
AC 2009-2126: INTRODUCING MULTITHREADED PROGRAMMING: POSIX
THREADS AND NVIDIA'S CUDA

Christiaan Gribble, Grove City College

© American Society for Engineering Education, 2009

P
age 14.806.1

Introducing multithreaded programming:

POSIX Threads and NVIDIA’s CUDA

Abstract

The current progression of commodity processing architectures exhibits a trend toward

increasing parallelism, requiring that undergraduate students in a wide range of technical

disciplines gain an understanding of problem solving in massively parallel environments.

However, as a comprehensive college, we cannot currently afford to dedicate an entire semester-

long course to the study of parallel computing. To combat this situation, we have integrated the

key components of such a course into a 300-level course on modern operating systems. In this

paper, we describe a parallel computing unit that is designed to dovetail with the discussion of

process and thread management common to operating systems courses. We also describe a set of

self-contained projects in which students explore two parallel programming models, POSIX

Threads and NVIDIA’s Compute Unified Device Architecture, that enable parallel architectures

to be utilized effectively. In our experience, this unit can be integrated with traditional operating

systems topics quite readily, making parallel computing accessible to undergraduate students

without requiring a full course dedicated to these increasingly important topics.

1 Introduction

The many-core revolution currently underway in the design of processing architectures

necessitates an early introduction to parallel computing. Commodity desktop systems with two

cores per physical processor are now common, and the current processor roadmap for major

manufacturers indicates a rapid progression toward systems with four, eight, or even 16 cores.

At the same time, programmable graphics processing units (GPUs) have evolved from fixed-

function pipelines implementing the z-buffer rendering algorithm to programmable, highly

parallel machines that can be used to solve a wide range of problems. Together, these

developments require that students possess an in-depth understanding of the hardware and

software issues related to solving problems using many-core processing architectures.

Grove City College is a comprehensive college, and as such, we in the Department of Computer

Science must wrestle with the requisite staffing limitations. In particular, we cannot currently

afford to offer an entire course dedicated to parallel computing—here defined to comprise a

study of parallel processing architectures and the programming techniques necessary to utilize

those architectures effectively—without sacrificing the integrity of our core computer science

curriculum. This situation thus poses a dilemma: the current trajectory of processing

architectures dictates an ever-increasing need for knowledge development in this area, but we are

simply unable to dedicate a semester-length course to the study of these topics. P
age 14.806.2

In response to this situation, we instead introduce parallel computing in the context of a

semester-long 300-level operating systems course, which features a 4-week unit focusing on

parallel computing. This unit is specifically designed to dovetail with the treatment of process

and thread management that is common to courses on modern operating systems. In this context,

we motivate the opportunities and challenges introduced by parallel processing architectures, and

students explore the key programming concepts via a set of self-contained parallel programming

projects. We also discuss key issues arising in the context of parallel execution environments,

including resource sharing, thread synchronization, and atomicity, and these topics provide a

smooth transition back to traditional operating systems concepts such as semaphores, high-level

synchronization constructs, and deadlock.

2 Parallel Processing

In particular, our students explore multithreaded programming in two forms: the POSIX Threads

(pthreads) interface, a standardized model for multithreaded application programming
1
, and

NVIDIA’s Compute Unified Device Architecture (CUDA), a co-designed hardware/software

architecture for massively parallel computing.
2
 Before discussing the details of these parallel

programming models, we first motivate the multithreaded approach to parallel processing by

contrasting it with two other common forms of parallel processing exploited by contemporary

computer systems.

2.1 Some Common Forms of Parallelism

Modern processing architectures exploit parallelism on a number of levels, including instruction-

level parallelism, multitasking, and multithreading. Whereas instruction level parallelism and

multitasking enable programmers to remain blissfully unaware the details related to parallel

execution, relying instead on optimizing compilers and operating systems to exploit parallelism

automatically, multithreading requires the programmer to design a program to capitalize on

potential parallelism from the outset.

Thus, to fully utilize the parallelism afforded by current and future many-core processing

architectures, we believe that programmers must possess an intimate knowledge of the issues that

arise in the context of multithreading.

2.1.1 Instruction-Level Paralleism

Consider the following expression involving several integer multiplications and additions:

a + (b*c) + (d*e) + f

P
age 14.806.3

Assuming we have a processor that requires a single cycle to evaluate each multiplication or

addition operation, this expression requires five cycles to evaluate in a sequential manner: one

cycle for each of the arithmetic operations in the expression (Figure 1a). However, if the

processor is equipped with just one additional execution unit, then the number of cycles required

to evaluate the expression can be reduced from five to three (Figure 1b).

In this example, instruction-level parallelism (ILP) capitalizes on the absence of data

dependencies among operations within the full expression to efficiently utilize the processor’s

multiple execution units, thereby improving performance by a factor of 1.67 over the sequential

version. Typically, applications level programmers need not be concerned with parallelism at

this level, and instead rely on optimizing compilers to recognize such opportunities and schedule

instructions in a manner that leverages ILP. Whereas ILP can improve the overall performance

of a single program, opportunities to exploit ILP depend largely on the particular sequence of

instructions required to implement a program’s behavior, and vary widely from one application

to the next.

Figure 1: Instruction-level parallelism. The lack of data

dependencies among operations within an instruction

stream can be exploited by a processor with multiple

execution units.

2.1.2 Multitasking

At a coarser level, multitasking also implements parallel processing without any special effort on

the part of an application programmer. In this case, programmers rely on the operating system’s

scheduler to exploit the independence of tasks within the system, rather than the compiler’s

ability to exploit the independence of operations within an instruction stream.

P
age 14.806.4

Interestingly, multitasking operating systems are able to provide the illusion of parallel execution

without actually requiring truly parallel hardware. As such, multitasking is sometimes

considered a form of concurrent processing, as distinguished from true parallel execution:

although multiple programs appear to be executing simultaneously, each process is in reality

executed sequentially—the system simply switches among the available processes so quickly

that it appears as though the programs are executing in parallel.

It is important to note that multitasking does not improve the performance of any particular

program, but instead improves the overall system throughput, which is a measure of the number

of tasks completed by the system in a particular unit of time. With multitasking, no single task

completes more quickly, but instead some collection of tasks will potentially require less time to

complete than if those tasks were executed sequentially.

2.1.3 Multithreading

Though multitasking remains an important feature in the context of highly parallel processing

architectures, this technique cannot exploit the independence of logical tasks within a single

program. Modern systems thus afford programmers the ability to explicitly divide a process into

two or more threads—logical units of computation that share many of the resources that are used

across the program as a whole, including a program’s binary instructions and its global data

structures (Figure 2). It is this form of parallelism with which our 4-week parallel computing

unit is concerned. In particular, this unit centers around two multithreaded programming models

that can be used to effectively exploit parallel processing and thereby improve program

performance: pthreads and CUDA.

2.2 POSIX Threads

pthreads is a standardized model for dividing a program into subtasks whose execution can be

interleaved or run in parallel. This model implements the POSIX multithreading interface

(POSIX Section 1003.1c), which is part of the more general family of IEEE operating system

interface standards.

Programmers experience pthreads as a set of C programming language data types and function

calls that operate according to a set of implied semantics—that is, pthreads offers a standardized,

programmer-friendly application programming interface (API). Specific vendors typically

supply pthreads implementations in two parts:

• a header file that is included in a multithreaded program, and

• a library that is linked to the program during compilation. P
age 14.806.5

Figure 2: Classic versus modern processes. A process

represents a program in execution. The classic process

model contains just a single execution engine, but modern

processes—multithreaded processes—allow multiple

execution engines to share the resources within the

computational framework provided by the process.

To exploit multithreading, programmers must design and implement their programs as a series of

independent tasks. Using the pthreads API, multiple threads of execution are spawned and

scheduled as independent units by the operating system, proceeding independently unless the

programmer explicitly synchronizes the threads’ execution.

The behavior of each thread is specified during its creation by passing the name of a C function

to the thread creation routine as an argument. Other properties of the thread, including

arguments to the function that define its behavior, are passed at the time of creation as well.

Common synchronization primitives such as barriers, locks, and higher-level constructs can be

constructed using pthreads mutexes. Primitive mechanisms for inter-thread communication via

shared data structures are available as well.

In general, the pthreads execution model treats threads as peers. Only the main thread, which is

created by the operating system when it instantiates the multithreaded process, has slightly

different properties, but these differences can typically be ignored: all of the threads in well-

designed pthreads program will thus cooperate to execute the task at hand in a manner that

effectively utilizes the underlying resources of the processor.

P
age 14.806.6

2.3 NVIDIA Compute Unified Device Architecture

Over the past several years, multicore processors have evolved from traditional central

processing units (CPUs) and afford one means to exploit parallel processing through

multithreaded programming. At the same time, recent advances in the programmability of so-

called graphics processing units (GPUs) now permit these devices to be used for general purpose

computing. In fact, these devices have spawned an entire field of academic and industrial

research
3
, and have been demonstrated to provide significant performance improvements for

various computing problems across a wide range of application domains.
4

Historically, GPUs comprise a series of fixed-function pipelines that implement the z-buffer

rendering algorithm to provide the real-time graphics capabilities that have become an integral

component of the modern human-computer interface. As a result, GPU devices have found wide

deployment, and most contemporary desktop computer systems, as well as gaming consoles,

digital music players, and high-end mobile devices, are often equipped with one or more such

processors.

Recently, GPU manufactures have begun to expose the low-level hardware components on

which these devices are based, permitting an unprecedented level of programmability. The

programming models through which programmers interact with these devices have evolved

accordingly, rapidly progressing from low-level assembly language programs written specifically

for a particular GPU architecture to high-level programming interfaces such as the NVIDIA

Compute Unified Device Architecture.
2

CUDA is a co-designed hardware and software platform designed to leverage the massively

parallel compute capabilities of programmable GPUs for general purpose computing. CUDA

consists of three core components:

• a massively parallel hardware execution environment based on NVIDIA-brand

processors;

• a comprehensive collection of software development tools, including run-time libraries,

performance analysis programs, and documentation; and

• a scalable, multithreaded programming model using extensions to the C programming

language.
5

As a unified hardware and software architecture, CUDA is designed to scale to thousands of

threads across hundreds of cores in a manner that is both extensible to many-core CPU- and

GPU-based systems. CUDA is also designed be useable, meaning the programmer should be

able to focus on the development of efficient parallel algorithms and not low-level

implementation details required to utilize the hardware effectively.

P
age 14.806.7

Currently, the CUDA programming model provides a view of the GPU as a highly multithreaded

compute coprocessor with a local dedicated DRAM (Figure 3). Each device consists of multiple

thread processors (multiprocessors), each with an on-chip memory comprised of several 32-bit

registers and a programmer-managed parallel data cache (PDC).

A globally accessible DRAM, typically ranging in size from 256 MB to 1 GB or more, permits

threads to communicate across multiprocessor boundaries. However, no hardware caching

mechanisms are provided. Read/write access to data in this global memory is about 100 times

slower than for data in the PDC, so optimal performance depends on an algorithm’s ability to

minimize access to global memory and use the PDC effectively.

Figure 3: Simplified view of a CUDA device. The GPU

is a compute coprocessor, enabling computations to be

decomposed into a series of parallel threads executing

across multiprocessors. Each multiprocessor in turn

consists of multiple thread processors, a collection of 32-bit

registers, and a programmer-managed parallel data cache.

Parallel computations are decomposed into one or more kernels, each of which executes in

parallel across a set of light-weight thread primitives. Threads are logically grouped into warps

that execute in SIMD (single instruction, multiple data) fashion. These groups are in turn

organized hierarchically into thread blocks, which indicate a group of threads that execute

concurrently, cooperate via barrier synchronization, and communicate via access to the PDC.

Finally, thread blocks are organized into grids: each block within the grid can execute

independently, which permits parallel execution of many thread blocks across the device’s

P
age 14.806.8

multiprocessors. A hardware execution manager provides a low-overhead threads

implementation and handles details such as thread creation, scheduling, and context switching.

As with POSIX Threads, CUDA provides a set of powerful mechanisms to implement programs

as a collection of cooperating, communicating threads. Moreover, CUDA exposes the massively

parallel execution environment provided by modern GPU hardware, enabling non-graphics

applications to leverage the computational power afforded by these architectures. As many-core

CPU and GPU hardware designs continue to evolve, many are predicting the eventual

convergence of the designs.
6,7

 In this context, CUDA becomes a particularly attractive and

potentially widely applicable multithreaded parallel programming model.

3 Parallel Programming Projects

As noted, we have developed a 4-week unit exploring the multithreaded programming models

described in Section 2 that can be integrated with a course in modern operating systems. The

core feature of this unit is a set of self-contained programming projects that enable students to

explore multithreaded programming. Specifically, students develop two variations of a

multithreaded program that approximates the value of ʌ using Monte Carlo integration.

3.1 Monte Carlo Integration

Monte Carlo integration is a powerful method for approximating the value of an integral using

probabilistic techniques. For example, to compute the integral of a complicated function f over

in the interval [a, b],

∫=
b

a

dxxfF)(,

Monte Carlo integration approximates F by computing the average value of the function over the

interval using N random sample points in [a, b]:

∑∫
=

−
≈=

N

i

i

b

a

xf
N

ab
dxxfF

1

)(
)(

)(.

This technique is particularly useful for evaluating high-dimensional integrals and is often

applied in several problem domains, including computational physics, computational chemistry,

and computer graphics.

 P
age 14.806.9

More importantly, Monte Carlo integration is a so-called embarrassingly parallel application:

each sample point x within the domain is completely independent of all other sample points. In

the limit, given N threads, the N random sample points used to compute the average value can be

evaluated simultaneously. Decomposition of the computational domain is thus straightforward,

and students are readily able to appreciate the advantage of parallelism in this context. Finally, a

basic understanding of Monte Carlo integration requires only a cursory knowledge of calculus

and statistics, so the details of this problem solving technique are thus accessible to

undergraduate students with a standard mathematics background.

3.2 The pthreads Programming Projects

To help students manage the complexity of the problem, the pthreads project is composed of a

series of C programs, each of which implements a subset of the functionality required by the

final task. Students thus construct the full Monte Carlo estimator incrementally, mastering the

key parallel programming concepts along the way. The following points outline each of the

tasks involved in the problem solving process, highlighting the features of the pthreads interface

required to complete the task:

• Task 1: Multithreaded “Hello, world!”. Students write a C program to create a user-

specified number of threads, each of which executes a function that simply outputs

“Hello, world!” to the console window before exiting. The main program spawns N such

threads, initiates execution, and simply waits for each of them to complete before

terminating itself.

This simple task allows the student to grasp the pthreads execution model, enabling them

to utilize the pthreads functions related to basic thread management.

• Task 2: Modifying thread behavior with run-time arguments. In this task, students

modify the program for Task 1 to communicate (possibly unique) parameters to each

thread during the thread creation process. These arguments define the run-time behavior

of each thread, allowing the behavior of any one thread to differ from that of each of its

peers, if desired.

In particular, the program from Task 1 is modified so that each thread:

1. computes a random number of microseconds in some range (for example, 0-

1000), as determined by the thread’s run-time configuration;

2. informs the user of the number of microseconds it will sleep by outputting a

simple message to the console window;

3. sleeps for the specified time interval; and

P
age 14.806.10

4. outputs a final message to the console window before exiting.

Here, the students learn the pthreads mechanisms for communicating information to each

thread during the creation process. Given unique inputs, each thread’s behavior will

manifest differently than that of each of its peers, and students thus begin to grasp the

truly independent nature of the threads as they execute in parallel.

• Task 3: Communication and synchronization via locks. Students build on the

solution to Task 2 and modify the program so that each thread gains exclusive access to a

shared data structure and manipulates that structure’s values.

In this task, the pthreads mutex is introduced as a synchronization primitive that enables

coordinated access to shared data. The final (correct) value in the shared data structure is

dependent on each thread obtaining mutually exclusive access to its members; thus, in

order to solve this problem correctly, students must coordinate the threads’ behavior

properly through the use of locks.

In addition, students begin to appreciate the potential sources of computational

bottlenecks: this exercise specifically introduces a serialization point (in the form of

access to the shared data structure) to demonstrate that multithreading alone does not

guarantee performance improvements—algorithms must be designed carefully to exploit

the potential parallelism in a manner that leads to actual performance gains.

• Task 4: Monte Carlo estimator. Finally, students compose the multithreaded

programming lessons they have learned in Tasks 1-3 to implement a full Monte Carlo

estimator. In particular, the students use the method to approximate the value of ʌ by

scaling the estimate for a quarter-circle over the domain [0, 1]×[0, 1]:

Those samples whose values fall within the shaded region above are contained within the

circle, and thus contribute to the estimate. The final result is then scaled by a factor of

four, leading to an overall estimate for the value of ʌ.

P
age 14.806.11

Once complete, the students conduct a series of experiments to determine the scaling properties

of their implementation using the multicore machines in our computer laboratory. Specifically,

students measure the wall time required to approximate the value of ʌ using 100 million random

samples distributed across one, two, four, eight, or 16 threads. A written analysis of the

observed scaling behavior is submitted along with the source code for each of their multithreaded

programs.

The pthreads project is introduced first primarily because the execution environment, though

requiring the students to begin thinking “in parallel”, is nevertheless more familiar than that of

the GPU devices. Once students have gained a certain level of comfort with the core issues

arising from a multithreaded implementation of the Monte Carlo estimator, they rewrite their

estimators using CUDA.

3.3 The CUDA Programming Projects

In general, the CUDA-based programming project proceeds similarly, with a few important

differences. First, because the implementation actually executes in a different memory space

than standard applications (that is, in the DRAM of the GPU device and not the main memory of

the host system), output to the console window directly from the CUDA program is prohibited.
1

Second, the thread hierarchy imposed by the CUDA programming model potentially requires

more careful thought about the decomposition of the computational domain. Unlike the pthreads

model, not all threads are peers in the CUDA execution model: only those threads within a block

can coordinate their behavior and communicate directly (via the parallel data cache), which may

require a slightly different implementation than under the pthreads model.

We have found both of these programming exercises to be useful tools in helping the students

grasp and overcome the issues that arise in the context of many-core applications level

programming. Additionally, experience shows that these projects can be deployed quite

smoothly in an existing operating systems course, permitting an initial exploration of parallel

computing without the need to dedicate the sometimes scare faculty resources to an entire

semester-long course on the topic.

4 Summary

We believe that the progression of commodity processing architectures will eventually culminate

in the wide distribution of massively parallel many-core architectures such as those used in

1 In fact, nvcc, the CUDA compiler, offers a “device emulation” mode in which the program is compiled for the

host architecture and, when executed, simulates the actual device behavior using a standard threading model. We

have found device emulation mode to be useful for debugging purposes, particularly when students run into

problems during the conversion of their Monte Carlo estimator from the pthreads interface to CUDA.

P
age 14.806.12

current graphics processors. Moreover, we believe this trajectory will require that undergraduate

students in a wide range of technical disciplines possess an in-depth understanding of the

hardware and software issues related to solving problems using such highly parallel

architectures.

We have thus integrated the key components of a semester-length course in parallel computing

into a 300-level operating systems course. The parallel programming unit of this course

motivates two influential parallel programming models, with a focus on the issues of which

programmers must be aware when writing applications for parallel architectures. In particular,

multithreaded programming is introduced in two forms: the POSIX Threads interface and

NVIDIA’s Compute Unified Device Architecture. A set of self-contained programming projects

is used to highlight the core concepts required to utilize multithreading effectively. In our

experience, these projects can be integrated quite readily by merging the key concepts with a

discussion of the process and thread management facilities of modern operating systems.

Parallel computing obviously provides opportunities for more advanced study and undergraduate

research. We hope to institute a semester-length course in parallel computing focused on topics

such as parallel hardware architectures, parallel algorithms, and additional parallel programming

models, when time and resources permit.

More immediately, however, as a comprehensive college with staffing constraints that limit our

ability to introduce such courses trivially, we hope to demonstrate that important topics in

parallel computing can be made accessible to undergraduate students at a broad range of colleges

and universities, both large and small. We also hope that our experiences are both insightful and

useful to other instructors who may be interested in integrating parallel computing into their own

operating systems courses.

References

[1] B. Nichols, D. Buttlar, & J. Farrell. Pthreads Programming. Sebastopol: O’Reilly, 1996.

[2] NVIDIA Corporation. CUDA 2.0 Programming Guide. Available at:

http://www.nvidia.com/object/cuda_develop.html. Accessed 6 February 2009.

[3] GPGPU: General-Purpose Computing Using Graphics Hardware. Available at: http://www.gpgpu.org.

Accessed 6 February 2009.

 P
age 14.806.13

[4] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. Lefohn, & T. Purcell. A Survey of General-

Purpose Computation on Graphics Hardware. In Eurographics 2005, State of the Art Reports, pp. 21-51,

August 2005.

[5] J. Nickolls, I. Buck, & M. Garland. Scalable Parallel Programming with CUDA. ACM Queue, 6(2):40-53,

2008.

[6] K. Fatahalian & M. Houston. GPUs: A closer look. ACM Queue, 6(2):18-28, 2008.

[7] W. Mark. Future Graphics Architectures. ACM Queue, 6(2):54-64, 2008.

P
age 14.806.14

