
AC 2007-2150: INTERNET-CONTROLLED UNDERWATER VEHICLE

Omer Farook, Purdue University-Calumet
OMER FAROOK is a member of the faculty of the Electrical and Computer Engineering
Technology Department at Purdue University Calumet. Professor Farook received the Diploma of
Licentiate in Mechanical Engineering and BSME in 1970 and 1972 respectively. He further
received BSEE and MSEE in 1978 and 1983 respectively from Illinois Institute of Technology.
Professor Farook’s current interests are in the areas of Embedded System Design, Hardware –
Software Interfacing, Digital Communication, Networking, C++ and Java Languages.

Alan Balich, Purdue University Calumet
ALAN BALICH received his B.S. in Electrical and Computer Engineering Technology from
Purdue University, Calumet in 2007. His current interests reside in remotely operated vehicles
(air, water, and ground based), robotics, and embedded systems (specifically, microcontrollers
programmed using BASIC, C, and Assembly languages).

© American Society for Engineering Education, 2007

P
age 12.953.1

INTERNET CONTROLLED UNDERWATER VEHICLE

Abstract

The paper provides an overview of design, development, and testing of the Internet Controlled

Underwater Vehicle. As a senior design project it provides the students an integrating

experience of the knowledge and skills that have been acquired in their pursuit of a Bachelor of

Science Degree in Electrical and Computer Engineering Technology at Purdue University,

Calumet.

The paper examines in detail the previous research and development schemes that were used in

creating the structure(s), housing of the electronics and propulsion systems of typical remotely

operated vehicles. The paper focuses on the advantages and benefits achieved in the current

design of the Internet Controlled Underwater Vehicle.

The paper elaborates on the electronics used in the control and communication between the end

user and the vehicle. Furthermore, details of the of the propulsion system, control system, and

the necessary communication protocols are furnished.

I. Introduction

The Internet Controlled Underwater Vehicle (ICUV) is both a mechanical and electrical device

that can be used to explore the undersea environment without having to physically be at the

location. It is a vertically oriented, neutrally buoyant vehicle capable of moving in the following

directions: forward, backward, right, left, up and down. The ICUV uses a web-enabled camera,

web-server, and a microcontroller to allow any user with an available Internet connection to

manipulate the position and depth of the vehicle. A graphical user interface is provided by

means of the web-server so as to require a small learning curve when it comes to controlling the

ICUV. To the users, it would appear as if they were playing a video game, but the ICUV is a

physical device executing the user’s commands in real-time.

Not only can the users manipulate the physical attributes of the ICUV, but they can also choose

to receive data from the vehicle. This data represents physical conditions that surround the

ICUV. The ICUV is currently out-fitted with a digital compass and a temperature sensor. The

digital compass provides the current heading of the ICUV, where as the temperature sensor

reports the current temperature of the water.

The final form of data transmitted from the ICUV is that of a live video feed
[8]

 from a web-

enabled camera. The camera has the ability to pan and tilt so as to allow the user to pan the

lenses 100
o
 and tilt the lenses 45

o
 from the center point.

P
age 12.953.2

II. System Description

Mechanical and Physical Design

The mechanical and physical design of the ICUV is unique because of the vertical orientation as

its floats in water. Most remotely operated underwater vehicles are horizontally oriented,

cylindrical tubes with a propeller protruding from the back. The ICUV is vertically oriented with

two plastic spheres located at both the top and bottom of the body. The top sphere contains the

electronics for controlling the propulsion system and reading both sensors, while the bottom

sphere contains the web-enabled camera. The propulsion system is located in-between both

spheres.

A picture of the completed Internet Controlled Underwater Vehicle is shown in Figure 1 below.

Figure 1: Completed ICUV

Vertical Orientation vs. Horizontal Orientation

Vertical orientation was chosen over horizontal orientation because it offered better

maneuverability in tight spaces. For example, the investigation of a ship wreck does not

necessarily mean that there will be a large enough hole for a typical underwater vehicle to fit

through. Since the ICUV is vertically oriented, the user could easily enter the ship wreck

through a port-hole window or other small opening that may prevent larger remotely operated

vehicles from entering.

Vertical orientation allowed the ICUV to be more easily balanced when it came to making it

neutrally buoyant. The top electronics sphere is less massive than the camera module, thus, with

the camera in the bottom sphere, the ICUV maintains a vertical orientation. One gram masses

were used to make final adjustments to the ICUV's neutral buoyancy

P
age 12.953.3

Eight Thruster Propulsion System

The ICUV contains an eight thruster propulsion system in order to propel itself in one of six

directions. An eight thruster propulsion system allows for better accuracy and maneuverability

in tight spaces where there is little room to travel. With a separate thruster controlling each

direction of travel, a turning radius no longer exists in terms of movement. Other underwater

vehicles may rely on a rudder control system to serve as their means for direction control. The

problem occurs in that the vehicle still has to propel itself forward in order to move water across

the rudders so the vehicle can turn. In a space restricted area, there may not be enough room for

the vehicle to move enough water across the rudders for them to effectively turn the underwater

vehicle. The eight thruster propulsion system I have built effectively eliminates this problem.

All directions are controlled by their own thruster that moves water propelling the ICUV in the

user determined direction.

Depth control of the ICUV is achieved by using four thrusters from the propulsion system. In

this case, the four depth control thrusters are separated into two groups of two thrusters per

group. Since the vehicle is neutrally buoyant, a small application of force will easily move the

ICUV. Therefore the pair of thrusters facing towards the surface of the water will push the

vehicle down, or decrease the overall depth of the ICUV. The opposite is true for the second pair

of depth control thrusters, they are facing down towards the sea bed, thus, pushing the ICUV up

towards the surface of the water when activated.

Electronics System Design

The electronics system in the ICUV is responsible for receiving commands from the user and the

interpreting those commands so as to cause the ICUV to perform the action requested by the

user. It is also the responsible for reading the sensors, then sending the sensor data back to the

user for human interpretation. Finally, the electronics system also provides the proper

interfacing requirements to allow the low voltage/current microcontroller to control the higher

voltage/current thrusters.

A schematic of the ICUV’s electronics module is shown in Figure 2.

P
age 12.953.4

Figure 2: ICUV Electronics Module Schematic

Thruster Interface System

The thruster interface system consists of a LM1084 voltage regulator and two L293DNE
[1]

 high

voltage/current drivers. The LM1084 is an adjustable voltage regulator that can provide a

maximum regulated voltage of 15 VDC at a current of 5 ADC. Each thruster in the propulsion

system requires approximately 9 VDC at 200 mA DC to operate, therefore, the voltage regulator

has been setup to output 9.5 VDC from a 12 VDC input (12 VDC, 5 AH Lead Acid Battery).

The L293DNE high voltage/current driver allows the low voltage/current SX28 microcontroller

to control each of the eight individual thrusters. The drivers have fly-back diodes integrated

directly into the integrated circuit chip, thus, external diodes are not required. The fly-back

diodes prevent any noise or EMF generated by motors from interfering with the microcontroller.

P
age 12.953.5

Each L293DNE chip contains four driver channels and each channel is capable of supplying up

to 36 VDC at 600 mA. In the case of the ICUV’s thrusters, the L293DNE will only have to

control 9.5 VDC at 200 mA which is well within the maximum limits of the chip.

A picture of the completed Thruster Interface System is shown in Figure 3 below.

Figure 3: Completed Thruster Interface System

Parallax SX28 Microcontroller

The Parallax SX28
[2]

 microcontroller is the heart of the electronics system and the ICUV itself.

It is responsible for providing all of the necessary processing power in terms of interpreting

commands, controlling the motors, and communicating with the sensors and web-server. The

following communication protocols and devices have been implemented in the firmware:

The interface between the web-server and the SX28 microcontroller is handled by a single

asynchronous serial port which consists of a transmission line and a receiving line. Since the

SX28 does not have a built in UART, the serial port is implemented in the firmware that is

loaded into the chip's flash storage section.

P
age 12.953.6

Not only is the asynchronous serial protocol being used, but a synchronous serial protocol is

being used to communicate with the digital compass.

The SX28 does not have an onboard, hardware analog-to-digital converter (ADC), therefore, one

is implemented in the firmware. A Sigma-Delta ADC is used to convert the analog voltage

generated by the LM34DZ temperature to a digital value that closely represents the analog output

from the temperature sensor.

The SX28 microcontroller is capable of handling all of the tasks because of its high-speed

operation. It has a top speed of 75 MHz, but in the case of the ICUV, it is running at 20 MHz for

that this speed allows the microcontroller to handle communications between the web-server,

sensors, and controlling of the propulsion system. One of the important factors is the 1-to-1

execution cycle of the assembly instructions. This means that most of the assembly instructions

will take 1 cycle of CPU time to execute. Therefore, at 20 MHz, 1 cycle of CPU time is equal to

50 nanoseconds per instruction.

Given that several devices are being interfaced with the SX28, the amount of available

input/output pins makes the SX28 versatile. It has 21 general purpose I/O pins available which

are divided into the following three groups:

Port RA contains 5 I/O pins

Port RB contains 8 I/O pins

Port RC contains the final 8 I/O pins.

In the ICUV, Port RA is not used, but Port RB and RC are used in the following ways:

Port RB is used as the sensor interface and serial port. The HM55B digital compass requires 3

I/O lines (Clock, I/O, Chip Select) while the Sigma-Delta ADC requires 2 I/O lines (Capacitor

Feedback and Capacitor Charge Time Counter). The transmitting and receiving lines for the

asynchronous serial port are also implemented by using another 2 of Port RB’s I/O lines.

All 8 I/O lines of Port RC are used to control the eight individual thrusters of the propulsion

system. Port RC is interfaced to the thrusters by means of the L293DNE driver which isolated

and protects Port RC from voltage spikes or over-current conditions.

A picture of the completed SX28 Control Interface is shown in Figure 4.

P
age 12.953.7

Figure 4: Completed SX28 Interface System

Maxim MAX3232 RS-232/TTL Transceiver

The RS-232 specification is used to implement the asynchronous serial protocol between the

SX28 microcontroller and the web-server. Since both the SX28 and the web-server are TTL

level devices, the length of the cable in which the serial signals will travel over is limited in

length. By using the RS-232 specification, the maximum length of the cable can be increased to

approximately 45 feet at a speed of 9600 bps. Hence, using the MAX3232
[3]

 transceiver chips

allows the ICUV to have a maximum cable length of 45 feet between the underwater vehicle and

the web-server.

The MAX3233 can be powered by a 3.3 VDC or 5 VDC logic supply and requires only four

external 0.1 uF capacitors. It uses a series of charge pumps to generate the +12 and -12 VDC

RS-232 voltages which are temporarily stored in the four external capacitors.

P
age 12.953.8

Hitachi HM55B Digital Compass

The HM55B

[4]
 digital compass is used to determine the current heading of the ICUV in the

following terms: a compass rose direction (North, East, South, and West) and a degree (ex.

heading 350
o
 North by North-West).

In terms of resolution, the HM55B digital compass can differentiate between 64 different

headings. Therefore, this comes out to about 5
o
 per heading change when it is rotated about its z-

axis towards a compass specific direction, such as North.

LM34DZ Temperature Sensor & Sigma-Delta Converter

The LM34DZ
[5]

 temperature sensor is used to determine the current water temperature the ICUV

is currently encountering in its environment. Its output is calibrated in terms of a change in 1
o

Fahrenheit causes a 10 mVDC change in the output of the sensor. Therefore, applying what was

stated above means that a temperature of 72
o
 F will mean an analog output of approximately 720

mVDC.

In order to allow the SX28 microcontroller to transmit the current temperature sensor reading

back to the user, the analog output from the temperature sensor must be converted to a digital

value. Since the SX28, does not have an onboard, hardware ADC, a Sigma-Delta ADC has been

created in firmware. The Sigma-Delta ADC requires two 10 k-ohm ohm resistors and a single

0.001 uF capacitor in for the SX28 to properly convert the analog voltage to its digital

representation.

Parallax Embedded Web-Server

The Parallax Embedded Web-Server
[6]

 serves as the host for the graphical user interface that the

user will interact through their web-browser. Effectively, a web-page is created using the Hyper-

Text Markup Language (HTML) and is then transferred to the web-server by means of the File

Transfer Protocol (FTP). All the user has to do is navigate to that web-page by means of a

Uniform Resource Locator (URL) and allow the web-browser to render the page properly. The

Parallax Embedded Web-Server and the features that are being used to communicate with the

ICUV are described below.

The web-server contains a Motorola Coldfire processor that is interfaced with an SDRAM (64

kB) and a Flash Ram (512 kB). The flash ram is where the web-page is stored while all variables

are located in the SDRAM. These variables are then referenced in HTML so as to allow one of

the following two things to happen: data received over the serial can be stored in one of the

variables and then later displayed on the web-page, or a user could input data into a text box on

the web-page which is then sent out over the serial link to the receiving device.

In the case of the ICUV, all sensor data is continuously transmitted over the serial link to two

separate variables and displayed on the webpage. As for the user’s control over the travel of the

ICUV, the user clicks a button on the web-page that corresponds to the firing of a particular

thruster. This is not automatically transmitted over the serial link to the SX 28 microcontroller,

P
age 12.953.9

but it is the job of the SX28 to poll the web-server and see if that specific variable has been

updated by a user event.

III. Firmware Operation

The native language of the SX28 microcontroller is that of SX assembly (SASM). Given today's

modern PC technology, a program called a compiler can be created in order to take a higher-

level language and "compile" into a lower-level language that the microcontroller executes.

In the case of the ICUV project, a higher-level language (Parallax BASIC
[7]

) was used in order to

expedite the process of attaining the necessary functionality for the ICUV. The BASIC high-

level language is closer to actual English language, thus, the same meanings in the spoken

English language are inherent in the BASIC language. This allows the firmware in the ICUV's

microcontroller to be more easily understood by a variety of people as it is further developed and

expanded.

The code snippets shown below are described in order to convey the main function of the ICUV.

Its main function is to receive a command from the user and act upon the command in the form

of travel in a user specified direction.

Initialization Section

Initialize:

PAUSE 200

TRIS_C = %00000000

RC = %00000000

En = 1

Clk = 0

ThrDir = 0

AdcRaw = 0

StrPntr = 0

In the initialization code, the microcontroller pauses its execution for 200 milliseconds in order

to allow the web-server to complete its boot-up procedure. The next seven lines of code

initialize the values of the listed variables to a predetermined state. In this case, all variables,

except "En" are initialized to a value of zero. The "En" variable is initialized to one because this

value disables the digital compass.

Main Program Execution Section

DO

ChkPwsThr

ChkThr

GetTemp

FormatData AdcCal

PwsTempVar1

P
age 12.953.10

LOOP

In the main program code, the microcontroller enters an infinite loop and calls all the

subroutines listed after the DO statement. In the fourth subroutine FormatData AdcCal, the

value currently stored in the AdcCal variable is being passed to the subroutine. The same is also

true for those subroutine calls in which the variable is preceded by the subroutine name and a

character space. When the microcontroller encounters the LOOP statement it simply goes back

to the address of the DO statement and executes all the subroutine calls again.

Reading Variable 00 From The Parallax Webserver

ChkPwsThr:

StrPntr = 0

DO

LOOKUP StrPntr, "!", "N", "B", "0", "R", "0", "0", 0, Work

IF Work = 0 THEN EXIT

SendData Work

INC StrPntr

LOOP

RecieveData

ThrDir = SerRxBuffer

RETURN

The Parallax Webserver contains 100 variables that are capable of holding 64 bytes per variable.

In this case, variable 00 on the webserver will be used to hold a single alphabetic character that

will be sent to the microcontroller in order to turn on the proper thruster(s). This variable is

written when the user clicks a button on the webpage interface that writes a character

corresponding to a direction of travel.

In the code snippet above, the first line is the label of the subroutine that is called by the main

program execution loop. The second line initializes the StrPntr variable to zero since the string

of characters that is sent to the webserver begins at address zero. With the StrPntr variable

initialized to zero, the program enters a DO…LOOP that performs the following actions in

order:

1) Looks up the current character stored at the address pointed to by the

variable StrPntr.

2) Stores the character pointed to by StrPntr in the Work variable.

3) Check the Work variable for a zero value. If Work equals zero then exit out of the

DO…LOOP, otherwise send the character in the work variable to the serial port for transmission

to the webserver by calling the SendData subroutine

4) Increment the StrPntr variable by one.

5) If the DO…LOOP is exited then call the ReceiveData subroutine and wait to receive data to

the serial port from the webserver.

6) Once data has been received from the webserver, store the data in the

variable SerRxBuffer

P
age 12.953.11

7) Return to the next instruction in the main program loop after the

previous subroutine call.

Determining Which Thruster To Activate

ChkThr:

IF ThrDir = "F" THEN

ActvThr Forward

ENDIF

IF ThrDir = "B" THEN

ActvThr Backward

ENDIF

IF ThrDir = "R" THEN

ActvThr Right

ENDIF

IF ThrDir = "L" THEN

ActvThr Left

ENDIF

IF ThrDir = "U" THEN

ActvThr Up

ENDIF

IF ThrDir = "D" THEN

ActvThr Down

ENDIF

IF ThrDir = "O" THEN

ActvThr Off

ENDIF

RETURN

Once the command has been received from the webserver, the ChkThr subroutine is called. The

ChkThr subroutine tests the value that is stored in the ThrDir variable. Remember, the value

stored in the ThrDir variable is the value that was received from the webserver which was chosen

by the user. The ThrDir variable is then tested against a series of IF…THEN statements. If the

ThrDir meets the equality condition set forth by the IF…THEN statement, then the proper pin is

set to the on state on port RC. Port RC is directly connected to the motor driver interfaces and

those interfaces drive the thrusters.

A complete listing of the SX28 source code is included in Appendix A.

P
age 12.953.12

IV. Summary and Future Work

The thrusters can not reverse their direction of rotation, thus, some advanced maneuverability is

sacrificed. For example, by being able to reverse the direction of rotation of the thrusters would

allow the ICUV to be offset from its 90
o
 vertical orientation. The ability to offset the angle of

vertical orientation would allow further maneuverability of the ICUV in the event of the need to

fit in tight spaces.

The determination of the current heading of the ICUV is based upon the angular offset of the

digital compass from magnetic North. Since, the ICUV’s propulsion system does not require the

entire vehicle to change its angle of travel, the digital compass serves a purpose in aiding the

determination of initial orientation. Afterwards, the different directions of travel the ICUV may

take do not require a change in the angular position of the vehicle. This is due to the four

thrusters that are pushing the ICUV in the user controlled direction.

V. Pedagogy

The ICUV project was accomplished by an individual student in order to meet the necessary

requirements for the following capstone courses: Senior Design, Phase I and Senior Design,

Phase II. Both of theses courses are required for the Bachelor of Science Degree in the Electrical

and Computer Engineering Curriculum and are taken during the seventh and eighth semesters.

Thus, the project and all the work involved with the project, represent the summation of the

student's application of the skills and knowledge acquired over the past four years.

In this project, the student was expected to rely on the skills and knowledge he has acquired

along with the research that is relevant to his project. The role of the project advisor is to

monitor the student's progress in the creation of the project and evaluate how the student has

used his knowledge and skills in the overall project. Given that the advisor provides little aid in

helping the student select, research and create his project, thus, the student learns and practices

the art of self-directed learning. In all, the Senior Design capstone course is the idea behind

motivating the student to continue his education and learning processes over his entire lifetime.

P
age 12.953.13

Appendix A.

Parallax SX28 BASIC Source Code For ICUV

'!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICU

' !ICUV

' File...... ICUV_CMD_Interpreter.SXB !ICUV

' Purpose... To recieve commands from the end user interface and !ICUV

' interpret those commands to perform the action !ICUV

' specified by the end user. Also, to transmit data back !ICUV

' to the end user interface (Water Temperature/Heading) !ICUV

' Author.... Alan Balich !ICUV

' E-mail.... alinious@gmail.com !ICUV

' Started... October 01, 2006 !ICUV

' Updated... December 03, 2006 !ICUV

' Version... 2.0 !ICUV

'!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICUV!ICU

DEVICE SX28, OSCXT2, TURBO, STACKX, OPTIONX

IRC_CAL IRC_FAST

FREQ 20_000_000

'PIN DEFINITIONS---

ASI PIN RB.0 INPUT 'Serial Input Pin

ASO PIN RB.1 OUTPUT 'Serial Output Pin

DinDout PIN RB.2 INPUT RB.2 transceives to/from Din/Dout

Clk PIN RB.3 OUTPUT 'RB.3 sends pulses to HM55B's Clk

En PIN RB.4 OUTPUT 'RB.4 controls HM55B's /EN(ABLE)

AdcFb PIN RB.5 OUTPUT 'RB.5 ADC Feedback

AdcIn PIN RB.6 INPUT CMOS 'RB.6 ADC Input

ThrCntrl VAR RC 'Thruster Control Port

'END PIN DEFINITIONS--

'SERIAL PORT SETTINGS---

BaudRate CON "T2400" 'Baud rate/logic definition for asynchronous serial

routines

 'Transmit/Recieve using true logic @ 9600bps

'END SERIAL PORT SETTINGS---

'PROPULSION SYSTEM DEFINTIONS---

Up CON %10100000

Down CON %01010000

Left CON %00000001

Right CON %00000100

Forward CON %00001000

Backward CON %00000010

Off CON %00000000

'END PROPULSION SYSTEM DEFINTIONS--

'COMPASS DEFINITIONS & SETTINGS--

YOffset CON 0 ' Enter measured y at north here

P
age 12.953.14

XOffset CON 0 ' Enter measured x at west here

ResetHM CON %0000 ' Reset command for HM55B

Measure CON %1000 ' Start measurement command

Report CON %1100 ' Get status/axis values command

Ready CON %1100 ' 11 -> Done, 00 -> no errors

NegMask CON %1111100000000000 ' For 11-bit negative to 16-bits

'END COMPASS DEFINITIONS & SETTINGS---

'SERIAL PORT VARIABLES--

SerTxBuffer VAR BYTE ‘Buffer to hold data to transmit to user

SerRxBuffer VAR BYTE 'Buffer to hold commands recieved from user

'END SERIAL PORT VARIABLES--

'PROPULSION SYSTEM VARIABLES--

ThrDir VAR BYTE 'Variable to hold specific thruster to fire

'END PROPULSION SYSTEM VARIABLES--

'COMPASS VARIABLES--

X VAR BYTE(2) ' y-axis data

Y VAR BYTE(2) ' x-axis data

StatusFlags VAR BYTE ' HM55B Status flags

'END COMPASS VARIABLES--

'ANALOG TO DIGITAL CONVERTER VARIABLES--

AdcRaw VAR BYTE

AdcCal VAR BYTE

'END ANALOG TO DIGITAL CONVERTER VARIABLES--------------------------------------

'SERIAL DATA FORMATING (ASCII) VARIABLES--

Char3 VAR BYTE

Char2 VAR BYTE

Char1 VAR BYTE

Dig3 VAR BYTE

Dig2 VAR BYTE

Dig1 VAR BYTE

Work VAR BYTE

Temp VAR BYTE

'END SERIAL DATA FORMATING (ASCII) VARIABLES------------------------------------

'PARALLAX WEB-SERVER (PINK) VARIABLES---

StrPntr VAR BYTE

'END PARALLAX WEB-SERVER (PINK) VARIABLES---------------------------------------

PROGRAM Initialize

'SUBROUTINE DECLARARTIONS---

ChkPwsThr SUB 0

ChkThr SUB 0

ActvThr SUB 1

GetTemp SUB 0

P
age 12.953.15

FormatData SUB 1

PwsTempVar1 SUB 0

GetHeading SUB 0

PwsCompVar2 SUB 0

SendData SUB 1

RecieveData SUB 0

'END SUBROUTINE DECLARARTIONS---

Initialize:

 PAUSE 200 'Wait for Parallax Web-Server to startup

 TRIS_C = %00000000

 RC = %00000000

 En = 1 ' Disable HM55B

 Clk = 0 ' Start with clock line output-low

 ThrDir = 0

 AdcRaw = 0

 StrPntr = 0

DO

 ChkPwsThr

 ChkThr

 GetTemp

 FormatData AdcCal

 PwsTempVar1

 GetHeading

 FormatData X(0)

 PwsCompVar2

 FormatData Y(0)

 PwsCompVar2

' FormatData X(1)

' FormatData Y(1)

LOOP

ChkPwsThr:

 StrPntr = 0

 DO

 LOOKUP StrPntr, "!", "N", "B", "0", "R", "0", "0", 0, Work

 IF Work = 0 THEN EXIT

 SendData Work

 INC StrPntr

 LOOP

 RecieveData

 ThrDir = SerRxBuffer

RETURN

ChkThr:

 IF ThrDir = "F" THEN

 ActvThr Forward

 ENDIF

 IF ThrDir = "B" THEN

 ActvThr Backward

P
age 12.953.16

 ENDIF

 IF ThrDir = "R" THEN

 ActvThr Right

 ENDIF

 IF ThrDir = "L" THEN

 ActvThr Left

 ENDIF

 IF ThrDir = "U" THEN

 ActvThr Up

 ENDIF

 IF ThrDir = "D" THEN

 ActvThr Down

 ENDIF

 IF ThrDir = "O" THEN

 ActvThr Off

 ENDIF

RETURN

ActvThr:

 ThrCntrl = __PARAM1

RETURN

GetTemp:

 ANALOGIN AdcIn, AdcFb, AdcRaw, 4

 AdcCal = AdcRaw - 29

RETURN

GetHeading:

 En = 1 ' Reset HM55B

 En = 0

 SHIFTOUT DinDout, Clk, MSBFIRST, ResetHM\4

 En = 1

 En = 0 ' Start measurement

 SHIFTOUT DinDout, Clk, MSBFIRST, Measure\4

 StatusFlags = 0 ' Clear previous status flags

 DO ' Repeat until measurement ready

 En = 1 ' Request measurement status

 En = 0

 SHIFTOUT DinDout, Clk, MSBFIRST, Report\4

 SHIFTIN DinDout, Clk, MSBPOST, StatusFlags\4 ' Get measurement status

 LOOP UNTIL StatusFlags = Ready

 SHIFTIN DinDout, Clk, MSBPOST, X(1) \3 ' Get 11 signed x-axis bits

 SHIFTIN DinDout, Clk, MSBPOST, X(0) \8 ' Get 11 signed x-axis bits

 SHIFTIN DinDout, Clk, MSBPOST, Y(1) \3 ' Get 11 signed y-axis bits

P
age 12.953.17

 SHIFTIN DinDout, Clk, MSBPOST, Y(0) \8 ' Get 11 signed x-axis bits

 En = 1 ' Disable HM55B

RETURN

FormatData:

 Temp = __PARAM1

 Dig3 = Temp / 100

 Work = Dig3 + 48

 Char3 = Work

 Dig2 = Temp / 10

 Work = Dig3 * 10

 Dig2 = Dig2 - Work

 Work = dig2 + 48

 Char2 = Work

 Work = Dig3 * 100

 Dig1 = Temp - Work

 Work = Dig2 * 10

 Dig1 = Dig1 - Work

 Work = dig1 + 48

 Char1 = Work

RETURN

PwsTempVar1:

 StrPntr = 0

 DO

 LOOKUP StrPntr, "!", "N", "B", "0", "W", "0", "1", ":", Char3, Char2, Char1, 0, Work

 SendData Work

 IF Work = 0 THEN EXIT

 INC StrPntr

 LOOP

RETURN

PwsCompVar2:

 StrPntr = 0

 DO

 LOOKUP StrPntr, "!", "N", "B", "0", "W", "0", "2", ":", Char3, Char2, Char1, " ", 0,

Work

 SendData Work

 IF Work = 0 THEN EXIT

 INC StrPntr

 LOOP

RETURN

SendData:

 SEROUT ASO, BaudRate, Work

RETURN

P
age 12.953.18

RecieveData:

 SERIN ASI, BaudRate, SerRxBuffer, 200, NoChar

NoChar:

RETURN

P
age 12.953.19

References

[1] Texas Instruments L293DNE High Current/Voltage Driver Datasheet

 http://focus.ti.com/lit/ds/symlink/l293d.pdf

[2] Parallax, Inc. SX28 Microcontroller Datasheet

 http://www.parallax.com/dl/docs/prod/datast/SX20AC-SX28AC-Data-v1.6.pdf

[3] Maxim RS-232 Asynchronous Transceiver Datasheet

 http://datasheets.maxim-ic.com/en/ds/MAX3222-MAX3241.pdf

[4] Hitachi HM55B Digital Compass Datasheet

 http://www.parallax.com/dl/docs/prod/compshop/HM55BModDocs.pdf

[5] National Semiconductor LM34DZ Fahrenheit Temperature Sensor Datasheet

 http://www.national.com/ds.cgi/LM/LM34.pdf

[6] Parallax Embedded Web-Server Datasheet

 http://www.parallax.com/dl/docs/prod/comm/30013-PINK-v1.02.pdf

[7] Parallax BASIC Compiler (SX-Key IDE v 3.2.3)

 The IDE contains the reference manual for the Parallax Basic lexicon.

 http://www.parallax.com/sx/sxb.asp

[8] Panasonic Wired Network Camera BL-C10A Manual

 http://service.us.panasonic.com-BLC10A.pdf

P
age 12.953.20

