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Many schools are reducing the number of credit hours in undergraduate engineering programs so
students have a better chance of graduating in four years. However, a majority of engineering
educators feel that certain fundamental engineering topics such as materials engineering and
statistics should be included in the curriculum. In an effort to minimize the number of credit
hours required to graduate yet still cover these two important topics, the Department of Mechani-
cal Engineering at Northern lllinois University is incorporating statistics in the laboratory section
of their required materials science course. This match is a natural one because the laboratory
projects require data acquisition, reduction, and statistical anaBmgibability paper plotand
Rockwell hardness tests are used to introduce the student to the fundamental building block of
statistics, the frequency distribution. An often-overlooked graphical statistical technique, the use
of probability paper plots, is a potent teaching tool.

Introducing Statistics to Students

Statistics and its associated foundation of probability are vitally important in engineering.
Engineers often must make decisions based upon relatively little information. Decision making
requires fast, effective, and practical methods of data reduction and analysis and correlated meth-
ods of feedback of the resulting conclusions. An understanding of the interrelationships between
mathematics, processes, and statistics can contribute to improvements in data reduction analysis
and problem-solving logit.

The importance of statistics in engineering being a given, the critical issue becomes how to
present this complex topic to undergraduates in a concise manner. Even the most introductory
statistics textbooks are very mathematical in nature and contain a plethora of notation. Faced
with having to learn statistics to complete their assigned materials science laboratory projects,
most students succumb to the temptation to instead merely plug their data into a spreadsheet
computer program (e.g., EXCEL) and command the software to perform a few basic canned
statistical operations. Moreover, since most of the software statistical routines are based on the
normal distribution, students are led to believe that if experimental data are not normally distrib-
uted, then “something is wrong.” Simply put, the majority of undergraduates do not realize that
the underlying foundation of statistics is the frequency (probability) distribution which may take
any of several possible shapes depending on the processes and measurement techniques involved.

One of the most efficient ways to introduce undergraduates to frequency distributions and their
associated statistics is through the usgrobability paper plot§PPP). This often-overlooked
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graphical technique is a powerful statistical tool in addition to being a potent teaching tool.

King? presents an excellent overview of probability distributions in a way different from most
statistics textbooks. He uses plots of the cumulative probability distribution function (probability
paper plots) to categorize various naturally occurring processes. He further develops one statisti-
cal distribution after another, proceeding from the simple to the more complicated, based upon
the inherent mathematical processes that underlie the distributions. King’s approach emphasizes
that associated with all naturally occurring processes are many kinds of statistical distributions.
Within a reasonable approximation, the more complex distributions are mathematically definable
combinations of the simpler distributions.

Included in the students’ laboratory manual is a fafslee Table 1, Appendix 1) summarizing
statistical distributions. Table 1 shows that the mathematical operatonmtingresults in a
discrete statistical distribution called th@omial distribution. The mathematical operation of
additionresults in the continuous distribution referred to astrenal distribution, and the
mathematical operation afiultiplicationresults in the continuous distribution referred to as the
lognormaldistribution.

The Binomial Distribution

An example of a binomial distribution is thenary distribution, the simplest of all distributions.
It is descriptive of a two-state situation, for example, “heads or tails.” The students are intro-
duced to the binomial distribution via a simple coin-toss experiment.

The Normal (Gaussian) Distribution

Students are introduced to the normal distribution via a handout which includes the following
model. A process based on several two-state systems, i.e., one in which an input variable can
take one of two possible states (e.g., a cutting tool being either sharp or dull), can be developed
by studying the outcome of the simultaneous tossing of several unbiased coins.

Assume that nine people toss a group of twenty coins simultaneously a total of ten times. (The
two sides, head and tails, represent an ideal two-state system.) It can be imagined that the twenty
coins represent twenty possibilities for random variation of the binary (discrete) process inputs,
while the nine students represent possible process variations. The aggregate results simulate the
occurrence of ninety (90) events during a sequence of ten repeat operations, or trials. (By shak-
ing a group of coins simultaneously and allowing them to fall together, one, in effect, creates a
function generator producing a set of completely random results for each shake.) By counting the
number of occurrences of one of the possible states (heads), it is possible to define a random
output variablé. This model illustrates how the mathematical operation of addition results in the
normal distribution. Students are then taught how to generate histograms by tabulating the num-
ber of heads in each trial.

In the development of probability paper plots (PPP) and their prerequisite histograms, there arises
the problem of properly arranging, or grouping the data into meaningful increments. This is an
important detail that is assumed to be obvious in the general literature of statistics and data
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analysis. However, many engineers new to such efforts encounter confusion in preparing data for
subsequent presentation and analysis. In many data displays, the use of too few, or too many
intervals obscures the form of the distributfon.

Sturges' Rule is a method of determining the optimum number of groups, or intervals, for
arranging the data into a graphical summary (histogram). This rule states that the optimum
number of intervals is found from

Number of intervals = 1 + 3.3 lay
where logn is the base 10 logarithm of the number of items of datanasmthe sample size.

King® gives several other tips on developing histograms, e.g., determining histogram interval
widths, balancing interval beginning and end points, and defining interval end points correctly.

Students are reminded that, assuming Sturge’s Rule has been appropriately applied, the general
appearance of a histogram results from the manner of combination (simple addition, in this case)
of the random variables. Hence, it is seen that even though the random variables in the coin-toss
example are binary (discrete) independent random variables, the distribution which results from
adding them together is a bell-shaped distribution referred to astimal (Gaussian distribu-

tion.

Many physical properties that are continuous or regular in time and/or space also follow the
symmetrical, bell-shaped curve of thermalfrequency distribution. Normal distributions

describe measurements which vary duprezxisionerror. Precision error can be affected by the
measurement system (repeatability and resolution), the measurand (temporal and spatial varia-
tions), the process (variations in operating and environmental conditions), and the measurement
procedure and technique (repeatability).

The Lognormal Distribution

Students are introduced to the lognormal distribution via a handout. They are provided with a
model similar to that given above for generating the normal distribution, but in this case, the
productsof face counts from tosses of four dice are tabulated. The resultant histogram (using
Sturge’s Rule) approximates a distribution thddggormal (positively skewed; sloping to the

left, flat on the right) (see Figure 1).

As shown in Table 1, when many random (errors) variables comitiglicatively, the result

is a skewed distribution called tlegnormaldistribution. There are many situations in nature
where it is more reasonable to suggest that the process underlying change or growth is multipli-
cative rather than additive. The lognormal distribution is said to obey the “law of proportionate
effect” and is appropriate when the effect of the random change in the variables at any step is
proportional to the previous value of the quartity.
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The lognormal distribution adequately describes many distributions occurring in nature, includ-
ing economic, biological, and engineering processes. Furthermore, by taking the standard
084
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Figure 1. Frequency Curves for the Normal and Lognormal Distribiitions.

deviation of the logarithms of the variatg, small enough, it is possible to construct a lognormal
distribution closely resembling any normal distribution. In fact, the lognormal is as fundamental

a distribution in statistics as is the normal distribution, despite the stigma of the derivative nature
of its name. The lognormal distribution forms a fundamental basis for other important distribu-
tions and should not be ignored by engineering students. For example, the lognormal distribution
has been found to be a serious competitor to another very important distribution in engineering,
the Weibull distribution, in representing lifetime distributions of manufactured products. The
lognormal distribution is possibly the handiest adjustable wrench in the toolbox of statistical
distributions'®

Probability Paper Plots and Rockwell Hardness Tests

Although tensile and fatigue test data on many statistical sample groups would produce optimum
continuous data distributions, for the purpose of instruction it was thought to be more important
that the students perform the data acquisition, as well as the data reduction. Therefore, a much
simpler test, the Rockwell hardness test, was used to generate test data.

To introduce the simple, but powerful probability-paper-plot graphical method, each lab group
was instructed to make 25 Rockwell hardness measurements evenly covering the cross-sectional
face of samples cut from two square steel bars. (Some lab groups received steel bars of identical
heat treatment while other groups received bars of differing heat treatment.) The students were
instructed to tabulate the acquired data, form histograms, plot the frequency distributions, and
determine if the data followed a normal distribution, lognormal distribution, neither, or both.

The students were reminded that it is imperative to always determine the type of distribution that
experimental data follow, rather than blindly assuming that the normal distribution describes the
data. There are several methods that can be used to determine the type of distribution described
by a data sample. One of the simplest methods is to use probability paper plots (PPP).
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Frequently, PPP will identify problems and specific characteristics of data which are not discov-
erable by other analytical methods. These advantages occur because PPP use all of the available
data which results in the display of the entire data set along with the relationship of each item of
data to all items. Such data displays are far more informative than the exercise of reducing the
data set to single abstract numbers, such as the mean and standard deviation. Statistical analysis
via PPP is especially potent because the method is capable of determining whether data is non-
random or homogenous. A great deal of real-world data contain non-random errors caused by
mistakes, carelessness, misunderstanding, and erratic or unstable processes. Blind, mechanistic
“cranking out of the numbers” will produce a high percentage of “nonsense numbers.” Data
proofing is a direct and unique benefit of PPP.

Probability paper plots are convenient and easy to generate because one axis of the probability
graph paper has been purposely scaled to match the probability scale corresponding to the
cumulative distribution function being targeted. Hence, if a normal distribution is suspected, the
data are plotted on normal probability paper. And if a straight line results, then the distribution is
indeed normal.

The PPP method is simple because only the following operations need be performed.

. Arrange the data in increasing order.

. Group into logical intervals using Sturge’s Rule. (Note: no histogram needs to be plotted.)
. Compute the plotting position.

. Choose a probability paper.

. Plot the data.

. Fit a line to the data.

. Analyze the results.
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The method is efficient because:

1. The correct choice of probability paper results in a straight line of the plotted points.

2. The incorrect choice of paper (type of distribution) is immediately obvious.

3. Failure to obtain a straight line can result from the following desirable information:

» An incorrect choice of the expected type of distribution,

* Nonlinearities caused by nonrandom sampling,

* Nonlinearities caused by truncation resulting from inspection, selection, or other kinds of
screening of data, and

 “Wild” points indicative of errors in obtaining or recording of data.

4. Linear plots allow visual determination of sample statistics such as the mean, median, and
standard deviation.

5. Shape patterns are indicative of certain types of distributions and process trends. For example,
Figure 2 shows the appearance of normal and lognormal distributions plotted on both normal
and lognormal probability pap&t. In general, the distribution plots made on a probability
paper of a lower mathematical complexity than the distribution of interest are concave up,
while the more complex distributions are concave down. For example, when data of a normal
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distribution are plotted on lognormal paper, the curve is concave down, while when data of a
lognormal distribution are plotted on normal paper, the curve is concave up. (When all of the
possible distributions that data may take are considered, this investigative method is especially
powerful.)
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Figure 2. Comparative Probability Plots for the Normal and LognormalPPP.

After properly plotting the Rockwell hardness experimental data using PPP, the students are able
to address the role that the resolution of the measuring device (Rockwell hardness tester) plays in
the experimental data acquisition. For example, when measuring an output variable (dimension)
of several machine parts with a crude tool like a yardstick, the measured dimension of all parts
would be the same, producing a uniform distribution. But, when the output variable (dimension)
is instead measured with a very precise tool (e.g., a laser), the variation inherent in the production
process would be apparent because a distribution of values of the output variable (dimension)
would result. This variation is defined as precision error, which is attributable to several reasons,
including variation in the measurement due to the variation of measuring equipment itself and the
variation of the output variable itself (which is what we really want to measure). If the variation

of the output variable is truly random and the measuring equipment has adequate resolution nor
is biased in its sensitivity and repeatability, then the distribution will be normal. Another case
occurs if the variable is indeed truly constant (uniform distribution), but the resolu-
tion/repeatability/sensitivity of the measuring instrumentation is such that noise results in

different readings; the result being that the output varabearsto vary. This noise may or

may not be normally distributed, at least over a small number of readings. This variation can

only be characterized via calibration.

In the case of the heat-treated steel bars, spatial variation of hardness was not random. For
example, when traversing the cross section, gathering 25 readings, 9 measurements are located
more toward the interior, while 16 measurements are located more toward the outer surface of
the bar. If the outer surface is harder than the interior (very likely the case due to cooling consid-
erations), then the measurements, even if taken with a highly precise (and accurate) measurement
device, may not be normally distributed. And in the case that the measurement device itself
possesses some randomness in its ability to reproduce a reading (not so precise), then an added

9'//€'s abed



element of randomness will enter in the data, causing the distribution to be more normally
distributed. The actual distribution obtained depends on the relative influence of each of these
factors (among other sources of error, e.g., operator skill, etc.).

Conclusion

A simple materials engineering laboratory project, Rockwell hardness testing, produced experi-
mental data that allowed students to learn about normal and lognormal probability distributions.

It was evident that students had misconceptions about the normal distribution. Students felt that
all experimental data must conform to the normal distribution. They associated the word
“normal” with “accurate” data. Students did not realize that a distribution is determined by how
the input variables interact. They also did not understand how the sensitivity of the measurement
equipment affects the experimental data distribution. After completing the laboratory project,
students had a much better understanding of statistical analyses.
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Table 1. Relationships Between Mathematical Models and Resultant Statistical Distributions.

APPENDIX |

: Resultant
Mathematical Mathematical Process Statistical
Operation Model Description Example Distribution
. _c Enumeration or Inspection Binomial
Counting r=- Classification Sorting
", n Linear Addition or subtraction of Normal
Addition 1) = ,-E(x") Additive materials; i.e., cutting,
weighing, etc., also mechanical
assembly.
s ’ _r Rate-Dependent Simple chemical processes; i.e., | Log-Normal
Multiplication fo) = I;I () etching, corrosion, gaseous
Proportional diffusion.
Response Simple biological processes;
ie., growth rate.
Simple economic processes;
i.e., distribution of income.
Simple fO) = ax, + bx, + cxi Algebraic Complex processes involving Extreme Value
Exponentiation Polynomial the combined effects of a
or or number of independent causes
each with a different oper-
Addition of f(y) = e®o + er1 + em Solutions of Linear | ational form; i.e., breaking
Transcendental Differential Equa- strengths, meteorological and
Terms tions with Constant | geophysical phenomena, elec-

Coefficients.

tronic and chemical measure-
ments, financial data.

Counting of Time fx;n,N) = Waiting Time Time required for an event(s) Gamma
Duration to an AP he to occur or to obtain some
Event Tk x € service.
Addition of X \2 Vector Sums Resultant value in a system of Chi-Square
Squared Normalized fo) = ? <;z> n-fold vector spaces from
Vectors physics, space-time, and
probability applications.
Muiltiplication of ) = el=ozzs) Solutions of Gen- Complex exponential processes | Log-Extreme Value
Transcendental eral Differential involving the interdependent
Terms Equations effects of independent causes;
i.e., breakage of particulate
* f(3) = e=/=d@slen Particle materials, solid state diffusion,
Sizing chemical kinetics.
Sums, Products, and (i:f)f’ Solutions of Processes involving limits and Weibull
Powers of Exponents | f(y) = e \“™# Differential maxima-minima,; i.e., life/
of Transcendental Equations with failure distributions, bounded
Terms ' Boundary particle size distributions,
Conditions and general potential,
gradient, and field problems.
“Upper-Limit”
Distributions

8'//¢'s abed



