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Introducing multithreaded programming: 

POSIX Threads and NVIDIA’s CUDA 

 

Abstract 

 

The current progression of commodity processing architectures exhibits a trend toward 

increasing parallelism, requiring that undergraduate students in a wide range of technical 

disciplines gain an understanding of problem solving in massively parallel environments.  

However, as a comprehensive college, we cannot currently afford to dedicate an entire semester-

long course to the study of parallel computing.  To combat this situation, we have integrated the 

key components of such a course into a 300-level course on modern operating systems.  In this 

paper, we describe a parallel computing unit that is designed to dovetail with the discussion of 

process and thread management common to operating systems courses.  We also describe a set of 

self-contained projects in which students explore two parallel programming models, POSIX 

Threads and NVIDIA’s Compute Unified Device Architecture, that enable parallel architectures 

to be utilized effectively.  In our experience, this unit can be integrated with traditional operating 

systems topics quite readily, making parallel computing accessible to undergraduate students 

without requiring a full course dedicated to these increasingly important topics. 

 

1 Introduction 

 

The many-core revolution currently underway in the design of processing architectures 

necessitates an early introduction to parallel computing.  Commodity desktop systems with two 

cores per physical processor are now common, and the current processor roadmap for major 

manufacturers indicates a rapid progression toward systems with four, eight, or even 16 cores.  

At the same time, programmable graphics processing units (GPUs) have evolved from fixed-

function pipelines implementing the z-buffer rendering algorithm to programmable, highly 

parallel machines that can be used to solve a wide range of problems.  Together, these 

developments require that students possess an in-depth understanding of the hardware and 

software issues related to solving problems using many-core processing architectures. 

 

Grove City College is a comprehensive college, and as such, we in the Department of Computer 

Science must wrestle with the requisite staffing limitations.  In particular, we cannot currently 

afford to offer an entire course dedicated to parallel computing—here defined to comprise a 

study of parallel processing architectures and the programming techniques necessary to utilize 

those architectures effectively—without sacrificing the integrity of our core computer science 

curriculum.  This situation thus poses a dilemma:  the current trajectory of processing 

architectures dictates an ever-increasing need for knowledge development in this area, but we are 

simply unable to dedicate a semester-length course to the study of these topics. P
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In response to this situation, we instead introduce parallel computing in the context of a 

semester-long 300-level operating systems course, which features a 4-week unit focusing on 

parallel computing.  This unit is specifically designed to dovetail with the treatment of process 

and thread management that is common to courses on modern operating systems.  In this context, 

we motivate the opportunities and challenges introduced by parallel processing architectures, and 

students explore the key programming concepts via a set of self-contained parallel programming 

projects.  We also discuss key issues arising in the context of parallel execution environments, 

including resource sharing, thread synchronization, and atomicity, and these topics provide a 

smooth transition back to traditional operating systems concepts such as semaphores, high-level 

synchronization constructs, and deadlock. 

 

2 Parallel Processing 

 

In particular, our students explore multithreaded programming in two forms:  the POSIX Threads 

(pthreads) interface, a standardized model for multithreaded application programming
1
, and 

NVIDIA’s Compute Unified Device Architecture (CUDA), a co-designed hardware/software 

architecture for massively parallel computing.
2
  Before discussing the details of these parallel 

programming models, we first motivate the multithreaded approach to parallel processing by 

contrasting it with two other common forms of parallel processing exploited by contemporary 

computer systems. 

 

2.1 Some Common Forms of Parallelism 

 

Modern processing architectures exploit parallelism on a number of levels, including instruction-

level parallelism, multitasking, and multithreading.  Whereas instruction level parallelism and 

multitasking enable programmers to remain blissfully unaware the details related to parallel 

execution, relying instead on optimizing compilers and operating systems to exploit parallelism 

automatically, multithreading requires the programmer to design a program to capitalize on 

potential parallelism from the outset. 

 

Thus, to fully utilize the parallelism afforded by current and future many-core processing 

architectures, we believe that programmers must possess an intimate knowledge of the issues that 

arise in the context of multithreading. 

 

2.1.1 Instruction-Level Paralleism 

 

Consider the following expression involving several integer multiplications and additions: 

 

a + (b*c) + (d*e) + f 
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Assuming we have a processor that requires a single cycle to evaluate each multiplication or 

addition operation, this expression requires five cycles to evaluate in a sequential manner:  one 

cycle for each of the arithmetic operations in the expression (Figure 1a).  However, if the 

processor is equipped with just one additional execution unit, then the number of cycles required 

to evaluate the expression can be reduced from five to three (Figure 1b). 

 

In this example, instruction-level parallelism (ILP) capitalizes on the absence of data 

dependencies among operations within the full expression to efficiently utilize the processor’s 

multiple execution units, thereby improving performance by a factor of 1.67 over the sequential 

version.  Typically, applications level programmers need not be concerned with parallelism at 

this level, and instead rely on optimizing compilers to recognize such opportunities and schedule 

instructions in a manner that leverages ILP.  Whereas ILP can improve the overall performance 

of a single program, opportunities to exploit ILP depend largely on the particular sequence of 

instructions required to implement a program’s behavior, and vary widely from one application 

to the next. 

 

 
 

Figure 1:  Instruction-level parallelism.  The lack of data 

dependencies among operations within an instruction 

stream can be exploited by a processor with multiple 

execution units. 

 

2.1.2 Multitasking 

 

At a coarser level, multitasking also implements parallel processing without any special effort on 

the part of an application programmer.  In this case, programmers rely on the operating system’s 

scheduler to exploit the independence of tasks within the system, rather than the compiler’s 

ability to exploit the independence of operations within an instruction stream. 
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Interestingly, multitasking operating systems are able to provide the illusion of parallel execution 

without actually requiring truly parallel hardware.  As such, multitasking is sometimes 

considered a form of concurrent processing, as distinguished from true parallel execution:  

although multiple programs appear to be executing simultaneously, each process is in reality 

executed sequentially—the system simply switches among the available processes so quickly 

that it appears as though the programs are executing in parallel. 

 

It is important to note that multitasking does not improve the performance of any particular 

program, but instead improves the overall system throughput, which is a measure of the number 

of tasks completed by the system in a particular unit of time.  With multitasking, no single task 

completes more quickly, but instead some collection of tasks will potentially require less time to 

complete than if those tasks were executed sequentially. 

 

2.1.3 Multithreading 

 

Though multitasking remains an important feature in the context of highly parallel processing 

architectures, this technique cannot exploit the independence of logical tasks within a single 

program.  Modern systems thus afford programmers the ability to explicitly divide a process into 

two or more threads—logical units of computation that share many of the resources that are used 

across the program as a whole, including a program’s binary instructions and its global data 

structures (Figure 2).  It is this form of parallelism with which our 4-week parallel computing 

unit is concerned.  In particular, this unit centers around two multithreaded programming models 

that can be used to effectively exploit parallel processing and thereby improve program 

performance:  pthreads and CUDA. 

 

2.2 POSIX Threads 

 

pthreads is a standardized model for dividing a program into subtasks whose execution can be 

interleaved or run in parallel.  This model implements the POSIX multithreading interface 

(POSIX Section 1003.1c), which is part of the more general family of IEEE operating system 

interface standards. 

 

Programmers experience pthreads as a set of C programming language data types and function 

calls that operate according to a set of implied semantics—that is, pthreads offers a standardized, 

programmer-friendly application programming interface (API).  Specific vendors typically 

supply pthreads implementations in two parts: 

 

• a header file that is included in a multithreaded program, and 

• a library that is linked to the program during compilation. P
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Figure 2:  Classic versus modern processes.  A process 

represents a program in execution.  The classic process 

model contains just a single execution engine, but modern 

processes—multithreaded processes—allow multiple 

execution engines to share the resources within the 

computational framework provided by the process. 

 

To exploit multithreading, programmers must design and implement their programs as a series of 

independent tasks.  Using the pthreads API, multiple threads of execution are spawned and 

scheduled as independent units by the operating system, proceeding independently unless the 

programmer explicitly synchronizes the threads’ execution. 

 

The behavior of each thread is specified during its creation by passing the name of a C function 

to the thread creation routine as an argument.  Other properties of the thread, including 

arguments to the function that define its behavior, are passed at the time of creation as well. 

 

Common synchronization primitives such as barriers, locks, and higher-level constructs can be 

constructed using pthreads mutexes.  Primitive mechanisms for inter-thread communication via 

shared data structures are available as well. 

 

In general, the pthreads execution model treats threads as peers.  Only the main thread, which is 

created by the operating system when it instantiates the multithreaded process, has slightly 

different properties, but these differences can typically be ignored:  all of the threads in well-

designed pthreads program will thus cooperate to execute the task at hand in a manner that 

effectively utilizes the underlying resources of the processor. 
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2.3 NVIDIA Compute Unified Device Architecture 

 

Over the past several years, multicore processors have evolved from traditional central 

processing units (CPUs) and afford one means to exploit parallel processing through 

multithreaded programming.  At the same time, recent advances in the programmability of so-

called graphics processing units (GPUs) now permit these devices to be used for general purpose 

computing.  In fact, these devices have spawned an entire field of academic and industrial 

research
3
, and have been demonstrated to provide significant performance improvements for 

various computing problems across a wide range of application domains.
4
 

 

Historically, GPUs comprise a series of fixed-function pipelines that implement the z-buffer 

rendering algorithm to provide the real-time graphics capabilities that have become an integral 

component of the modern human-computer interface.  As a result, GPU devices have found wide 

deployment, and most contemporary desktop computer systems, as well as gaming consoles, 

digital music players, and high-end mobile devices, are often equipped with one or more such 

processors. 

 

Recently, GPU manufactures have begun to expose the low-level hardware components on 

which these devices are based, permitting an unprecedented level of programmability.  The 

programming models through which programmers interact with these devices have evolved 

accordingly, rapidly progressing from low-level assembly language programs written specifically 

for a particular GPU architecture to high-level programming interfaces such as the NVIDIA 

Compute Unified Device Architecture.
2
 

 

CUDA is a co-designed hardware and software platform designed to leverage the massively 

parallel compute capabilities of programmable GPUs for general purpose computing.  CUDA 

consists of three core components: 

 

• a massively parallel hardware execution environment based on NVIDIA-brand 

processors; 

• a comprehensive collection of software development tools, including run-time libraries, 

performance analysis programs, and documentation; and 

• a scalable, multithreaded programming model using extensions to the C programming 

language.
5
 

 

As a unified hardware and software architecture, CUDA is designed to scale to thousands of 

threads across hundreds of cores in a manner that is both extensible to many-core CPU- and 

GPU-based systems.  CUDA is also designed be useable, meaning the programmer should be 

able to focus on the development of efficient parallel algorithms and not low-level 

implementation details required to utilize the hardware effectively. 
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Currently, the CUDA programming model provides a view of the GPU as a highly multithreaded 

compute coprocessor with a local dedicated DRAM (Figure 3).  Each device consists of multiple 

thread processors (multiprocessors), each with an on-chip memory comprised of several 32-bit 

registers and a programmer-managed parallel data cache (PDC). 

 

A globally accessible DRAM, typically ranging in size from 256 MB to 1 GB or more, permits 

threads to communicate across multiprocessor boundaries.  However, no hardware caching 

mechanisms are provided.  Read/write access to data in this global memory is about 100 times 

slower than for data in the PDC, so optimal performance depends on an algorithm’s ability to 

minimize access to global memory and use the PDC effectively. 

 

 
 

Figure 3:  Simplified view of a CUDA device.  The GPU 

is a compute coprocessor, enabling computations to be 

decomposed into a series of parallel threads executing 

across multiprocessors.  Each multiprocessor in turn 

consists of multiple thread processors, a collection of 32-bit 

registers, and a programmer-managed parallel data cache. 

 

Parallel computations are decomposed into one or more kernels, each of which executes in 

parallel across a set of light-weight thread primitives.  Threads are logically grouped into warps 

that execute in SIMD (single instruction, multiple data) fashion.  These groups are in turn 

organized hierarchically into thread blocks, which indicate a group of threads that execute 

concurrently, cooperate via barrier synchronization, and communicate via access to the PDC.  

Finally, thread blocks are organized into grids:  each block within the grid can execute 

independently, which permits parallel execution of many thread blocks across the device’s 
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multiprocessors.  A hardware execution manager provides a low-overhead threads 

implementation and handles details such as thread creation, scheduling, and context switching. 

 

As with POSIX Threads, CUDA provides a set of powerful mechanisms to implement programs 

as a collection of cooperating, communicating threads.  Moreover, CUDA exposes the massively 

parallel execution environment provided by modern GPU hardware, enabling non-graphics 

applications to leverage the computational power afforded by these architectures.  As many-core 

CPU and GPU hardware designs continue to evolve, many are predicting the eventual 

convergence of the designs.
6,7

  In this context, CUDA becomes a particularly attractive and 

potentially widely applicable multithreaded parallel programming model. 

 

3 Parallel Programming Projects 

 

As noted, we have developed a 4-week unit exploring the multithreaded programming models 

described in Section 2 that can be integrated with a course in modern operating systems.  The 

core feature of this unit is a set of self-contained programming projects that enable students to 

explore multithreaded programming.  Specifically, students develop two variations of a 

multithreaded program that approximates the value of ʌ using Monte Carlo integration. 

 

3.1 Monte Carlo Integration 

 

Monte Carlo integration is a powerful method for approximating the value of an integral using 

probabilistic techniques.  For example, to compute the integral of a complicated function f over 

in the interval [a, b], 
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Monte Carlo integration approximates F by computing the average value of the function over the 

interval using N random sample points in [a, b]: 
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This technique is particularly useful for evaluating high-dimensional integrals and is often 

applied in several problem domains, including computational physics, computational chemistry, 

and computer graphics. 
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More importantly, Monte Carlo integration is a so-called embarrassingly parallel application:  

each sample point x within the domain is completely independent of all other sample points.  In 

the limit, given N threads, the N random sample points used to compute the average value can be 

evaluated simultaneously.  Decomposition of the computational domain is thus straightforward, 

and students are readily able to appreciate the advantage of parallelism in this context.  Finally, a 

basic understanding of Monte Carlo integration requires only a cursory knowledge of calculus 

and statistics, so the details of this problem solving technique are thus accessible to 

undergraduate students with a standard mathematics background. 

 

3.2 The pthreads Programming Projects 

 

To help students manage the complexity of the problem, the pthreads project is composed of a 

series of C programs, each of which implements a subset of the functionality required by the 

final task.  Students thus construct the full Monte Carlo estimator incrementally, mastering the 

key parallel programming concepts along the way.  The following points outline each of the 

tasks involved in the problem solving process, highlighting the features of the pthreads interface 

required to complete the task: 

 

• Task 1:  Multithreaded “Hello, world!”.  Students write a C program to create a user-

specified number of threads, each of which executes a function that simply outputs 

“Hello, world!” to the console window before exiting.  The main program spawns N such 

threads, initiates execution, and simply waits for each of them to complete before 

terminating itself. 

 

This simple task allows the student to grasp the pthreads execution model, enabling them 

to utilize the pthreads functions related to basic thread management. 

 

• Task 2:  Modifying thread behavior with run-time arguments.  In this task, students 

modify the program for Task 1 to communicate (possibly unique) parameters to each 

thread during the thread creation process.  These arguments define the run-time behavior 

of each thread, allowing the behavior of any one thread to differ from that of each of its 

peers, if desired. 

 

In particular, the program from Task 1 is modified so that each thread: 

 

1. computes a random number of microseconds in some range (for example, 0-

1000), as determined by the thread’s run-time configuration; 

2. informs the user of the number of microseconds it will sleep by outputting a 

simple message to the console window; 

3. sleeps for the specified time interval; and 

P
age 14.806.10



4. outputs a final message to the console window before exiting. 

 

Here, the students learn the pthreads mechanisms for communicating information to each 

thread during the creation process.  Given unique inputs, each thread’s behavior will 

manifest differently than that of each of its peers, and students thus begin to grasp the 

truly independent nature of the threads as they execute in parallel. 

 

• Task 3:  Communication and synchronization via locks.  Students build on the 

solution to Task 2 and modify the program so that each thread gains exclusive access to a 

shared data structure and manipulates that structure’s values. 

 

In this task, the pthreads mutex is introduced as a synchronization primitive that enables 

coordinated access to shared data.  The final (correct) value in the shared data structure is 

dependent on each thread obtaining mutually exclusive access to its members; thus, in 

order to solve this problem correctly, students must coordinate the threads’ behavior 

properly through the use of locks. 

 

In addition, students begin to appreciate the potential sources of computational 

bottlenecks:  this exercise specifically introduces a serialization point (in the form of 

access to the shared data structure) to demonstrate that multithreading alone does not 

guarantee performance improvements—algorithms must be designed carefully to exploit 

the potential parallelism in a manner that leads to actual performance gains. 

 

• Task 4:  Monte Carlo estimator.  Finally, students compose the multithreaded 

programming lessons they have learned in Tasks 1-3 to implement a full Monte Carlo 

estimator.  In particular, the students use the method to approximate the value of ʌ by 

scaling the estimate for a quarter-circle over the domain [0, 1]×[0, 1]: 

 

 
 

Those samples whose values fall within the shaded region above are contained within the 

circle, and thus contribute to the estimate.  The final result is then scaled by a factor of 

four, leading to an overall estimate for the value of ʌ. 
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Once complete, the students conduct a series of experiments to determine the scaling properties 

of their implementation using the multicore machines in our computer laboratory.  Specifically, 

students measure the wall time required to approximate the value of ʌ using 100 million random 

samples distributed across one, two, four, eight, or 16 threads.  A written analysis of the 

observed scaling behavior is submitted along with the source code for each of their multithreaded 

programs. 

 

The pthreads project is introduced first primarily because the execution environment, though 

requiring the students to begin thinking “in parallel”, is nevertheless more familiar than that of 

the GPU devices.  Once students have gained a certain level of comfort with the core issues 

arising from a multithreaded implementation of the Monte Carlo estimator, they rewrite their 

estimators using CUDA. 

 

3.3 The CUDA Programming Projects 

 

In general, the CUDA-based programming project proceeds similarly, with a few important 

differences.  First, because the implementation actually executes in a different memory space 

than standard applications (that is, in the DRAM of the GPU device and not the main memory of 

the host system), output to the console window directly from the CUDA program is prohibited.
1
 

 

Second, the thread hierarchy imposed by the CUDA programming model potentially requires 

more careful thought about the decomposition of the computational domain.  Unlike the pthreads 

model, not all threads are peers in the CUDA execution model:  only those threads within a block 

can coordinate their behavior and communicate directly (via the parallel data cache), which may 

require a slightly different implementation than under the pthreads model. 

 

We have found both of these programming exercises to be useful tools in helping the students 

grasp and overcome the issues that arise in the context of many-core applications level 

programming.  Additionally, experience shows that these projects can be deployed quite 

smoothly in an existing operating systems course, permitting an initial exploration of parallel 

computing without the need to dedicate the sometimes scare faculty resources to an entire 

semester-long course on the topic. 

 

4 Summary 

 

We believe that the progression of commodity processing architectures will eventually culminate 

in the wide distribution of massively parallel many-core architectures such as those used in 

                                                            
1 In fact, nvcc, the CUDA compiler, offers a “device emulation” mode in which the program is compiled for the 

host architecture and, when executed, simulates the actual device behavior using a standard threading model.  We 

have found device emulation mode to be useful for debugging purposes, particularly when students run into 

problems during the conversion of their Monte Carlo estimator from the pthreads interface to CUDA. 
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current graphics processors.  Moreover, we believe this trajectory will require that undergraduate 

students in a wide range of technical disciplines possess an in-depth understanding of the 

hardware and software issues related to solving problems using such highly parallel 

architectures. 

 

We have thus integrated the key components of a semester-length course in parallel computing 

into a 300-level operating systems course.  The parallel programming unit of this course 

motivates two influential parallel programming models, with a focus on the issues of which 

programmers must be aware when writing applications for parallel architectures.  In particular, 

multithreaded programming is introduced in two forms:  the POSIX Threads interface and 

NVIDIA’s Compute Unified Device Architecture.  A set of self-contained programming projects 

is used to highlight the core concepts required to utilize multithreading effectively.  In our 

experience, these projects can be integrated quite readily by merging the key concepts with a 

discussion of the process and thread management facilities of modern operating systems. 

 

Parallel computing obviously provides opportunities for more advanced study and undergraduate 

research.  We hope to institute a semester-length course in parallel computing focused on topics 

such as parallel hardware architectures, parallel algorithms, and additional parallel programming 

models, when time and resources permit. 

 

More immediately, however, as a comprehensive college with staffing constraints that limit our 

ability to introduce such courses trivially, we hope to demonstrate that important topics in 

parallel computing can be made accessible to undergraduate students at a broad range of colleges 

and universities, both large and small.  We also hope that our experiences are both insightful and 

useful to other instructors who may be interested in integrating parallel computing into their own 

operating systems courses. 
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