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Abstract 
 
It is important in the study of classical feedback control to understand the correspondence 
between pole locations and time response.  Quadratic poles are particularly important because 
many systems can be approximately characterized by a quadratic.  This paper describes a 
program, written in MATLAB and using the Graphical User Interface (GUI), which permits the 
user to drag a quadratic pole in the s-plane and observe, in real time, the changing continuous 
step response.  The program provides the student with the means to actually observe concepts 
presented in class, including s-plane lines of constant overshoot, time to peak, and settling time. 
 
A second program is described which allows the student to drag a quadratic pole in the z-plane 
and to observe the corresponding discrete step response.  In addition to overshoot, time to peak, 
and settling time, the number of samples per cycle are easily seen as the z-pole is moved.  The 
sample time can be changed while the program is in execution.  Before describing these 
programs, the paper discusses aspects of GUI program development. 
 
I. Introduction 
 
Many engineering faculty members have taught long enough to see computer programming 
evolve from batch processing, to timesharing, to PCs with character based operating systems, to 
PCs with windows based operating systems.  In the earlier evolutions it was easy to write code, 
frequently in FORTRAN or Basic, to serve as an aid to engineering education.  In the latest 
evolution there are many useful commercial programs written for engineering education, but 
most engineering faculty still would like to write  programs of their own. 
 
Programs written for window based operating systems usually contain Graphical User Interfaces, 
or GUIs. Someone contemplating writing code to produce GUIs might suspect that it is a 
complicated process, and it is.  There are some languages which help to reduce the complication, 
such as Visual Basic and Visual C.  However, these languages require programming at a rather 
low level.  Frequently specialized libraries must be acquired as well.  The capability of a high 
level language, such as MATLAB along with its toolboxes, is hard to ignore. 
 
Along with MATLAB 4 came a number of demonstration programs with GUIs.  The potential of 
combining GUIs with the enormous capability of MATLAB is enticing.  However, an 
examination of the code for these programs is daunting.  The code is largely devoted to the 
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handle graphics required for the GUIs.  An examination  of  the parts  of  the manuals pertaining 
to handle graphics shows that such programming is indeed very complicated. 
 
New with MATLAB 5 is the Graphical User Interface Development Environment, or GUIDE, 
which facilitates GUI programming.  Simply put, when using GUIDE the user drags GUIs into 
position within a figure and then facilitates the writing of typical MATLAB code to produce the 
desired results.  What GUIDE ultimately produces is a file of handle graphics code described 
above. 
   
The following sections contain a brief description of handle graphics, a description of GUIDE, 
the application of GUIDE to a simple linear system example, and then the description of a 
modified approach to the use of GUIDE to carry out more complicated linear system 
applications. Because the relevant manuals and references [3,4] cover hundreds of pages, this is 
not meant to be a complete description.  The hope is that this introduction to GUIDE will 
encourage the reader to make further investigation into this relatively easy means to write 
programs with GUIs along with the high level capabilities of MATLAB. 
 
II. An Introduction to Handle Graphics 
 
MATLAB employs handle graphics.  Each low level graphic component is referred to as an 
object and is assigned a numerical value called a handle.  The nature of an object is specified by 
a set of properties.  A quick impression of graphic objects, and how to determine their properties 
and change their properties, can be obtained by the following MATLAB instructions: 
 
>>figure(1); 
>>t=0:0.1:10; 
>>plot(t,sin(t)); 
>>title(’sin(t)’); 
>>xlabel(’Time, seconds’) 
 
The get function displays the properties of an object.  The handle of a figure is the figure 
number, so get(1) lists the properties of figure 1.  The result of this instruction, which is too 
lengthy to reproduce here, consists of forty properties unique to the figure object type followed 
by a blank line and then fifteen more properties common to all objects. 
   
Objects are organized in a tree structure.  The root object, whose handle is 0, is the computer 
screen.  A figure is a ’child’ of the root, and the root in turn is the ’parent’ of the figure.  Upon 
examining the results of get(1) it can be seen that the ’Parent’ property of figure 1 is [0] and the 
’Children’ property is something like [9.00049].  The figure’s tag, or descriptive character string 
name, is ’Fig1’.  Moving down, get(9.00049) reveals an object whose tag is ’Axes1’.  This object 
leads to several objects, other than its ’Children’, whose tags are ’Title’, ’Xlabel’, ’Ylabel’, and  
’Zlabel’. The ’Title’ handle is 10.0004, so get(10.0004) shows a ’String’ property whose value is 
’sin(t)’, the title assigned by the MATLAB code above.  The ’Children’ property of ’Fig1’ is 
[7.00049], which is the handle of the plotted line, whose tag is ’Line1’. 
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The set instruction may be used to change properties.  For example, in the first of the following 
instructions it is determined that the ’Color’ property of the line is [0 0 1] which means [0% red   
0% green  100% blue]. The following instruction changes the color to [1 0 0], or all red. 
 
>>get(7.00049,’Color’) 

Color = [0 0 1] 
>>set(7.00049,’Color’,[1 0 0]); 
 
User interface control, or uicontrol, objects are used for programs with graphical user interfaces 
such as push buttons, sliders, or editable text.  An important property of a uicontrol is the 
’Callback’ which consists of MATLAB code which is executed when the object is selected by a 
mouse click.  In the following section we will see how GUIDE is used to place uicontrols on a 
figure and to change the callback property of uicontrols. 
 
III. An Introduction to GUIDE 
 
The instruction >>guide brings up the GUIDE Control Panel.  GUIDE consists of a set of tools 
designed for rapid coding of GUIs [1].  The Property Editor tool displays object properties and 
facilitates changes to properties.  The Callback Editor tool facilitates writing multi-line callback 
code.  The Alignment Tool is used to align uicontrols within the figure, and the Menu Editor 
tool is used to develop pull-down menus.  GUIDE also contains an Object Palette consisting of 
uicontrols which can be graphically placed into a controlled figure. 
 
A simple application of GUIDE is shown in figure(1).  It is a unit step response of a quadratic 
transfer function specified by natural frequency and damping ratio.  Numerical values are placed 
in editable text objects, the computation is begun by pressing the Plot button, and the window is 
closed by pressing the Done button.  The following steps trace the GUIDE aided development of 
this application: 

 
1. Start GUIDE (>>guide).  Figure 1 is created in the controlled state. 
2. From the New Object Pallet place the text boxes, edit boxes, push 

buttons, and the axis on the figure. 
3. Use the Alignment Tool to horizontally align the objects. 
4. Select the top text box, by clicking on it.  Use the Property Editor to set 

’String’property to ’Wn’.  Do the same for ’zeta’. 
5. Select the upper edit box.  Use the Callback Editor to make the callback 
  instruction: 

Wn=eval(get(gcbo,’String’))
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Here, the string value of the callback object is gotten and converted to a  numerical 
value. 

6. Likewise, make the callback instruction: 
zeta=eval(get(gcbo,’String’))  

for the lower edit box. 
7. Select the upper button.  Use the Property Editor to set ’String’ to ’Plot’ and the 
  Callback Editor to create the following callback: 

num=Wn^2; 
den=[1 2*zeta*Wn Wn^2]; 
step(num,den);grid 

8. Select the lower push button.  Set the ’String’ property to ’Done’ and the 
  callback to:  

close(gcbf). 
9. Within the Control Panel, change the figure from controlled to active.  Save as 
  example1, producing  example1.m and example1.mat. 
10. Enter numerical values for Wn and zeta, and watch the results. 
 
The file example1.m written by GUIDE contains twelve objects containing an average of six 
properties which have been changed from their default values.  GUIDE has clearly saved a lot of 
work, even for an experienced GUI programmer. 
 
IV. Continuous Step Response 
 
A more interesting example, which utilizes animation, is shown in figure(2).  On the right is a 
unit step response of a transfer function containing a zero, quadratic poles, and a gain 
normalized for unity final value.  On the left is the s-plane showing the zero and the second 
quadrant quadratic pole.  When the program is in execution, as the zero or pole is dragged into 
different positions, the step response is continuously updated.  This program nicely illustrates 
what can be a difficult concept, the relation between s-plane poles and zeros and the 
corresponding time response.  This program is made available to the students, through the 
network, as a study aid.  The logic required is summarized as follows: 
 
if (mouse button down) 
  if (mouse in motion) 
    if (pole selected) 
       recompute transfer function 
       replot pole ’x’ in s-plane 
    end 
    if (zero selected) 
       recompute transfer function 
       replot zero ’o’ in s-plane 
    end 
    recompute step response 
    replot step response 
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  end 
end 
if (mouse button released) 
  clear button down code 
end 
 
Several callbacks are required.  It is desirable to put them into functions so that the compiled 
function code will execute faster than interpreted script file code and so that variables used will 
not remain in the MATLAB workspace.  Figure(3) is the function file containing the callbacks 
required to implement the logic.  By use of the switch statement multiple callbacks may be 
placed in a single function using a process called switchyard callbacks [2]. 
 
For a simple case like the previous example GUIDE produces two files.  One is  the .m file 
containing object definitions and property modifications.  The other is a .mat file containing 
arrays of numeric data.  More complex callbacks in an application such as the current example 
require a third file containing the switchyard callbacks.  I  recommend the addition of a fourth 
file, the one which is invoked to run the program. It also contains global variable initialization 
and key object properties.  The initial values of variables can be stored in various object 
properties, but it is more convenient to see them all in one place in the file.  The reason for 
including key object properties in the first file is that this file can serve as a starting point if 
major revisions are required.  If object properties are modified entirely interactively  through 
GUIDE, it can be a lengthy process to recreate the initial steps for a major revision.  The source 
of these object properties can be the manuals, previous experimentation with GUIDE, and 
examination of the code which produces the many MATLAB demonstration programs.  The last 
statement of this file, which is put in place after all development is complete, invokes the .m file 
written by GUIDE. 
 
File polezero.m in figure(4) is the initial file for this example.  It initializes global step response 
parameters and sets up the s-plane and time response axes.  Initial plots are made with the 
critical ’Erasemode’ property of ’xor’ required for animation.  The bulk of the GUI work is still 
done by GUIDE when the figure is saved, as pz.m and pz.mat in this case.   
 
V. Discrete Step Response 
 
Another interesting example is the correspondence between quadratic z-plane poles and a unit 
step response, as shown in figure(5).  When the program is in execution the quadratic pole is 
dragged within the unit circle and the step response changes almost instantly.  An additional 
feature of this program is an editable text box in which the sample time is specified.  This value 
can be changed at any time the program is running. 
 
The z-transfer function of a pure quadratic is more complicated than its s-plane counterpart 
because it contains a zero.  An easy way to compute this transfer function is to have MATLAB 
compute it, using the following sequence: 
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1. As the mouse is dragged in the z-plane, the current z quadratic pole location is 
  determined. 
2. Using z=esT, the pole location is mapped into the s-plane. 
3. The s-plane transfer function, Gs, of a pure 

quadratic is determined for the current s-plane quadratic poles.  This is easy because 
there is no zero. 

4. The discrete transfer function, Gz, which has the same step response as Gs at 
the sample times, is computed by Gz=c2d(Gs,T,’zoh’).  The correct zero  for Gz is 
computed as well as its poles. 

 
It is interesting for the students to run this program.  They can see that the overshoot remains 
constant as the pole is dragged along the constant zeta lines provided by the zgrid function.  As 
the pole is dragged along a semicircle it can be seen that settling time remains constant.  Finally, 
if the pole is dragged along a radial line from the origin, it can be seen that the number of 
samples per cycle remains constant.  The number of samples per cycle is 360 degrees divided by 
the angle to the pole.  In figure(5) this angle is about 45 degrees so the number of samples per 
cycle is 8, which is easily seen in the step response.  Some texts which show quadratic z-poles 
and the corresponding step responses erroneously show the same number of samples per cycle 
for poles at all locations in the z-plane. 
 
The discrete counterparts of the files shown in figure(3) and figure(4) are somewhat lengthy.  
Rather than include them here they are made available at the web address shown below. 
 
VI. Conclusions 
 
GUIDE is an excellent resource to help a user to become acquainted with the GUI capabilities of 
MATLAB.  While it may not be sufficient, by itself, for more complex applications, it still can 
do the bulk of the GUI work.  It is an extremely useful tool to help engineering educators to 
create new GUI applications or to attach GUI front ends to existing MATLAB applications. 
 
The step response of a continuous quadratic transfer function with a zero illustrates essentially a 
pure quadratic if the zero is dragged far to the left of the pole, and then illustrates the effect of 
the zero as it is dragged into the vicinity of the pole.  The step response of the discrete quadratic 
shows the not only the effect of changing the pole location but the effect of changing sample 
time.  Both programs are useful study tools for the students. 
 
The downloadable files for these examples are available on 
http://wseweb.ew.usna.edu/wse/download/ 
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Figure(1) Unit Step Response of Quadratic Transfer Function 

 
 

 
Figure(2)  Continuous Step Response 
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% anim.m   Animation callback function for Pole Zero Program 
%     R. DeMoyer & E. E. Mitchell, 1999 
function anim(action) 
global gain num dem pole zero Tim;      % global variables 
switch(action)            % switchyard callbacks 
case ’start’ 
   set(gcbf,’windowbuttonmotionfcn’,’anim move’)   % ’move’ when in motion 
   set(gcbf,’windowbuttonupfcn’,’anim stop’)   % ’stop’ when button up    
case ’move’    
   point = get(gca,’CurrentPoint’);      % get mouse coordinates 
   tag = get(gco,’tag’);         % get the tag of the object 
   if tag == ’Pole’           % execute this if pole current 
      pole = point(1,1) + j*point(1,2);     % new value for pole 
      dem = [1 -(pole+conj(pole)) pole*conj(pole)]; % re-compute denominator 
      gain = abs(pole*conj(pole)/zero);     % re-compute gain 
      set(gco,’xdata’,real(pole))       % re-plot the pole 
      set(gco,’ydata’,imag(pole)) 
   end 
   if tag == ’Zero’           % execute if zero is current 
      zero = point(1,1);         % new value for zero 
      num = [1 -zero];          % re-compute num 
      gain = abs(pole*conj(pole)/zero);     % re-compute gain 
      set(gco,’xdata’,zero)        % re-plot the zero 
      set(gco,’ydata’,0)         % on the horizontal axis 
   end 
   h_plot = findobj(’tag’,’Time’);      % handle of object  tag ’Time’ 
   y=step(gain*num,dem,Tim);        % re-compute the step response 
   set(h_plot,’xdata’,Tim)         % horizontal component of plot 
   set(h_plot,’ydata’,y)         % vertical component of plot    
case ’stop’ 
   set(gcbf,’windowbuttonmotionfcn’,’’)     % button up: nothing to happen 
   set(gcbf,’windowbuttonupfcn’,’’)      % so no callbacks. 
end 

Figure(3) Animation Callback Function 
 
 
% polezero.m   Main program 
%     R. DeMoyer & E. E. Mitchell, 1999 
global gain num dem pole zero Tim;      % global variables 
zero = -3; pole = -2+j*2;         % initial zero and pole 
gain = abs(pole*conj(pole)/zero);       % gain for unity final  
num=[1 -zero];            % transfer function numerator 
dem=[1 -(pole+conj(pole)) pole*conj(pole)];    % denominator 
Tim=0:.01:10;             % definition of time vector 
h_splane_axis = axes(’position’,[.06 .35 .3 .4]); 
axis([-10 1,0 5]); hold;         % s-plane axis 
h_pole = plot(real(pole),imag(pole),’r+’);grid     % plot the pole 
set(h_pole,’ButtonDownFcn’,’anim start’,...    % set some properties  
   ’EraseMode’,’xor’,’Tag’,’Pole’,’markersize’,10,... 
   ’linewidth’,3); 
h_zero=plot(zero,0,’go’);                  % plot the zero 
set(h_zero,’ButtonDownFcn’,’anim start’,...    % set some properties 
   ’EraseMode’,’xor’,’Tag’,’Zero’,’markersize’,10,... 
   ’linewidth’,3) 
h_tim_axis = axes(’position’,[.45 .3 .5 .5]);   % time response axis 
axis([0 10 0 2.5]);hold; 
y=step(gain*num,dem,Tim);         % unit step response  
 h_plot=plot(Tim,y);grid;                 % plot step response 
set(h_plot,’ButtonDownFcn’,’anim start’,...    % set some properties 
   ’EraseMode’,’xor’,’Tag’,’Time’,’markersize’,10,... 
   ’linewidth’,1.7); 
close all              % will be re-opened 

 % by Guide generated .m file 
pz                % execute Guide generated file 

Figure(4) Main Program P
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Figure(5) Discrete Step Response 
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