
2006-1513: INTERFACING J-DSP WITH A TI DSK FOR USE IN A SIGNAL
PROCESSING CLASS

CHIH-WEI HUANG, Arizona State University
CHIH-WEI HUANG IS A MASTERS ELECTRICAL ENGINEERING STUDENT AT
ARIZONA STATE. HIS RESEARCH IS IN REAL TIME SYSTEMS.

Ashwinn Natarajan, Arizona State University
Ashwin Natarajan is a doctoral student at Arizona State University doing his research in adaptive
systems

Rony Ferzli, Arizona State University
Rony Ferzli is a Doctoral student working on image processing systems.

Andreas Spanias, Arizona State University

© American Society for Engineering Education, 2006

P
age 11.816.1

INTERFACING JAVA-DSP WITH A TI DSK FOR USE IN A

SIGNAL PROCESSING CLASS

ABSTRACT

In this paper, we describe the development of interfaces of DSP hardware with

the NSF funded Java-DSP (J-DSP) education software for use in undergraduate

signals and systems and DSP classes. The interface enables undergraduate

students to design and implement algorithms real time on DSP hardware using the

user-friendly graphical interface of J-DSP. Simulations involving digital filters

and FFTs are first established in the object oriented J-DSP environment. Through

the use of a clever software interface, a real-time implementation of the algorithm

is activated on the TI DSP Starter Kit C6713. The real-time implementation

enables the students to examine the properties of various signal processing

algorithms using real-life signals. A simple audio compression scheme that uses

the Fast Fourier Transform (FFT) is described with details. The algorithm exposes

the students to the application of the FFT in a simplified MPEG-like audio

compression scheme. The hardware–software interaction of J-DSP with the TI

DSK is also explained to students; an introduction to the architecture and its

peripherals is also part of the learning experience. Pre- and Post- assessment

instruments have been developed and administered.

1. INTRODUCTION

An effective course in Digital Signal Processing (DSP) must convey theoretical

and practical knowledge of concepts associated with the subject. While

simulation tools such as MATLAB, Simulink, and J-DSP are valuable, running

DSP algorithms on real-time hardware can further enhance the understanding of

these concepts. With real-time DSP labs, students also gain insight into

implementation issues associated with DSP algorithms [1-6]. They also gain an

appreciation for several popular and appealing applications that use DSP chips,

such as digital cellular phones and MP3 players. Several segments of the industry

require students to be exposed to DSP hardware. In this endeavor, we choose the

Texas Instruments (TI) TMS320C6713™ DSP Starter Kit (DSK), which is based

on the C6713™ floating-point processor, as a platform for real-time DSP

experiments. This choice was motivated by the availability of development tools

and the popularity of the TI DSK in industry and academic training circles.

Although fixed-point processors are less expensive and more power efficient than

floating-point processors, they have a number of disadvantages including

truncation and roundoff effects. Even with specialized training, programming

fixed-point processors is difficult. Floating-point processors are easier to program

P
age 11.816.2

than their fixed-point counterparts, but developing code for them is still difficult.

The learning curve is steep, especially if the DSP platform has to be programmed

in assembly language. TI has developed the Code Composer Studio™ (CCS™)

that provides an integrated development environment (IDE) for users. CCS is a

powerful tool for writing and debugging code and has an inbuilt compiler that

generates the assembly level code required to run the DSP. However, even CCS

can be overwhelming for students because it still requires knowledge of tedious

programming structures. All these issues highlight a need for a setup that allows

students to access the capabilities of real-time DSP hardware with a simple,

friendly, GUI-based software.

In this paper, we describe a GUI-based approach to teach undergraduate students

the concepts of real-time signal processing using J-DSP [7]. Combining the ease

of use of J-DSP and the powerful capabilities of the TI DSK allows students to

explore the concepts of real-time signal processing in a friendly environment.

Before using J-DSP to run real-time DSP algorithms on the DSK, students are

given a brief overview of the interface between J-DSP and the TI DSK. The

process of connecting J-DSP to the hardware via the RS232 and the USB ports

are explained. The role of CCS in this process is also described. Students are then

asked to select various DSP functions to examine the differences between real-

time and offline signal processing. Hands-on exercises that use this J-DSP

interface to the DSK have been developed and disseminated to undergraduate

students in the ASU DSP class. A laboratory session was organized where

students programmed select real-time DSP tasks using J-DSP. Pre- and post-lab

quizzes were given to assess their understanding of real time DSP.

The rest of the paper is organized as follows. Section II discusses the hardware

aspect of this educational setup. In section III, we explain the software and

interfacing aspects of this project. Section IV outlines some of the functions

available to students, while section V provides concluding remarks.

2. HARDWARE OVERVIEW

2.1 The TI DSK6713 board

The TI DSK6713 board [8-12] is based on the TMS3206713 processor, which is a

floating-point DSP chip operating at 225 MHz. The board also includes the 32-bit

stereo codec TLV320AIC23 (AIC23) to access and produce input and output

analog signals. Sampling rates can be varied between 8 and 96 kHz. The board

has 16MB of SDRAM and 256kB of flash memory. Input and output functions

are provided by several jacks (MIC IN, LINE IN, etc). The MIC IN and

HEADPHONE ports constitute the McASP (Multichannel Audio Serial Ports) and

the LINE IN and LINE OUT ports comprise the McBSP (Multichannel Buffered

Serial Ports.) Also available on the board are the EMIP (External memory

interface), two inter-Integrated Circuit buses, two timers, one GPIO (General

Purpose Input and Output), one HPI (Host-Port Interface), and one EDMA

(Enhanced Direct Memory Access) with 16 independent channels.

P
age 11.816.3

Figure 1. The TMS320C6713 DSK board.

2.2 The TMS320C6713 DSP

The TMS 6713 DSP can fetch 8 instructions per clock cycle and its performance

is rated at 1800 MIPS. The C6713 can perform 2 multiply and accumulate (MAC)

instructions per cycle. The processor can access 264kB of internal memory. Of

that, 4kB each is allocated as L1P (Level 1 Program cache) and L1D (Level 1

data cache) and the remaining 256kB is designated as L2 memory which is a

shared program and data space.

Figure 2. The functional block diagram of

TMS320C6713 (Courtesy of Texas Instruments)

2.3 The importance of the McBSP ports

Since the McBSP ports are important in this interface project, we discuss them in

some detail. The McBSP ports provide the interface between the input and output

facilities of the TI chip family. There are two McBSP ports - McBSP0 and

McBSP1. McBSP0 is used for control and McBSP1 is used to send and receive

P
age 11.816.4

data. Both ports provide for full duplex communication. Double buffered data

registers are available to allow a continuous data stream, along with independent

framing and clocking. Multichannel transmit and receive of up to 128 channels

can be set up with these ports in conjunction with a choice of data sizes including

8, 12, 16, 20, 24 and 32 bits. Most importantly, the McBSP provides ADC and

DAC functions.

Figure 3. The block diagram of McBSP (Courtesy of Texas

Instruments).

Let us briefly describe the functionality of the McBSP ports. For instance, the DR

(Data Receive pin) receives a data from the external input (such as a microphone).

The received data is first stored in the RSR (Receive Shift Register). Once the

RSR receives the complete data stream, it moves it into the RBR (Receive Buffer

Register). While the DRR (Data Receive Register) is not ready to be read by the

CPU or the DMA controller, the RBR copies the data into the DRR. Data

transmission is similar to data reception except the DX (Data Transmit pin), DXR

(Data Transmit Register) and XSR (Transmit Shift Register) are employed.

3. SOFTWARE AND INTERFACE OVERVIEW

3.1 The Code Composer Studio

The code composer studio (CCS) [10] includes a C/C++ editor, compiler,

assembler, linker, and debugger. The code for the DSK is programmed in CCS

and the loaded to the board. Support for DSP/BIOS is included using a GUI that

allows users to configure interrupt handlers, multithreading, etc. Additionally,

CCS optimizes the instructions and memory for efficiency.

3.2 Interface with J-DSP

P
age 11.816.5

Although CCS is a powerful tool, it can be difficult for first time users. We have

developed an interface to enable students to load and run DSP functions on the

DSK through the object oriented J-DSP software [15-16]. We have also

developed a simple custom GUI in J-DSP to facilitate working with the real-time

DSK hardware. This is shown in Figure 4. Basically, J-DSP acts as an extra layer

between the end-user and the DSK.

Figure 4: The real-time DSP block in J-DSP.

For communication via the RS-232 port, Java requires a signed applet to permit

resource access [13]. Java also needs the Communication API to access the RS-

232 port. The end user must copy the win32com.dll, comm.jar, and

javax.comm.properties to the specific directories detailed in the Communication

API manual.

3.3 Modifying the DSK to Resolve Hardware Conflicts

Successful interfacing requires both CCS and J-DSP to communicate with the

DSK as shown in Figure 5

The CCS communicates with the DSK via the USB port, while J-DSP employs

the RS-232 port available on the daughter card used with the DSK. However, a

hardware conflict arises because the daughter card and the AIC23 codec both

employ the McBSP1 port. The solution was to rewire some of the hardware to

enable the use of the McBSP0 port for communication via the RS-232 port, and

allow McBSP1 to be used by the codec, as shown in Figure 6.

P
age 11.816.6

.

Figure 5: Layers involved in interfacing J-DSP with the DSK.

Figure 6: Re-wiring the daughter card.

The user has to connect the J-DSP block shown in Figure 4 to the DSK via the

RS-232 port by clicking the [Open Port] button. USB connectivity is also possible

through adaptors. The default settings are: baud rate 57600bps, 8 data bits with 1

stop bit and no parity. The status of the connection is updated in the textbox at the

bottom of the dialog box. Once the connection is made, various DSP functions,

shown in Figure 7, can be selected from the drop down box.

P
age 11.816.7

Figure 7: DSP functions available to the user.

4. DEMO/LAB EXERCISE

Among the various applications implemented in real-time via J-DSP, the peak-

picking algorithm is of particular interest. A music file was played on a

continuous loop and the peak-picking algorithm is initiated. Students can change

various parameters and observe their effects on the reconstructed signal.

4.1 FFT Peak Picking and Parseval’s Theorem

The peak-picking algorithm is used to implement a lossy audio compression

scheme. Its educational value comes from its association with Parseval’s theorem

and the fact that transform domain analysis-synthesis [16] is used in JPEG,

MPEG, and MP3 [17-20] algorithms. The signal is compressed by using a

reduced set of the chosen transform parameters. An assumption that a signal

follows certain mathematical and statistical properties is vital in choosing signal

parameters. After redundancies are removed in the compression step, the

synthesis step involves reconstructing the signal with the reduced parameter set.

The peak-picking compression scheme is a simple FFT-based algorithm depicted

in Figure 8.

Figure 8: The peak picking block algorithm

The input signal vector is transformed using the FFT. The next step involves

redundancy removal or compression where only a specific number of peaks of the

FFT magnitude spectrum are selected (peak-picking). The peak picking implies

that the maximum power is maintained in the compressed signal as implied by the

Parseval’s theorem. These select frequency components are then transformed

back to the time domain using the IFFT. For proper reconstruction of the original

P
age 11.816.8

signal, frequency symmetries have to be preserved. Since this compression

scheme is lossy, there is a certain error associated with the reconstruction. The

key is to choose the components such that the error is not perceptible.

Deciding the number of peaks to be selected is crucial to the quality of the

reconstructed signal. Selecting more peaks ensures high quality reconstruction at

the expense of a higher rate.

Students from the undergraduate DSP class first played the original music file.

They were then asked to process this audio signal using the peak-picking

algorithm that was implemented real time on the DSK board. The number of FFT

components selected was varied. Two methods for selection were implemented,

namely peak-picking and initial low-frequency component selection. The students

were asked to subjectively rate the quality of the reconstructed signal in each

case. They were also asked to assess the differences between real time and offline

implementations.

An assessment quiz was administered before (pre-lab) and after (post-lab) the

hands-on laboratory exercise. The questions posed are itemized below:

1. Peak picking of the DFT is typically used for:

a. Filter design

b. Speech/Audio compression

c. JPEG compression

d. None of the above

2. Peak picking is equivalent to downsampling. (T/F)

3. Picking the first components bares similarities to low pass filtering. (T/F)

4. In the peak picking algorithm, all the phase components are set to zero.

(T/F)

5. Running DSP algorithms on a generic processor is faster than running the

same algorithm on real time DSP hardware. (T/F)

6. The SNRs obtained with peak picking are better / worse (circle one)

than the SNRs obtained by choosing the same number of the initial low

frequency DFT components.

7. Arrange in order the following functions that are involved in the A/D

conversion of the input signal at the codec embedded in the TI-DSK

board:

a. Sampling

b. Pre-filtering

c. Quantizing

8. The real time implementation of the peak picking algorithm implies that

the output is delivered

a. with precisely 0 delay.

b. with delay approximately equal to the frame size.

c. with delay equal to the number of spectral components selected.

times the sampling period.

P
age 11.816.9

9. Choose those that are true. DSP chips are

a. embedded in PCs to assist the main processor to run software.

b. used in cell phones.

c. used in Hi-def TV.

d. used in typical digital wrist watches.

10. DSP chips are optimized

a. for FFTs.

b. for high order digital filters.

c. to manage peripheral devices on the PC such as the mouse and

keyboard.

11. Circle the statements that are correct.

a. A DSP chip does a Mulitply-Accumulate in one cycle.

b. A Pentium III chip does a Multiply-Accumulate in one cycle.

12. Circle the correct statement

a. Fixed-point processors consume less power than floating-point

processors.

b. Floating-point processors are easier to program than fixed-point

processors

c. Floating-point processors are more expensive than fixed-point

processors

In summary, students showed an improvement in terms of knowledge of general

topics in real-time processing. They also became familiar with real-time

compression techniques that utilizes the FFT.

5. CONCLUSION

This paper described the basic hardware architecture of the TMS320C6713 DSK

board along with some of its functions. Interfacing the real-time DSK hardware

with the software such as J-DSP and the CCS was explained. Pre- and post

assessment quizzes were administered and improvements were demonstrated.

This new real-time capability of J-DSP enabled instructors to provide a valuable

introduction to real-time DSP without having to cover low level DSP

programming. Through this laboratory experience, students gained knowledge

on the following topics:

- The association of Parseval’s theorem with real-time transform-domain

compression schemes.

- Differences between offline and real-time signal processing in terms of

execution time and software complexity.

- Capabilities of DSP chips in terms of fast processing of signals.

- Association of FFT-based compression schemes with compelling JPEG

and MP3 applications.

- Exposure to DSP hardware issues.

P
age 11.816.10

6. REFERENCES

[1] T. B. Welch, C. H. G. Wright, and M. G. Morrow, “Experiences in Offering A DSP-based

Communication Laboratory,” Digital Signal Proc. Workshop, 2004 and the 3rd IEEE Sig. Proc.

Education Workshop, pp. 68-72, Aug 2004

[2] W.-S. Gan, “Teaching and Learning the Hows and Whys of Real-Time Digital Signal Processing,”

IEEE Trans. on Educ., vol. 45, no. 4, pp. 336-343, Nov. 2002

[3] M. D. Galanis, A. Papazacharias, and E. Zigouris, “A DSP Course for Real-Time Systems Design and

Implementation Based on the TMS320C6211 DSK,” 14th International Conf. On Dig. Sig. Proc., vol. 2,

pp. 853-856, July 2002

[4] S. L. Wood, G. C. Orsak, J. R. Treichler, D. C. Munson, S. C. Douglas, R. Athale, and M. A. Yoder,

“DSP Concepts and Experiments in a High School Curriculum,” 37th Conf. on Sig., Systems, and

Computers, vol. 2, pp. 1365-1369, Nov. 2003

[5] C. H. G. Wright, T. B. Welch, and W. J. Gomes III, “Teaching DSP Concepts using MATLAB and the

TMS320C31 DSK,” Proc. of International Conf. on Acous., Speech, Sig. Proc., vol. 6, pp. 3573-3576,

March1999

[6] M. G. Morrow, T. B. Welch, and C. H. G. Wright, “A Tool for Real-Time DSP Demonstration and

Experimentation,” Proc. of 10th IEEE Digital Signal Proc. Workshop, pp. 162-167, Oct. 2002

[7] JDSP http://jdsp.asu.edu

[8] Texas Instruments, Inc., http://www.ti.com

[9] Texas Instruments, Inc.,” TMS320C6713 DSP Starter Kit”,

http://focus.ti.com/docs/toolsw/folders/print/tmdsdsk6713.html

[10] Texas Instruments, Inc., “Code Composer Studio Features and Demos”,

http://focus.ti.com/dsp/docs/dspsupporto.tsp? sectionId=3&tabId=432.
[11] R.Chassaing, ”Digital Signal Processing and Applications with the C6713 and C6416 DSK”, John

Wiley & Sons, Inc., Hoboken, New Jersey, 2005.

[12] DSPGLOBAL, ”DSPG-IC1-232 Rs232 daughtercard”,
http://www.dspglobal.com/Int%20Card%20SERIAL.htm.

[13] Java Technology, http://java.sun.com.
[14] A. Spanias and V. Atti, “Interactive On-line Undergraduate Laboratories Using J-DSP,” IEEE Trans. on

Education Special Issue on Web-based Instruction, vol. 48, no. 4, pp. 735-749, Nov. 2005.

[15] A. Spanias, A. Venkataraman, K. Ahmed, A. Papandreou-Suppappola, M. Zaman, and T.

Thrassyvoulou “On-line signal processing using J-DSP,” IEEE Signal Processing Letters, Volume: 11 ,

Issue: 10 , pp. 821 – 825, Sept. 2004.

[16] S. Ahmadi and A. Spanias, “Algorithms for Low-bit rate sinusoidal coding,” Speech Communications,

34(2001), pp. 369-390, June 2001.

[17] T. Painter, A. Spanias, A., "Perceptual segmentation and component selection for sinusoidal

representations of audio,” IEEE Transactions on Speech and Audio Processing," Volume 13, Issue 2,

pp. 149-162, March 2005.

[18] Y. Song, A. Spanias, V. Atti, and V. Berisha, "Interactive Java Modules for the MPEG-1

Psychoacoustic Model," Proc. ICASSP '05, Vol. 5, pp.581-584, Philadelphia, March 2005.

[19] R. Ramapriya and A. Spanias, “A Simulation Tool for introducing MPEG - Audio (MP3) concepts in a

DSP course, Proc.. IEEE International Conference on Acoustic, Speech and Signal Processing

(ICASSP-2002), Orlando, May 2002.

[20] Ted Painter and Andreas S. Spanias, “Perceptual Coding of Digital Audio,” Proceedings of the IEEE,

pp. 451-513, Vol. 88, No.4, April 2000 (winner of field series 2002 IEEE Donald G. Fink Prize Paper

Award).

Acknowledgment: This work has been sponsored in part by the NSF CRCD EI Project

(award 0417604), the CCLI EMD Project (award 0443137), and the ASU FSE SenSIP cluster.

TM –DSK TMS 320xxxx and most related hardware used in this study are Trademarks of Texas

Instruments Incorporated.
 P

age 11.816.11

