, after some difficulty in properly sensing the different colors. 
 
The “Path Tracking” project was also based on a line-following robot, but in this case the line 
sometimes included alternate paths which could be selected by the robot, based on the 
surrounding environment and the intended destination.  The robot used infrared sensors to detect 
the line, and ultrasonic sensors to detect surrounding obstacles.  By combining the line-tracking 
sensor information with information about surrounding obstacles, the robot was able to make 
intelligent decisions when faced with a bifurcation in the path it was following. 
 
Two projects attempted to use spoken commands to control a system.  One project included a 
multi-color light display, and the user could light one or more colors of lights by speaking the 
color.  Colors could be brightened or darkened by speaking “more” or “less” as well.  This 
project did not function well.  The second voice-control project did better, using spoken 
commands to control the speed and direction of a motor.  The S12 processor does not have any 
special support for signal processing, so these projects attempted to just capture the frequency 
pattern of spoken input and analyzed that pattern to determine appropriate actions. 
 
A final project equipped a motorcycle helmet with ultrasonic sensors to detect surrounding 
obstacles.  A “threat level” indication was provided for the helmet wearer to indicate the 
presence and direction of detected obstacles.  Intelligent Control attempted to analyze the threat 
situation and report the severity of the threat via lights in the peripheral vision of the user. 
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Student reactions to using Fuzzy Logic to implement control systems for their projects ranged 
widely.  Some students appreciated the opportunity to implement a control scheme using a state-
of-the-art technique, and eagerly dove into their projects.  Other students were not convinced that 
the use of Fuzzy Logic in their projects justified the added complexity in their software required 
to support that approach.  It is true that with the level of complexity addressed here in these 
student projects, the full benefit available through the power of Fuzzy Logic systems is not 
realized.  In more complicated cases, however, Fuzzy Logic can be used effectively to 
implement cleanly a control system that otherwise would require many levels of mathematical 
modeling and simulation. 
 
Summary 
 
Intelligent Control applications were successfully implemented by students in the Design 
Workshop Class during Spring semester, 2010, using the Fuzzy Logic capabilities of the S12 
microcontroller.  No conclusion is drawn here that Fuzzy Logic is the best, or even an 
appropriate vehicle for solving these problems, but the availability of Fuzzy Logic support 
instructions in the S12’s instruction set makes the approach at least viable.  Experience with 
these primitive applications of intelligent control using Fuzzy Logic demonstrated the processing 
power that is available through special features of today’s systems.  That experience may 
encourage instructors in microprocessor classes using the S12 processor to address the 
capabilities available through the Fuzzy Logic instructions in its instruction set. 
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