
Introductory Digital Logic Design and Bluespec

XingYing Cheng1, Daren Wilcox2

Abstract

Most digital logic courses in engineering curriculums introduce hardware design using VHDL.
The three primary levels of abstraction in VHDL taught in the introductory course follow closely
to the traditional steps of Boolean logic, namely structure, data flow, and behavior. However,
presenting the introductory material at a higher level of abstraction might just be as beneficial.
Recently, a new electronic design automation tool, Bluespec, has emerged that promises a high
level of abstraction for digital hardware design. In this paper, Bluespec will be introduced in
relation to current VHDL design concepts with the intent of determining its applicability to
introductory digital logic instruction.

Keywords: Bluespec, VHDL, digital design, Register Transfer Logic

Introduction
The instruction of digital logic in engineering curriculums has progressed from discrete logic
gates in the 7400 series TTL to simple programmable logic devices (SPLD) to complex
programmable logic devices (CPLD) to field programmable gate arrays (FPGA). Along with
that progression has been advancement from manual programming of PLDs to computer
programming using CUPL, then ABEL, then Verilog, and now VHDL. As the power of the
hardware description language (HDL) advanced, so did the level of abstraction. At first, the
code resembled the structure of the older discrete hardware systems. Then Boolen equations
could be rendered in logic. Stepping higher, the state diagram or state sequence could be the
entry method for finite state machines (FSM). As the state machines became more advanced and
share control of the same resources, arbitration rules or arbiter circuits with grants and requests
became necessary. Finite state machines yield sequential circuits in parallel hardware. The more
advanced state machines with shared resources attempt to create parallel circuits. Bluespec from
the company Bluespec, Inc., is a new hardware description language the promises to incorporate
easily arbitration rules to design true parallel processing systems. Bluespec offers a higher level
of abstraction for digital hardware design than Verilog and VHDL. In this paper, an overview of
Bluespec is presented, its history and relation to VHDL, along with a simple example of code
relating VHDL to Bluespec, followed by the operation of Bluespec in Linux.

Bluespec History

The Bluespec language was the development of Prof. Arvind who founded the semiconductor
tool design company, Bluespec Inc., in 2003. Bluespec is a high-level functional hardware

1 Southern Polytechnic State University, 1100 S. Marietta Parkway, Marietta, GA 30060-2896, xcheng@spsu.edu

2 Southern Polytechnic State University, 1100 S. Marietta Parkway, Marietta, GA 30066-2896, dwilcox@spsu.edu

description programming language. The patented Bluespec technology is based on over eight
years of research at MIT, starting in 19971. In 2000, Prof. Arvind developed Bluespec version 1
which used the Haskellish syntax. The version 1 is much like TRAC which is written in the
python Programming language. In 2001, the new version which is also the current version of
Bluespec was launched. This version is based on Haskell syntax. Haskell syntax is derived from
O’Haskell which is an object-oriented, concurrent extension of the functional programming
language. It was developed at Oregon Graduate Institute and Chalmers University of
Technology. The new version Bluespec contains full Haskell functionality at compile time,
monads for handling state1. Besides, Bluespec is the only ESL synthesis solution for control
logic, complex data paths and algorithms. It has delivered high-level ESL synthesis abstraction
to system-C. The Bluespec toolset allows ASIC and FPGA designers to dramatically reduce
design time, bugs, verification resources and re-spins that contribute to product delays and
escalating costs. Bluespec improve the quality of verification both with a faster schedule and
fewer resources. Blue-spec designers can decrease the time closure by changing the micro-
architectural instead of trying to close timing sub-optimally by avoiding risky, late stage RTL
changes 2.

Bluespec and VHDL

VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description
Language. It is now one of industry’s standard languages used to describe digital systems. The
other widely used hardware description language is Verilog. Both are powerful languages that
allow you to describe and simulate complex digital systems. To be the newest hardware
description language as both VHDL and Verilog, Bluespec has more benefits : Accelerate time
to verified design by 50%; Reduce both bugs and verification costs by 50%; Retain flexibility to
make architectural changes late in the; design cycle; Enable rapid timing closure; Experience
unparalleled reuse, including faster derivatives; Leverage a unified environment for transaction
level modeling through to hardware generation; Deliver safe, low-impact ECOs that do not
disrupt designs 2.

When Blue-spec is using the exactly same hardware semantic and toolset as VHDL, it creates a
new way to express concurrency and inter-module communications2.

• High-level description of behavior (Rules and Interface Methods) resulting in designs

that are more succinct, more correct-by construction, and easier to verify.

• Very powerful interface semantics, which enhance correctness when an IP block is
plugged into varying environments and automatically manage resource sharing.

• Very high degree of parameterization, which greatly improves reuse.

• Strong support for embedded assertions, multiple clock domains and gated clocks 2.

Designers have the option of writing their designs at different levels, from transaction-level to
implementation-targeted hardware. When starting intentionally high, designers can perform, at
their control, a series of successive refinement steps on the design3.

Bluespec provides a significantly higher level of abstraction than Verilog, SystemVerilog,
VHDL and SystemC in the following dimensions3:

Behavioral descriptions: Bluespec uses rules and interface methods for behavioral description,
adding a powerful way to express complex concurrency & control3:

1. Across multiple shared resources.
2. Across module boundaries.

Structural descriptions: Bluespec has significantly higher ways to describe and perform3:
1. High-level abstract types
2. Powerful static checking
3. Powerful parameterization
4. Powerful static elaboration
5. Advanced clock management

Bluespec Abstraction Level

Bluespec includes five basic concepts: date type, interface, methods, modules and rules. As to
type, Bluespec is Hindley-Milner polymorphism + overloading type, whereas C is Non-
polymorphic; VHDL is somewhat polymorphic. In Blue-spec data type using in the programs,
Each variable and expression can be set to a type. The type checking is occurring before program
elaboration or execution which can ensure that object types are compatible. As to interface, it is
the connection between one module to the other. The difference of Bluespec is that you don't
need describe a interface inside one module, it can be shared by many modules. As to methods,
Methods are the specific functions which may be invoked by the caller. These functions take
zero or more arguments, can return values or cause actions to occur. When translated into RTL,
each method becomes a bundle of wires. The method definition is part of the module definition.
In Blue-spec, all descriptions of hardware is done in a monad-Module. Using a monad we can
easily keep track of the state. The Module monad is built in to the compiler and its internals are
not accessible to the programmer. The Module monad is extensible. A module consists of three
things: state, rules that operate on that state, and the module's interface to the outside world
(surrounding hierarchy). A module definition specifies a scheme that can be instantiated multiple
times. Rules are used in Bluespec SystemVerilog to describe how data is moved from one state
to another 4.

Register Transfer Level

Register transfer level (RTL) description is a way of describing the operation of a synchronous
digital circuit. In RTL Design, a circuit behavior is defined in terms of the flow of signal
between hardware design, and the logical operation performed on those signals. Register transfer
level abstraction is used in hardware description language (HDLS) like Verilog and VHDL to
create high level representation of a circuit, from which low-level representation and ultimately
actual wiring can be derived 5. RTL is based on the same core technology: state-centric, with
low-level, explicitly described control logic and event-driven simulation RTL and system C are
simulation-centric, but BSV is not simulation-centric, it is closer to traditional hardware view 6.

Classic Traffic Light Example

It is a 4-way intersection, with main road and side road. The Main route is a “major” route
whereas the Side routes are “minor” routes. The normal cycle of the lights is: Main road red
with side road green, Main road red with side road amber, Main road green with side road red,
Main road amber with side road red.

 Structure:

In this section, we use the block diagram to achieve the structure approach. The function of
structure approach is to describe a logic function in VHDL. This block diagram specifies the
relationships of the block, how they are connected with the principal parts. In this particular
traffic light example, we have the state decoder to divide the state into individual light statement.
We have the clock to accomplish the different timers function. The sensor of the each road will
also take part into the sequential logic circuit.

Clock

Figure 1: Block Diagram of Traffic light

State decoder

Q1

Q2

Output logic

MAINGREEN

MAINAMBER

MAINRED

SIDEGREEN

SIDEAMBER

SIDERED

Sequential

Logic

Timing
Circuit

Data Flow:

In this part, we will apply the Boolean expression to achieve the data flow approach. In the
traffic light example, we have nine states for the road lights. We will express how the data flow
and what logical relationships are.

MAINGREEN= Q1Q2 SIDEGREEN = -Q1-Q2

MAINAMBER= Q1Q2 SIDEAMBER = -Q1Q2

MAINRED = (-Q1-Q2) + (-Q1Q2) SIDERED = Q1Q2 + (Q1-Q2)

Behavior:

In this section, we will use the state diagram to accomplish the behavior approach. It is the most
abstract ways to describe a logic function. State diagram is usually consisting of several numbers
of states or cases. It is also a common way to describe the behavior of a logic function or system.
Each diagram indicates the object of a single state.

Figure 2: State Diagram of the traffic light

 MRSG 00

 MRSY 01 MYSR 11

 MGSR 10

Traffic light small example in VHDL:

library ieee;
use ieee.std_logic_1164.all;
entity trafficlight is
 port(State: out std_logic_vector(5 downto
0);
 clk0: in std_logic);
attribute LOC: string;
attribute LOC of clk0: signal
is "P11";
attribute LOC of State: signal is
"P02,P03,P04,P06,P07,P08";
end entity ;
architecture Behavior of trafficlight is
signal Q: std_logic_vector (1 downto 0);
begin
process (clk0,Q)
begin
 if (clk0 = '1' and clk0' event) then
 case Q is
 when "00" => Q <= "01";
 when "01" => Q <= "10";
 when "10" => Q <= "11";
 when "11" => Q <= "00";
 when others => Q <= "00";
 end case;
 end if;
end process;
process (Q)
 begin
 case Q is
 when "00" => State <="011110";
 when "01" => State <="011101";
 when "10" => State <="110011";
 when "11" => State <="101011";
 when others => State <="011110";
 end case;
 end process;
end architecture Behavior;

Traffic light small example in Bluespec:

package TL0;

interface TL;
 method Bool lampRedM();
 method Bool lampAmberM();
 method Bool lampGreenM();
 method Bool lampRedS();
 method Bool lampAmberS();
 method Bool lampGreenS();
endinterface: TL

typedef enum {
 GreenM, AmberM, RedM,
 GreenS, AmberS, RedS} TLstates
deriving (Eq, Bits);
(* synthesize *)

module sysTL(TL);

Reg#(TLstates) state <- mkReg(RedM);
Reg#(TLstates) states <- mkReg(GreenS);

rule fromRedM (state == RedM && states
== GreenS);
 state <= RedM;
 states <= AmberS;
endrule: fromRedM

rule fromAmberS (state == RedM && states
== AmberS);
 state <= GreenM;
 states <= RedS;
endrule: fromAmberS

rule fromGreenM (state == GreenM &&
states == RedS) ;
 state <= AmberM;
 states <= RedS;
endrule: fromGreenM

rule fromAmberM (state == AmberM &&
states == RedS);
 state <= RedM;

 states <= GreenS;
endrule: fromAmberM

method lampRedM() = (state == AmberM ||
state == GreenM);
method lampAmberM() = (!(state ==
AmberM));
method lampGreenM() = (!(state ==
GreenM));
method lampRedS() = (states == AmberS ||
states == GreenS);
method lampAmberS() = (!(states ==
AmberS));
method lampGreenS() = (!(states ==
GreenS));

endmodule: sysTL

endpackage: TL0

LINUX

Ubuntu

As a Linux operating system based on Debian , unlike the MEPIS-, Xandros, Linspire, Propeny
and Libranet , Ubuntu is more closed to the Dobian theory, because it uses free open software
sources instead of closed sourced by the others7.

• Goal: provide an up-to-date, stable operating system for average user, focus on usability
and ease of installation.

• Title: the most popular linux distribution for the desktop, claiming approximately 30% of
desktop Linux installations in 2007.

• Benefit: users can run, copy, distribute, study, change and improve the software freely
because it is composed of free and open source software distributed under various
licenses, especially the GNU general public license.

• Sponsor and owner: sponsored by UK based company canonical Ltd; owned by South
African entrepreneur Mark Shuttleworth.

Gvim to Gedit

Gvim is the text editor for the Redhat Linux Operating system. Gedit is the text editor of the
GNOME desktop environment. Because we are using Ubuntu Linux operating system which
applies the GNOME desktop environment, when we create a project, we have to select others
and type gedit into the “other command” under the project option.

Bluespec Operation in Linux

After we installed both the Bluespec environment and the Ubuntu Linux operating system, we
can launch the Bluepec development workstation by typing the command ‘bluespec’ in the Linux
environment.

In the workstation of Bluespec, we can execute all the behaviors like creating project, type
checking, compile, linking and simulating. The first step is creating a project. In this step, the
project option setting is very important, because we have to choose the top file and module for
this particular project and setting the file location for all the output files, we have to decide which
way to compile the file and which simulator to simulate the project. There are two ways to
compile in the Bluespec environment: compile via bsc, compile via make file and compile via
custom command. There are also two different way for simulating. One is Bluesim which means
we compile the project to Bluesim simulator. The other one is Verilog which contains the
following simulator options: iverlog, modelsim, ncverlog, vcsr, cver, and veriwell.

After we finish setting all the project option, we can compile, type check, link and simulate the
project following the tool bar.

We get the Verilog file from the Bluespec output location and apply it to the lattice verilog
simulator. We can get the generated file (Gedec file) and output it into CPLD board chip from
where we get out small traffic light display as the VHDL example.

We cannot generate VHDL file from Bluespec workstation because the bluespec environment
can only generate file with .bsv extend.

Conclusion

Comparing Bluespec to VHDL, Bluespec is a higher level language which will make the project
more flexible and achievable. Unfortunately, to a freshman or a sophomore student in an
introductory digital logic course the higher abstraction requires too much knowledge of the lower
levels for a seamless transition into HDL design. At this point, the student would be required to
have an intermediate level of experience with Linux to navigate through the Bluespec command
line environment. To implement Bluespec at this level, considerable packaging would be
required by the instructor.

Acknowledgements

Special thanks to Rishiyur S. Nikhil, Ph.D., Co Founder of Bluespec, Inc. for support of this
honor undergraduate research. The authors would like to thank to Jeff Carter, SPSU’s network
engineer, for his assistance.

References

1. Xilinx, Inc, ©Copyright 2009

Xilinx ,http://www.xilinx.com/products/design_tools/logic_design/advanced/esl/bluespec.htm.
2. Bluespec, Inc. • 200 West Street • Waltham, MA 02451 • ©2005 Bluespec, Inc. All Rights Reserved
3. Xilinx, Inc, ©Copyright 2009

Xilinx ,http://www.xilinx.com/products/design_tools/logic_design/advanced/esl/bluespec.htm.
4. Bluespec, Inc. • 200 West Street • Waltham, MA 02451 • ©2005 Bluespec, Inc. All Rights Reserved
5. http://en.wikipedia.org/wiki/Register_transfer_level
6. WHY BLUESPEC Vs.RTL, http://www.bluespec.com/why-bluespec/vs-rtl.htm, ©Copyright 2009 Bluespec,

Inc. All Rights Reserved.
7. http://en.wikipedia.org/wiki/Ubuntu

