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Abstract: 
Single criterion optimization problems are shown to be readily taught and understood at lower 
division course levels using algebra/calculus, exhaustive numerical searches, and solver-type tools 
in standard spreadsheet packages. Genetic algorithms provide another suitable numerical 
technique that is relatively easily understood by students in high-level form, directly applicable to 
the single criterion class of optimization problems and very helpful to the multiple criteria class of 
optimization problems.  

 
This paper describes the methods of lower-division mechanics classroom introduction of 
optimization methods including algebra/calculus, spreadsheet solver, exhaustive search, and 
genetic algorithms. A classical solid mechanics problem utilizing the simply supported beam with 
a central load is used as the baseline in this paper for presenting the optimization methods 
introduced.  Several other more complex problems are described.  Multiple criteria optimization 
problems, which can quickly exceed the capability of typical spreadsheet solver tools, require 
students to utilize the multiple criteria optimization capability of genetic algorithms software. A 
possible framework that would support both single criterion and multiple criteria optimization 
methods, based on using genetic algorithms software, is presented that could allow these powerful 
methods to be introduced and successfully utilized earlier in the student’s college experience.  
 
Introduction: 
Two major course learning objectives of a lower-division mechanics course, MET 211, Applied 
Strength of Materials, are:  to understand the differences between analysis and design problems 
and to be able to properly address both types of  problems.  Analysis problems typically require a 
given input design with input design parameters1,2.  Design problems typically are much broader 
or open-ended in scope, often requiring the devising, analyzing, and testing of a series of design 
alternatives, before subsequent design analysis can begin.  The analysis step, in either case, can be 
greatly enhanced if the student has a working knowledge of the utilization of optimization 
methods at their disposal.  Single-criterion optimization methods have been shown to help analyze 
various design alternatives, helping selecting the best or optimal alternative. 
 
Single Criterion Optimization Methods Introduced: 
Four basic methods of optimization are introduced in this course to support the students analysis 
and design work, including algebra/calculus, exhaustive search, spreadsheet solvers, and genetic 
algorithms.  All four methods are worked into this lower-division mechanics classroom in the 
sequence shown above.   

1) Algebraic/Calculus Method:  This method works well where there is a continuous 
function that is easily differentiable.  Technology students typically take calculus as a co-
requisite making broad application of these methods difficult.  Goldberg7 points out that P
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calculus-based methods are based on the existence of “quadratic objective functions, ideal 
constraints and ever-present derivatives”.  

2) Exhaustive Search Method:  This method works very well in that the method is logical 
and all of the students have a good knowledge of spreadsheets.   

3) Spreadsheet Solver Method:  This method is typically unknown to all but one or two 
students coming into the course.  After lecture and laboratory introduction, the speed with 
which optimal solutions can be obtained is welcomed compared with methods 1) and 2) 
above. 

4) Genetic Algorithms Method: This method has both single-criterion and multiple-criteria 
capability, making it ultimately applicable to a much broader base of mechanics problems.   

 
Mechanics Problems Utilizing Optimization: 
There are many problems in the mechanics world that can utilize optimization methods.  
Mechanics and optimization textbooks1,2,3,4,5,6,7 carry a plethora of analysis and design problems 
that can also serve as good optimization problems and a sampling of these excellent texts is 
included in the Bibliography of this paper. A typical optimization will require a design to have a 
constant stress, minimum weight, and/or minimum cost, though there are many optimization 
fitness functions that can be envisioned.   All four methods mentioned above have applicability to 
these classes of optimization problems with a single objective function, f(x), and one or more 
constraints, where x is a member the constraint set. 
 
Very few mechanical elements experience a constant stress state throughout the entire element, 
though this condition would better utilize the element’s material.  Parts are typically loaded such 
that there is one point that has the maximum stress while the other material is stressed at a lower 
level.  Thus, the material that is stressed less than the maximum stress level is not utilized 
optimally.  This class of optimization problem requires a optimization fitness function that is 
looking to output a variation of stress across the element equal to or below some set threshold, 
usually set by establishing a suitable design factor or factor of safety with respect to the yield 
strength of the material, Syt.  The stress states in various portions of the mechanical element are 
first parameterized and then the cross-section is varied locally to produce an almost-constant 
stress state. 
 
Initial mechanical element designs rarely exhibit the minimum possible weight.  Often low weight 
can mean improved utility and/or reduced cost due to material savings.  For beams of a given 
length, the cross-sectional area can be minimized, giving minimum weight for a given material.  It 
is possible, of course, that changing the mechanical element’s material from steel (density ~0.3 
lb/ft3) to aluminum (density ~0.1 lb/ ft3) can give lower weight even though the cross-section for 
the aluminum is larger than that of the steel.   
 
Assemblies of two-force mechanical linkages into pinned trusses made of a given material can 
utilize both minimization of cross-sectional area and producing constant stress as joint 
optimization goals.  
 
Cost minimization of individual parts and multiple part assemblies is often a major criterion in the 
marketability of a product or machine.  Minimization of part count in an assembly, by eliminating 
redundant load paths and/or unloaded elements, is one approach to providing minimum cost.  
Minimizing weight sometimes can imply minimum cost, though extreme caution must be taken 
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with the minimum weight approach with higher-cost, lighter-weight materials like titanium and 
beryllium.   
 
Optimization Problem Descriptions: 
An optimization learning progression from a simply supported beam with a central load to a 
simply supported beam with a distributed load to the more complex overhung beam with a 
distributed load is presented in this paper.  These problems enable students to utilize analysis 
methods with given parameters, utilizing lower-division mechanics course lecture material and 
experimental procedures, to initially solve them.  Subsequent discussion of optimization broadens 
both their interest and deepens their understanding of these problems.   An overview sketch of 
these three mechanics problems involving beams is shown in Figure 1 below. 
 
 
 
 
 
 
    A)  Simply Supported Beam with Central Load 
 
 
 
 
 
 

 
B)  Simply Supported Beam with Distributed Load  
 
 
 
 
 
 
 
C)  Overhung Beam with Distributed Load  
 

Figure 1:  Three mechanics problems involving beams utilized for optimization learning 
 
Detail Optimization Example Using a Simply Supported Beam with Central Load: 
This simple, straight-forward, and standard mechanics problem provides students an 
understanding of optimization in both analysis and design modes.  The sketch of the loaded beam 
depicted in Figure 1A is analyzed using mechanics principles.  This analysis, utilizing free-body, 
instantaneous load, distributed load, and moment diagrams is shown in Figure 2 below. 
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Sketch 
 
 
 
Free Body Diagram 
 
 
 
Instantaneous Load Diagram 
 
 
 
Distributed Load Diagram 
 
 
Shear Diagram 
 
 
 
Moment Diagram 
 
 
 

Figure 2:  Simply supported beam with central load 
 
The flexural bending stress, s(x), is proportional to the bending moment, M(x), and inversely 
proportional to the section modulus, Z(x) as shown in equation 1 from Shigley, Mischke1. 
 

s(x) = M(x) / Z(x)          Eq 1 
 
For a constant cross-section beam, the section modulus, Z(x), is constant along x according to 
equation 2, where b(x) represents the width of the beam at any location, x and h(x) represents the 
height of the beam at any location, x. 
 

Z(x) = b(x) * h(x)2 / 6         Eq 2 
 
A non-optimal solution often produces a constant Z(x) because of utilization of standard cross-
section materials.  The constant Z(x) leads to a s(x) profile that mirrors M(x) with low values at 
each support and a maximum value at midspan as shown in Figure 3 below. 
 
Flexural Bending Stress, s(x) 
 
 

Figure 3:  A simply supported beam with a flexural bending stress, s(x),  
that mirrors M(x) for a constant cross-section beam. 
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The bending moment varies from zero at the supports to a maximum in the beam’s midspan which 
mirrors the flexural bending stress of the beam span.  A typical analysis problem will ask the 
student to find the maximum stress level in the beam for a given loading.  A typical design 
problem will ask the student to size the beam to produce a given or determined upper-bound 
stress.  Both methods result in large portions of the beam’s material being underutilized from a 
stress standpoint and thus at a non-optimal design state.   
 
Constant Flexural Bending Stress as Optimization Goal: 
It is clear from the above discussion that a constant-stress beam will have flexural bending stress 
graph that is a horizontal line as shown in Figure 4 below. 
 
Constant Flexural Bending Stress, s(x) 
 
 
 
 

 
Figure 4: A simply supported beam with a constant flexural bending stress, s(x), for a 

beam that has variable cross-section along x. 
 

Clearly more of the material in the beam is utilized more efficiently in Figure 4.  This constant 
flexural stress state can be accomplished in several ways, by varying the section modulus along 
the beam’s axis, for the loading shown.  One method to accomplish this is to vary the beam width, 
b(x), while holding the beam height, h(x) constant.  Another method is to vary the beam height, 
while holding the beam width constant.  A third method is to vary both beam width and height 
together.  In this paper, achieving the constant stress state in Figure 3 will be explored using the 
method of varying the beam width, b(x).   
 
Varying Beam Width, b(x), to Produce a Variable Beam Section Modulus: 
Simple algebra allows the students to solve for beam width, b(x) for the first half of the simply 
supported beam in terms of the other parameters, with the result shown in Equation 3. 
 

s(x) = M(x) / Z(x) = (P x / 2) / (b(x) * h(x)2 / 6) è b(x) = (3 P x) / (h(x)2 * smax )        Eq 3 
 

Thus the underlying optimization problem becomes determining the values of b(x) at each location 
x to produce the desired level of constant stress, in this case smax. 
 
1) Algebraic/Calculus Method: 
Students can perform the algebra and solve for the required b(x) at any location from 0 to L/2 to 
produce a constant stress from 0 to L/2.  The simple algebra could easily transcend the needs for 
more robust methods to determine the necessary b(x) to produce a constant stress as a function of 
x.  Even though this introductory optimization problem is simply solved mathematically by the 
students, the understanding of the problem solution by varying the cross-section provides a 
profound impact on future design and optimization problems.  As mentioned above, with the 
cross-sectional beam dimensions constant along the length, the complexity of the problem is 
reduced.  A non-trivial outcome is an enhanced student ability to interpret design analysis outputs 

   0 

   smax= (3PL)/(2b(x)h(x)2) 
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and apply these outputs to the actual beam design.  The students observe from the output of 
Equation 3 that as x à 0, b(x) à 0 and at x = 0, b(0) = 0. This is clearly unworkable, since 
mounting features must exist and the beam supports and shear stresses would become larger in 
relation to the flexural bending stresses.  After a discussion of the presence of lower-level shear 
stresses due to shear forces and the other stresses due to mounting features, this apparent paradox 
of requiring a zero-width part is resolved.  Working on relatively simple optimization problems 
gave the students improved confidence as they approach progressively more difficult problems. 
  
2) Exhaustive Search Method: 
The exhaustive search method utilizes spreadsheets like Microsoft8 Excel™ to allow multiple, 
manually-performed iterations to produce the desired result.  These iterations take two basic 
forms.   
 
The first form of the exhaustive search method requires the student to set up an initial table that 
has desired initial bounds and a coarse grid.  After finding the best solution within those initial 
bounds, another table is set up beneath the initial table with the bounds are made progressively 
finer.  After finding the best solution within these finer bounds, the process is repeated with finer 
bounds until a result with the desired precision is obtained.   
 
The second form of the exhaustive search method requires only a single table and a student 
understanding of the binary search algorithm to accomplish.  It was interesting to the author that 
only a few students had previously encountered the algorithm, though the majority understood the 
algorithm quickly.  In this second form, the independent variable is varied manually (by the 
student) within the same cell using a high-level binary search algorithm until the desired precision 
result is obtained.  The student enters a number, observes the results, and decides if the number 
needs to increase or decrease based on the result.  This process was demonstrated during lecture 
with follow-up homework.  Proper understanding of the underlying parametric equation was 
required, though, to support rapid convergence to an optimal solution through knowledge of 
which direction to vary the independent variable.   
 
In the case of the simply supported beam with a central load, the solution requires the optimal 
beam width, b(x), be derived for each predetermined value of x.  For example, given a 30 inch 
long simply supported beam with a central load of 1000 pounds, a maximum stress level of 5000 
psi, and a beam height of 3.0 inches, at x = 1”, the value of b(1”) is determined by the exhaustive 
search method shown below in Figure  5.   The first table produces a lower bound for b(1”) of 
0.01” and an upper bound of 1.01” as determined by the trend of the delta function, which is the 
difference between the calculated and goal values of stress at that location .   The next table is 
created from the first using cut-and-paste methods with a finer granularity between these newly 
established bounds.  The second iteration puts the bounds between 0.01” and 0.1”, the third 
iteration puts the bounds between 0.06” and 0.07”, and the fourth iteration puts the bounds 
between 0.066” and 0.067”.  The last iteration shows the bounds between 0.0666” and 0.0667”, 
with the latter being the specified value due to the calculated stress being less than the goal stress.  
At the value of b(1”) = 0.0667”, the calculated stress is a couple of psi below the goal.  
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Exhaustive Search    

 1st Iteration   
x b(x) h(x) M(x) Sigma(x) Goal Delta   
1 0.01 3 500 33333.33 5000 28333.33 Bound 1 0.01
1 1.01 3 500 330.033 5000 -4669.97 Bound 2 1.01
1 2.01 3 500 165.8375 5000 -4834.16  
1 3.01 3 500 110.742 5000 -4889.26  
1 4.01 3 500 83.12552 5000 -4916.87  
1 5.01 3 500 66.5336 5000 -4933.47  
1 6.01 3 500 55.46312 5000 -4944.54  
1 7.01 3 500 47.55112 5000 -4952.45  
1 8.01 3 500 41.61465 5000 -4958.39  
1 9.01 3 500 36.99593 5000 -4963.00  
1 10.01 3 500 33.30003 5000 -4966.70  

  2nd Iteration      
x b(x) h(x) M(x) Sigma(x) Goal Delta  
1 0.01 3 500 33333.33 5000 28333.33 Bound 1 0.01
1 0.11 3 500 3030.303 5000 -1969.70 Bound 2 0.11
1 0.21 3 500 1587.302 5000 -3412.70  
1 0.31 3 500 1075.269 5000 -3924.73  
1 0.41 3 500 813.0081 5000 -4186.99  
1 0.51 3 500 653.5948 5000 -4346.41  
1 0.61 3 500 546.4481 5000 -4453.55  
1 0.71 3 500 469.4836 5000 -4530.52  
1 0.81 3 500 411.5226 5000 -4588.48  
1 0.91 3 500 366.3004 5000 -4633.70  
1 1.01 3 500 330.033 5000 -4669.97  

  3rd Iteration      
x b(x) h(x) M(x) Sigma(x) Goal Delta  
1 0.01 3 500 33333.33 5000 28333.33  
1 0.02 3 500 16666.67 5000 11666.67  
1 0.03 3 500 11111.11 5000 6111.11  
1 0.04 3 500 8333.333 5000 3333.33  
1 0.05 3 500 6666.667 5000 1666.67  
1 0.06 3 500 5555.556 5000 555.56 Bound 1 0.06
1 0.07 3 500 4761.905 5000 -238.10 Bound 2 0.07
1 0.08 3 500 4166.667 5000 -833.33  
1 0.09 3 500 3703.704 5000 -1296.30  
1 0.1 3 500 3333.333 5000 -1666.67  
1 0.11 3 500 3030.303 5000 -1969.70  

  4th Iteration       
x b(x) h(x) M(x) Sigma(x) Goal Delta   
1 0.06 3 500 5555.556 5000 555.56   
1 0.061 3 500 5464.481 5000 464.48   
1 0.062 3 500 5376.344 5000 376.34   
1 0.063 3 500 5291.005 5000 291.01   
1 0.064 3 500 5208.333 5000 208.33   
1 0.065 3 500 5128.205 5000 128.21   
1 0.066 3 500 5050.505 5000 50.51 Bound 1 0.066
1 0.067 3 500 4975.124 5000 -24.88 Bound 2 0.067
1 0.068 3 500 4901.961 5000 -98.04  
1 0.069 3 500 4830.918 5000 -169.08  
1 0.07 3 500 4761.905 5000 -238.10  

  5th Iteration      
x b(x) h(x) M(x) Sigma(x) Goal Delta  
1 0.066 3 500 5050.505 5000 50.51  
1 0.0661 3 500 5042.864 5000 42.86  
1 0.0662 3 500 5035.247 5000 35.25  
1 0.0663 3 500 5027.652 5000 27.65  
1 0.0664 3 500 5020.08 5000 20.08  
1 0.0665 3 500 5012.531 5000 12.53  
1 0.0666 3 500 5005.005 5000 5.01 Bound 1 0.0666
1 0.0667 3 500 4997.501 5000 -2.50 Bound 2 0.0667
1 0.0668 3 500 4990.02 5000 -9.98  
1 0.0669 3 500 4982.561 5000 -17.44  
1 0.067 3 500 4975.124 5000 -24.88  

Figure 5:  Example of an exhaustive search to find the value of beam width at x = 1”, b(1”), 
to produce a constant stress of 5000 psi.  The value of b(1”) = 0.0667” at x = 1” is the 

output, since this produces a stress slightly less that the established maximum.  
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Note that the first iteration in Figure 5 does not include an option for b(1”) to have a value of  
0.0” since this would cause a divide-by-zero MS Excel™ error.  Instead the increments were 
made slightly greater than zero, in this case 0.01” as the minimum.  The exhaustive search method 
for determining the required b(x) to produce a constant stress state is laborious since each 
individual value of x requires a mini-exhaustive search as shown in Figure 5 above.  Depending on 
the granularity required for x, this process can produce a spreadsheet that can quickly become 
bulky.   
 
3) Spreadsheet Solver Method: 
Subsequent to the student’s efforts with MS Excel™ utilizing the exhaustive search algorithm 
described above, the MS Solver™ Add-In to MS Excel™ is introduced.  Classroom 
demonstrations have been very warmly received due to the rapid convergence of Solver™ to an 
optimal solution for single-criterion optimization problems.  Lecture material and demonstrations 
show the students how to establish a single target cell as the objective function with the goal to 
maximize, minimize, or drive to a particular value.  In the example below, the same problem of 
finding the optimal distribution of beam width, b(x) for a simply supported beam with a central 
load is addressed utilizing Solver™.  For each location, x, the variable input cell, b(x), drives the 
other constant parameters to establish a flexural bending stress for that location, which is then 
compared with the target maximum allowable flexural bending stress.  The “in-process” stress 
values are subtracted from the “target” stress values producing a column of “deltas”.  This 
spreadsheet arrangement is very similar to the Exhaustive Search spreadsheet model as can be 
observed in Figure 6 below.   

x b(x) h(x) M(x) Sigma(x) Goal Delta 
1 0.3 3 500 1111.111 5000 -3888.89 
2 0.3 3 1000 2222.222 5000 -2777.78 
3 0.3 3 1500 3333.333 5000 -1666.67 
4 0.3 3 2000 4444.444 5000 -555.56 
5 0.3 3 2500 5555.556 5000 555.56 
6 0.3 3 3000 6666.667 5000 1666.67 
7 0.3 3 3500 7777.778 5000 2777.78 
8 0.3 3 4000 8888.889 5000 3888.89 
9 0.3 3 4500 10000.000 5000 5000.00 

10 0.3 3 5000 11111.111 5000 6111.11 
11 0.3 3 5500 12222.222 5000 7222.22 
12 0.3 3 6000 13333.333 5000 8333.33 
13 0.3 3 6500 14444.444 5000 9444.44 
14 0.3 3 7000 15555.555 5000 10555.56 
15 0.3 3 7500 16666.666 5000 11666.67 

      58333.33 
Figure 6:  Spreadsheet depiction of MS Solver™ Add-In module  

with initial beam width, b(x), values.  
 
The single target cell is established with a formula of the sum of this column of “deltas” and the 
Set Target Cell to Value of zero is established.  The spreadsheet depicted below has the 
parameter b(x) set initially to 0.3 inches giving a sum of the Delta column as 58333.33 initially.   
Figure 7 below depicts the Solver™ parameter setup screen, where the target cell, parameter 
cells, and constraints are established.   In the screenshots that follow, cell H51 corresponded to 
the sum of the Delta column or as shown in Figure 6 above, 58333.33. P
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Figure 7:  Solver™ Parameters for driving the sum of the deltas in cell H51 towards zero 

while varying cells C36 through C50 subject to the constraints shown. 
 
MS Solver™ also provides the ability to set options such as Maximum Run Time, Maximum 
Number of Iterations, Precision, etc. using the Options button in the Parameter window as shown 
in Figure 8 below. 

 
Figure 8:  Solver™ Options to support driving the sum of the deltas towards zero 

 
Several charts of the MS Solver™ outputs during and after optimization are shown below in 
Figure 9 with the trend clearly towards the exact solution of a linear variation of the beam width, 
b(x), with respect to x to produce a constant stress state in the simply supported beam with a 
central load.   
 

 

P
age 7.749.9



   

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright Ó 2002, American Society for Engineering Education  

Constant Stress Profile
 Beam Height Constant, Varying Beam Width

MS Excel™ Solver - Linear Programming 
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Constant Stress Profile
 Beam Height Constant, Varying Beam Width

MS Excel™ Solver - Linear Programming 
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Figure 9:  Three MS Solver™ output charts of beam width, b(x), versus beam 

position, x, for constant stress beam  
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4)  Genetic Algorithms Method: 
Difficult optimization problems (mathematically discontinuous, multiple objective, etc.) can be 
addressed by genetic algorithms (GAs).  GAs are based on the pioneering work in population 
evolution of John Holland at the University of Michigan and one of his graduate students, David 
Goldberg7.  GAs use a probability-based process for generating arbitrary size initial populations of 
possible solutions, which are evaluated in a survival-of-the-fittest, evolutionary methodology.  
Subsequent generations of possible solutions are derived from the best of the first generation 
results and allow for robust optimization of a wide variety of problems.  Cross-over, mutation, 
elitism, and diversity work are terms from genetics that describe the GA’s operation, however the 
details of these GA-related terms well-covered in the literature and will not be repeated here.  
 
As mentioned earlier, typical optimization problems, have a single optimization objective function 
and can be addressed using other established methods.  GAs are well-suited to problems that are 
mathematically difficult to model, because they search such a broad spectrum of potential 
solutions in an efficient manner.  The theory of GAs is very briefly described in the upper and 
lower division mechanics classes, with more time spent on the application of GAs, specifically 
GeneHunter™ from Ward Systems Group9.  The application similarities to and differences from 
MS Solver™ are pointed out in lecture.   
 
For this same optimization problem, GeneHunter™ is utilized as an Add-In to MS Excel™.  The 
fitness function (another name for the optimization objective) for the sum of the individual deltas 
is set in a target cell.  As with MS Solver™, the goal is to drive this fitness function to a Value of 
zero.  The adjustable parameters are the values of beam width, b(x), corresponding to each value 
of x in the cells of the spreadsheet.  In this example, cells C17 through C31 are adjustable.  The 
ranges for the values of b(x) are also specified as shown below in Figure 10 below.   The search 
space for the beam width, b(x), includes an extended range that is 20% above the established 
upper limit of 1.0”, allowing both Solver™ and GeneHunter™ to better converge.    

 
Figure 10:  Genetic algorithm set-up screen using Ward System Group’s GeneHunter™ to 

produce values of beam width, b(x), for a constant stress beam  
with cell H32 representing the sum of the deltas 
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The constraints of the intermediate parameters are specified in the GeneHunter™ Constraint 
screen.  In this case, the stress constraint is set to be less than or equal to the upper stress limit 
with a high priority.  The individual deltas are set also constrained to be less than or equal to zero.  
This latter constraint drives the solution from a safer, lower stress perspective.    The constraints 
are shown in Figure 11 below. 
 

 
Figure 11:  Genetic algorithms method with constraints for stress (<G17) and deltas (<= 0) 

 
Genetic algorithms parameters specific to the optimization problem are set in the GeneHunter™ 
options screen shown in Figure 12 below.  In this case, a population of 100 with a 16 -bit long 
chromosome, a 90% cross-over probability, a 1% mutation rate, and a 98% generation gap are 
set.  An elitist strategy is utilized where it is guaranteed that the top 2% of the chromosomes from 
the previous generation will be carried over to the next generation.  Setting the generation gap to 
98% dictates that 100% minus 98% (or 2%) will be carried forward.   
 

 
Figure 12:  Genetic algorithms parameter screen 
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Several charts of the GeneHunter™ output during and after optimization are shown below in 
Figure 13 with the trend clearly towards the exact solution of a linear variation of b(x) with 
respect to x to produce a constant stress state in the simply supported beam with a central load.   
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Figure 13: Two GeneHunter™ output charts for beam width, b(x), for constant stress beam 

 
Conclusions: 
A learning progression for introducing single criterion optimization methods into mechanics 
classes has been presented in this paper.  The progression from a simply supported beam with a 
central load to a simply supported beam with a distributed load to the overhung beam with a 
distributed load was attempted with very good meeting of course learning objectives.  The simply 
supported beam with a central load was utilized to present the various solution methods in detail.  
This progression of mechanics problems enables students to effectively utilize pre-existing lower-
division mechanics course lecture material and experimental procedures to apply the optimization 
methods.  
 

P
age 7.749.13



   

Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright Ó 2002, American Society for Engineering Education  

The author observed that introducing optimization broadened and enriched both their interest in 
and understanding of these problems.  Student comments and ratings were very favorable.  
Generally the students appreciated the high degree of applicability of these methods to their future 
coursework and to their future profession.  The author is exploring means to introduce the theory 
and practice of genetic algorithms to a wider audience of students through a web-based tutorial.  
Without the lecture time to develop the underlying theory of genetic algorithms, one top student 
commented that the GA method was “pretty black box” and spent office hour time understanding 
the underlying theory.   
   
The above listed problems provide a series of increasingly-complex, single-criterion optimization 
problems that dovetail very well with the present lower-division engineering technology 
mechanics course lecture and laboratory learning objectives.  A similar sequence is planned to be 
utilized in an upper-division mechanics course with additional project requirements (such as more 
extensive experimental and finite element analysis verification of theory). 
 
Steuer6 provides an extensive theoretical, computational, and applied treatment of multiple-
criteria decision making (MCDM) problems.  This MCDM class of optimization problem is 
planned to be introduced and utilized as part of a possible final project in the upper-division 
experimental mechanics course.  MCDM problems could include such competing objective 
functions as to provide a target for a simply supported beam’s mid-span deflection as a first 
objective function while also providing for a near-constant-stress second objective function.  
Many other MCDM’s applicable to upper-division mechanics courses are possible and under 
consideration.     

 
This paper has reported on the beginning of a process to introduce optimization theory and have 
the lower- division and upper-division engineering technology students seriously utilize a broad 
array of optimization methods.  Future applied research in mechanics optimization will focus on 
devising optimization projects for students with non-linear elements as well as with multiple, 
varied elements and multiple criteria.  These optimization problems will be introduced to assist 
driving  capability deeper into the mechanics curriculum. 
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