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Abstract 

Measurement System Analysis provides a formal method to evaluate the accuracy and precision 

of a measurement gauge. Although it is an important topic, it is typically omitted in introductory 

statistics classes, and often only receives cursory coverage in lab.  This paper describes how this 

topic is introduced through experiential learning to ChE sophomores at Oregon State University 

(OSU).  The introductory concepts are presented in class where a “text book” example allows 

students to learn how to decompose the variance components of a measurement gauge.  In a 

homework assignment, students are asked to work through a case study from industry. This 

analysis leads to the quantification of the gauge’s precision in terms of repeatability and 

reproducibility.  They are then asked to perform a similar analysis on measurements that they 

take in the lab from a different gauge.  In this lab, they make a series of thickness measurements 

of silicon dioxide films using an ellipsometer; however, in principle, this approach can be 

applied to any measurement system available in the undergraduate lab.  In their report, they are 

required to calculate the repeatability and reproducibility of the gauge “by hand” in Excel. The 

experimental results and calculations are assessed by the instructor with output from commercial 

statistics software package, StatGraphics; thus, the accuracy of the numerical results of each 

group can be checked even though they all have independent data sets. In Spring 2004, 49 

students completed this case study/lab project.  

 

Introduction 

As educators are well aware, the customary educational setting in which students develop 

problem solving skills is one where the numerical values presented are specific and absolute.  

The deterministic nature of the end-of-chapter type problems is imbedded in their minds well 

before students even matriculate.  However, as practicing engineers, they will confront the 

variation associated with measured data in the real world. Statistics can be defined as the science 

of how to collect, analyze, interpret and present data with the purpose of understanding variation 

in a system. A key objective of integrating statistics into the ChE curriculum is to have students 

recognize variation is inevitable, and teach them skills to quantify the variation and make 

engineering decisions which account for it. Indeed, the importance of statistics is well recognized 
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in the chemical engineering community.  For example, several recent articles in Chemical 

Engineering Progress have focused on applied statistics.
1-5

  Many chemical engineering 

programs have incorporated statistics into their curriculum.
6
  Several ChE specific courses in 

applied statistics have been recently reported.
7-10

 The example presented here provides a hands-

on example of how to quantify the variation associated with a measurement gauge.  This material 

can either be integrated directly into an introductory statistics class or, alternatively, taught as a 

“module” in a core ChE class, as is done at Oregon State University. 

  

Experimental or process data are obtained through a measurement system.  Values of variables 

such as temperature, pressure, flow rate, concentration, thickness, etc. are needed to analyze and 

control processes.   If we are not able to adequately make measurements, we cannot hope to 

make useful decisions.   The first step in assessing and analyzing data should be to characterize 

the measurement system.  Measurement System Analysis evaluates the measurement instruments 

in order to determine their accuracy and estimate the sources of variation and their extent.  The 

process of evaluating a particular set of measurement instruments is often called a gauge study.  

For example, a gauge study is the first step in the formal process and equipment qualification 

plan developed by SEMATECH, a government supported consortium of major US 

semiconductor manufacturers.
11,12

  In fact, many interns and recent college graduates are tasked 

with executing gauge studies.   However, most engineering statistics textbooks either omit this 

topic
13-21

 or, at best, cover it in a cursory manner.
22

 This paper describes how this topic is 

introduced to ChE sophomores through experiential learning.  The introductory concepts are 

presented in class where a “text book” example allows students to learn how to decompose the 

variance components of a measurement gauge.  In a homework assignment, students are asked to 

work through a case study from industry, which is then reviewed in class. They are then asked to 

perform a similar analysis on measurements that they take in the lab from a different gauge.   

This topic not only gives process engineers a useful tool for immediate practice but also provides 

a useful platform to learn about variation and variance. 

 

Measurement System Analysis 

The major concepts of measurement system analysis are first introduced in a class handout.
a
  A 

measurement process is the acquisition of data in a specified way using a gauge or measuring 

instrument.  The objective of a gauge study is to characterize the location (central tendency) and 

variability (dispersion) of the measurements.  From this information, we can determine if the 

measurement system is capable for the purpose for which we need the data. 

  

Concepts of accuracy, calibration, bias, stability and linearity are introduced to characterize the 

location of the measurements. The accuracy of a measurement process is the difference between 

the observed average of the measurements and the true value.  The true value is determined from 

a standard, if available, or it can be approximated by measuring with the best measuring 

equipment available.  The observed average is determined by a series of measurements with the 

measurement system in question.  Bias is defined as the difference between the average value of 

all measurements and the true value.  Thus, the less bias a gauge exhibits, the more accurate it is.  

                                                 
a 
Contact the author if you want a copy of the handout, examples and homework problems. 
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A measurement device (gauge) can be calibrated to reduce bias.  Stability is a measure of how 

consistent the measured values are over time.  

The variation in the measurement system is characterized by its precision.  Precision is the 

degree of agreement between measurements on a specific sample.  It consists of variation from 

two sources: repeatability and reproducibility.  

 

   Precision = Repeatability + Reproducibility 

 

These components are illustrated graphically in terms of a characteristic normal distribution in 

Figure 1. The repeatability is the variation of measurements when a single instrument is used to 

measure a sample under a fixed set of external conditions.  It represents the inherent variability 

of the measurement instrument, itself. The reproducibility is the variation in the measurements 

due to different conditions when measuring identical samples such as different operators, 

environments, or measuring instruments.  It represents the variability that results from using the 

measurement system to make measurements under different conditions of normal use.  The 

learning activities that follow (case study and lab) illustrate how to account for the variability in 

a measurement system.  From the results, it can be assessed if the measurement system is 

capable.  If it is not capable, this analysis allows one to determine if the variability is inherent in 

the gauge or if there is an opportunity to improve the measurement process without replacing the 

gauge. 

 

reproducability

Operator 1

Operator 3

Operator 2

repeatability

 
Figure 1. Components of precision including reproducibility and repeatability 

 

 

Gauge R&R Case Study 

The case study introduced is based on data collected by an OSU ChE interning at Merix 

Corporation, a printed circuit board manufacturer in Forest Grove, OR.
b
 This study was 

performed to evaluate the capability of a video micrometer in use and assess if newer 

instruments needed to be purchased.  While the experimental design is an important component 

to this process, that methodology is not covered and the design that was used is simply presented.   

 

                                                 
b
 While the data from Merix were used, the analysis that follows differs significantly. 
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Three different samples, n, are measured by four different operators, m.  Each operator 

performed three repeated readings, k on each sample. The samples were taken at random from 

production. The operators and samples are treated as random factors  (as opposed to fixed 

factors), i.e., the factor levels that are specifically used in the experiment are chosen at random 

from a larger population of levels.  Table 1 shows the measured values in mils (1 mil = 25 µm) 

of the line width of metal lines on a printed circuit board. Since many students are visual 

learners, it is useful to represent the data and their sources of variation graphically.  Figure 2 

shows a depiction of the 36 values of line width from this gauge study.  This particular study was 

chosen in part since the sample size is amenable to such a graphical representation.  The values 

of measured line width are given on the x-axis.  The nine values of operator Brad data are shown 

on the top third of the figure, Operators Jon, Tim and Edger follow.  The three values obtained 

by each operator for each sample are presented in order, followed by the next sample, and the 

third. The scatter in the data relative to the x-axis is an indication of the variance in the 

measurement system. 

 

Table 1. Measured values of line width (in mils) for the video micrometer gauge study 

 

 Operator: Brad     Operator: Jon 

 

 Operator: Tim     Operator: Edgar 

Sample  Reading Measurement  Sample  Reading Measurement 

 1 5.08   1 5.08 

1 2 5.16  1 2 4.98 

 3 4.94   3 4.98 

 1 6.16   1 5.55 

2 2 5.84  2 2 5.53 

 3 5.82   3 5.62 

 1 6.01   1 6.03 

3 2 5.99  3 2 5.89 

 3 6.00   3 5.94 

Sample  Reading Measurement  Sample  Reading Measurement 

 1 5.21   1 4.98 

1 2 5.01  1 2 5.01 

 3 5.12   3 4.99 

 1 5.91   1 5.63 

2 2 6.09  2 2 5.84 

 3 6.06   3 5.85 

 1 6.02   1 5.90 

3 2 6.08  3 2 5.96 

 3 5.95   3 5.95 P
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  Figure 2. Graphical representation of data from the case study. 

 

The quantification of the precision and its reduction into components of repeatability and 

reproducibility is based on the variation in the measured data.  Through the technique of analysis 

of variance (ANOVA), we can decompose the total variation of the system into components 
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corresponding to different sources of variation.
23

   We develop the concept of variance 

components heuristically in analogy to definitions of standard deviation and variance, which are 

already known. In fact, this approach has elements of inductive learning, where students learn 

the generalized theory from specific examples that they have investigated closely.
24

 In the 

following analysis, these calculations are illustrated using the data from Table 1.  

  

Repeatability measures the variability inherent in the micrometer, itself, when all the external 

conditions of the measurement process are identical.  To determine the repeatability, we compare 

the deviation of each measured value from the average of all the repeated measurements from the 

same sample, n, and the same operator, m, which is labeled mnx .  It is useful to have students 

draw in lines that demark mnx  for each of the 12 cases in Figure 2.  We can see that the 

deviation of a repeated reading from its average, with all conditions being the same, is given by 

( )mnkmn xx − , where k is the number of the repeated measurement.  The variance from each 

point is then the square of the deviation, ( )2mnkmn xx − .  The total variation due to this 

component is given by the sum of the squares, SSrepeated, by summing over all 36 data points: 

 

 ( ) [ ]2

,,

2
mil 200.0=−= ∑

nmk

mnkmnrepeated xxSS    (1) 

 

The expression above uses a triple sum over repeated readings, operators and samples.  The 

numerical value that is given in Equation 1 corresponds to the data from Table 1.  The 

calculations are performed in a computer-enhanced class by the students using a spreadsheet so 

they can “see” where the numbers come from.  We next need to scale this value appropriately.  

Thus, we divide SSrepeated by the degrees of freedom to get the mean squares of the repeated 

measurements, MSrepeated. The degrees of freedom is equal to the number of independent 

elements in SSrepeated.  Once we know the average mnx , only k-1 elements are independent for 

each pair of n and m.  Thus, the degrees of freedom are given by nm(k-1) and the mean squares 

is:  

 

 
( )

[ ]2mil 00831.0
1

=
−

=
knm

SS
MS

repeated
repeated     (2) 

 

The expected value of the population standard deviation, σ, is defined as:  

 

 2)(
repeatedrepeatedMSE σ=       (3) 

  

The reproducibility, in this gauge study is characterized by the variance in values due to 

differences in the measurement process, in this case  between operators.  Reproducibility can 

also be assigned to different environments, different gauges, etc.  Only one external source of 

variation is examined in this study; however, for completeness as many sources of variation as 

possible that influence the measured values should be included.  This variance component can 

also be understood in terms of the graph in Figure 2.  It is given as the difference between the 
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grand average x  and the average of all measurements by a given operator mx . The variance 

component that is used to calculate the reproducibility is demarked by colored arrows; for 

example a blue arrow is used for the operator John.  Summing over all four operators gives: 

 

 ( ) ( ) [ ]22

,,

2
mil 234.0=−=−= ∑∑

m

m

nmk

mOperator xxknxxSS   (4) 

 

where the value k and n can be pulled outside the sum since they are averaged in both terms.  

Again the mean sum of the squares is found by dividing by the degrees of freedom to get: 

 

 
( )

[ ]2mil 0781.0
1

=
−

=
m

SS
MS

Operator
Operator     (5) 

 

There is another effect that the operators contribute to the variation, given by the interaction 

between operators and samples.
23,25

 The interaction results from systematic differences between 

operators as they measure different samples.  For example, if one operator consistently got 

smaller values than another when measuring thin lines but larger values when measuring thick 

lines.  The interaction between operators and samples can be calculated:  

 

 ( ) [ ]22

,

mil 166.0=+−−= ∑
nm

mnnmnInteractio xxxxkSS   (6) 

 

Again the mean sum of the squares is found by dividing by the degrees of freedom to get: 

 

 
( )( )

[ ]2mil 0277.0
11
=

−−
=

nm

SS
MS nInteractio

nInteractio    (7) 

 

The expected mean squares of the interaction is given by contributions from both the 

repeatability and the interaction: 

 

 22)( nInteractiorepeatednInteractio kMSE σσ +=     (8) 

 

Hence 

 

 [ ]2

2

2 mil 00647.0=
−

=
k

sMS
s

ityrepeatabilnInteractio

nInteractio   (9) 

 

Similarly, the expected mean squares of the operators is given by contributions from the 

repeatability, the interaction and the operators: 
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 222)(
OperatornInteractiorepeatedOperator knkMSE σσσ ++=   (10) 

 

Hence 

 

 [ ]2

22

2 mil 0056.0=
−−

=
kn

sksMS
s

ityrepeatabilnInteractioOperator

Operator
(11) 

 

The sample standard deviation due to repeatability, srepeated, which estimates the corresponding 

population standard deviation can be found by Equations 2 and 3: 

 

 [ ]mil 0912.0== repeatedrepeated MSs     (12) 

 

Similarly, the sample standard deviation due to reproducibility (different conditions) is found 

according to contributions from both the Operators and interactions: 

 

 [ ]mil 110.022 =+≈ nInteractioOperatorreproduc sss    (13) 

 

The precision, sr&R, is estimated by adding together the contribution from both of these 

components: 

 

 [ ]mil 143.022
& =+=

reproducrepeatedRr sss     (14) 

 

For this case study, 41% of the variation is estimated to be due to repeatability and 59% to 

reproducibility.  There is a significant contribution from each source of variation.   This result 

indicates improvement to the measurement system could be made by improving the 

measurement process of the operators, but if substantial improvement is needed a new 

measurement system would be needed.  In other cases, this type of analysis can tell the engineer 

the inherent variability of the gauge is the dominant source of variation, or, conversely, that the 

measurement process, is responsible for most of the variation in the measurement and the gauge, 

itself, is capable. 

  

The precision to tolerance ratio (P/T) is used to assess the capability of a gauge to give 

satisfactory measurements.  It is given by: 

 

 
LSLUSL

s

T

P Rr

−
= &6

       (15) 

 

where USL and LSL are the upper and lower specification limits of the process, respectively.  A 

small precision to tolerance ratio is desirable so that only a small portion of the tolerance is 

consumed by measurement variability.  Values of P/T less than 0.3 are considered acceptable; 

values less than 0.1 are good. 
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It is illustrative to look at the variation in the samples as well.  In analogy to the development 

above, the variation in the samples can be described by the sum of the squares of the samples, 

SSsample.  In this case, the variance is represented by the difference between the sample average, 

nx , and the grand average, x , which averages over all 36 measured values in the study.  This 

component of variation is given by: 

 

 ( ) ( ) [ ]222

,,

mil 00.6=−=−= ∑∑
n

n

nmk

nsample xxkmxxSS   (16) 

 

Again the values k and m are brought outside the sum since each term is averaged over the 

repeated readings k and the operators m.  The mean squares is given by dividing SSsample by the 

degrees of freedom: 

 

 
( )

[ ]2mil 00.3
1

=
−

=
n

SS
MS

sample
sample      (17) 

 

Finally, the estimate of the standard deviation from the sample is given by 

 

 [ ]mil 496.0=
−

≈
km

MSMS
s

operatorsample
sample    (18) 

 

As an alternative to P/T ratio can use: 

 

 33.0& =
sample

RR

s

s
       (19) 

 

This result allows us to assess the capability of the gauge in examining variation in the system 

irrespective of the specification limits.  In this case, the standard deviation due to the 

measurement system is 33% that of the sample. 

 

The total sum of the squares is found from the deviation of each measurement from the grand 

mean of all the measurements: 

 

( ) [ ]22

,,

mil 60.6=−= ∑
nmk

kmntotal xxSS     (20)   

 

The resulting standard deviation is that which students are accustomed to seeing: 

 

[ ]mil 434.0
1
=

−
≈

kmn

SS
s total       (21) P
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Alternatively we can find the total sum of the squares by adding together the three components 

described above: 

 

repeatednInteractiooperatorsampletotal SSSSSSSSSS +++=  (22) 

 

Equations 20 and 22 yield identical results.  Finally these results can be summarized in an 

“ANOVA Table,” as illustrated in Table 2. 

 

Table 2. ANOVA Table for the gauge r&R case study 

Sum of the Squares (SS) Degrees of 

Freedom (ν) 

Mean Sum 

of the 

Squares 

(MS=SS/ν) 

F-Ratio 

=MSi/MSR 

p 

Samples ( ) 00.6
2
=−= ∑

n

nS xxkmSS  n – 1 = 2  3.00 360. 0.0000 

Operators ( ) 234.0
2
=−= ∑

m

mO xxknSS  m – 1 = 3 0.0781 9.39 0.0003 

Interaction = 

Operators x 

Sites 

( )

166.0

,

2

=

+−−= ∑
nm

nmmnInt xxxxkSS
 

(m –1) x  

(n – 1) = 6 
0.0277 3.33 0.0153 

Repeatability 

(Error) 

( ) 200.0

,,

2∑ =−=

nmk

kmnmnR xxSS  mn(k – 1)=24 0.0083 
  

Total ( ) 60.6
2

,,

=−= ∑
nmk

kmnTotal xxSS  kmn – 1 = 

35 

   

 

Gauge R&R Lab Study 

Students were then given a “hands-on” opportunity to apply what they had learned in class and in 

the case study and perform a Gauge R&R study in the lab.  In this experiment, they measured the 

thickness of SiO2 films on 6”silicon wafers using ellipsometry.  This process was selected since 

measurements can be made rapidly and it gives them experience with an important measurement 

system used in the microelectronics industry. In principle, any measurement system available in 

the undergraduate lab that allows students to get the necessary data within the time allotted for 

the lab can be used.  Groups of three or four students were used so that they could measure the 

operator variation (reproducibility) in addition to the repeatability. 

 

Ellipsometry measures the change in polarization of light reflected off of a surface. This process 

together with the experimental system used in the lab is shown in Figure 3. In ellipsometry, a 

wafer is placed on the sample table.  The ellipsometer emits monochromatic, polarized light. 

Some of the light reflects off of the thin film surface and some of it reflects off of the substrate 

surface. The change in polarization is measured by the detector. The polarization change can be 

P
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Figure 3:  Ellipsometry measurement gauge for film thickness. 

 

used to determine the change in phase and the change in amplitude of the light.  Given the index 

of refraction and an initial guess of thickness, the thickness of a film can be determined.  

 

In this experiment, each student “Operator” (m = 3 or 4) measures the thickness of three Sites (S 

= 3) (1=center, 2=half way in between, 3=close to edge) on two Wafers, (W = 2).  The each 

perform two repeated runs (k  = 2).  Thus each student makes 12 measurements and each group 

has 36 or 48 data points to analyze. A design array used to collect the measured data for a group 

of three students is shown in Table 3.  The students were given a sample set of three wafers from 

which they were to use two.  Two were close in thickness while the third differed. 

 Table 3. Design array used for the gauge study in the lab 

W S O T (k=1) T (k=2) 

1 1 1   

1 2 1   

1 3 1   

2 1 1   

2 2 1   

2 3 1   

1 1 2   

1 2 2   

1 3 2   

2 1 2   

2 2 2   

2 3 2   

1 1 3   

1 2 3   

1 3 3   

2 1 3   

2 2 3   

2 3 3   P
age 10.824.11
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In their report, students were asked to  (i) calculate the mean, variance and standard deviation of 

all measured data; (ii) perform a gauge study for Wafer 1 reporting the repeatability and 

reproducibility values: 2
&

22  , , rrilityreproducabityrepeatabil
sss , 

rrilityreproducabityrepeatabil
sss

&
 , , , % 

repeatability , % reproducibility.  (iii) repeat for Wafer 2; and (iv) An ANOVA analysis on the 

sample, not including interactions, i.e., the variance components from wafer, site and operators. 

They were also asked how do the r&R values for wafer 1 and wafer 2 compared and if they made 

sense. 

 

Commercial Statistics Software and Assessment of Student Performance 

In practice, statistical analysis is usually performed with software, using either a dedicated 

software package or the statistical add-ins associated with a spreadsheet package. There are 

many common statistics programs used including: Minitab, StatGraphics, Statistical Applications 

System – JMP, and Statistica. The experimental results and calculations are assessed by the 

instructor with output from commercial statistics software package, StatGraphics; thus, the 

accuracy of the numerical results of each group can be checked even though they all have 

independent data sets. To facilitate this process, students were asked to submit their results 

electronically, in Excel files which were formatted to directly import to StatGraphics.  Only six 

of the fifteen groups had calculations correct.  The next time this module is used, a greater 

emphasis will be placed on numerical accuracy. Once the reports were turned in, students were 

shown how to use the computer program to perform these calculations. The exposure to statistics 

software is not intended to train the students on a particular software package but rather to get 

them to integrate the concepts developed in this exercise to intelligently use statistics software.  

The premise is that if students can apply the core concepts that they have learned to a particular 

software package, it will be straightforward for them to apply it to any other package as well. 

 

The learning objective for this activity is listed in the syllabus as follows: “The student will 

demonstrate the ability to:  design, implement, and analyze experiments to measure the 

repeatability and reproducibility of a gauge; perform ANOVA analysis to estimate the variance 

components from different sources.” In addition to the homework and lab project, two 

assessments were used to measure the learning outcomes from this exercise.  Students were 

given a quiz in class.  The average score was 79%. This compares to 82% for the other quizzes in 

the class, which covered non statistics-based topics.  Thus, the numerical score was roughly 

equivalent. The quiz scores were also categorized by those students who had taken an 

introductory statistics class and those who had not, with scores of 83% and 75%, respectively. 

Additionally, measurement system analysis was previously taught as part of a dedicated statistics 

class (no longer offered).  In that course, while the case study was used, but the lab was not.  In 

three years, one problem on the midterm exam addressed measurement system analysis.  Scores 

were 63%, 69% and 82%.  While this may indicate that the lab component is useful, the nature of 

the questions on the exams and the context in which the material was presented was different. 

Thus, the no lab may have limited value as a control case.  The students were also asked to 

perform a self-assessment of how well they achieved this learning objective.  
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Summary 

A key component to quality improvement strategies is to understand the variation in a chemical 

process.  The data used to assess the variation is obtained through measurement tools.  

Measurement system analysis can quantify the contribution of the complete measurement 

process to the overall variation in the process.  These methods are often used by practicing 

engineers and are appropriate to teach in the chemical engineering curriculum.  This paper 

illustrated a gauge r&R study through a case study taken from industry and then application in 

the lab.  This scope of this study allows the data to be plotted graphically and the variance 

components to be induced from the graphical approach, leading to a methodical account of 

different sources of variation. The details of calculating the precision of a measurement gauge 

can then be taught. Measurement system analysis is an excellent topic for integration into lab 

courses. The design presented in class is then applied in the lab.  The use of StatGraphics 

software allows each group’s results to be checked for numerical accuracy.   
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