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Abstract

The introduction of advanced topics as means of modernizing engineering curriculum, the need 
for interdisciplinary research and education to meet societies challanges, the time constraint that 
engineering students graduate in four years while getting a modern-interdisciplinary-education, 
are some of the factors driving the evolution of basic engineering courses such as mechanics of 
materials. Generalization of principles in the basic engineering courses is one mechanism by 
which a greater amount of knowledge can be taught in a compact form. But intrinsic to any gener-
alization is the increase in abstraction of concepts. This increase in abstraction may cause many 
engineering students to lose interest in the profession as they generally have a predisposition 
towards more practical and applied work. The challenge confronting the engineering education 
community is to present the subject material in such a way that the intuition, experimental obser-
vations and mathematical generalization complement each other and the students can see the 
practical applications of the general principles. In this paper a pedagogy of presentation of 
mechanics of materials concepts is described. Through a series of examples the pedagogy by 
which cultivation of intuition, experimental observations, and mathematical generalization can be 
presented in a complimentary manner is elaborated in context of two important concepts in 
mechanics of materials, namely: concept of stress and theory of one-dimensional structural ele-
ments. The practical application of general principles in context of design is presented in a sepa-
rate paper.

1.  Introduction

Near the beginning of twentieth century, courses using textbooks1,2 with title ‘resistance of mate-
rials’ were significantly more applied than today’s course called ‘mechanics of materials’. As the 

emphasis on statics and the concept of stress and strains grew, the popular textbooks   title3,4,5 

became ‘strength of materials’. Today’s textbooks6-11 predominately presume that ‘statics’ and 
‘mechanics of materials’ will be taught as independent courses. 

Ecole Polytechnique —pioneer of modern engineering school, had a curriculum12 in which the 
first two years were devoted exclusively to fundamental sciences. Engineering courses were taken 
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in the third year. This teaching method differed dramatically from the prevalent practice of teach-
ing engineering in an apprentice mode by practicing engineers with students taking no formal 
courses in mathematics and sciences. We see that since inception of formal engineering educa-
tion, the engineering education community has struggled with the delineation of science, engi-
neering, and vocational-technical education. 

As elaborated in sections 3 and 5, the evolutionary forces in engineering education is toward 
greater generalization in basic engineering courses as it permits teaching of a greater amount of 
knowledge in a compact form. Without such generalization the problems of already overburdened 
engineering curriculum and the growing graduation time would become a lot worse. The abstrac-
tion that occurs with generality poses two different types of challanges to keep the students 
involved and motivated. The first challenge is the need to build a complimentary connection 
between intuition, experimental observations, and mathematical generalization— discussed in 
this paper. The second challenge is to show the practical relevance of the general principles— dis-

cussed in context of design in a separate paper13. 

2.  Statics and Mechanics of Materials

Statics is primarily a skill and discipline developmental course. Starting with a structure or a 
machine and breaking it down into individual elements on which equilibrium equations can be 
used is an analysis skill that is honed in statics. Approaching the analysis problem in a methodical 
manner and drawing appropriate free body diagrams before invoking equilibrium equations is a 
discipline that is cultivated in statics. 

Mechanics of materials is primarily a concept development course, but relies heavily on the anal-
ysis skill and discipline taught in statics. The concept of stress and strain are difficult concepts as 
these two variables are not directly measurable but must be inferred from other data. Understand-
ing the theories of one-dimensional structure elements is another conceptual development. 

One probable reason for development of statics and mechanics of materials as independent 
courses is that the teaching techniques for development of skills and disciplines are different from 
those for development of concepts. But there is another force that is equally important that is driv-
ing the developments in mechanics of materials.

In the past twenty-five years there has been tremendous growth in mechanics, material science, 
and in new applications of mechanics of materials. Twenty-five years ago, techniques such as the 
finite-element method and Moire’ Interferometry, were research topics in mechanics, but today 
these techniques are routinely used in engineering design and analysis. Twenty-five years ago, 
wood and metal were the preferred materials in engineering design, but today machine compo-
nents and structures may be made up of plastics, ceramics, polymer composites, and metal matrix 
composites. Twenty-five years ago, mechanics of materials was primarily used for structural anal-
ysis in aerospace, civil, and mechanical engineering, but today mechanics of materials is used in 
electronic packaging, medical implants, explanation of geological movements, and the manufac-
turing of wood products to meet specific strength requirements. Though the principles in mechan-
ics of materials have not changed in the past twenty-five years, the presentation of these 
principles must evolve to provide the students with a foundation that will permit them to readily 
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incorporate the growing body of knowledge as an extension of fundamental principles and not 
something added on, and vaguely connected to, what they already know. In other words, there 
must be greater generality in the presentation of the principles in mechanics of materials. 

Often one hears arguments that seem to suggest that intuitive development comes at the cost of 
mathematical logic and rigor, or, the generalization of a mathematical approach comes at the 
expense of intuitive understanding. Yet, the icons in the field of mechanics of materials, such as 
Cauchy, Euler, and Saint-Venant, were individuals who successfully gave physical meaning to 
the mathematics they used. Accounting of shear stress in the bending of beams is a beautiful dem-
onstration of how the combination of intuition and experimental observations can point the way 
when self-consistent logic does not. Intuitive understanding is a must—not only for creative engi-
neering design but also for choosing the marching path of a mathematical development. By the 
same token, it is not the heuristic-based arguments of the older books, but the logical development 
of arguments and ideas that provide students with the skills and principles necessary to organize 
the deluge of information in modern engineering. Building a complimentary connection between 
intuition, experimental observations, and mathematical generalization is central to meeting the 
challenge of keeping students involved and motivated while studying general principles in 
mechanics of materials. This paper using examples from reference 11 shows how this may be 
achieved.

3.  Logic in structural analysis

Examination of the old textbooks1,2 show that the derivation of the theory of one-dimensional 
structural members (axial members, torsion of shafts, and bending of beams) was done in a very 
heuristic manner. Today’s textbooks show a significant use of deductive logic in derivation of the 
theories of one-dimensional structural members. This growth in use of logic is not surprising for 
mechanics of materials synthesizes the empirical relationships of materials into the logical frame-
work of mechanics to produce formulas for use in the design of structures and other solid bodies. 

Figure 1. Logic in structural analysis.
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This evolutionary growth in logic is the growth in generalization. The logic can be depicted as 
shown in Fig.1. The logic is used in deriving theories for the simplest structure elements studied 
in the sophomore/junior level mechanics of material course to graduate level courses on plates 
and shells with material and geometric non-linearities. The logic is intrinsically very modular— 
equations relating the fundamental variables are independent of each other, hence complexity can 
be added at any point without affecting the other equations. However, in an introductory course 
the central focus of the student must be to understand the simplest theory along with the limita-
tions. To demonstrate how this may be achieved, consider example 1

EXAMPLE 1:  A canoe on top of a car is tied down using rubber stretch cords as shown. The 
undeformed length of the stretch cord is Lo=40 inches. The initial diameter of the cord is d = 1/
2 in and modulus of elasticity of the cord is E = 510 psi. Assume that the path of the stretch cord 
over the canoe can be approximated as shown below. Determine the approximate force exerted by 
the cord on the carrier of the car.

Briefly stated, the solution proceeds as follows. From the given deformed geometry the length of 
stretched cord can be found and average normal strain determined. Using Hooke’s law the aver-
age normal stress can be found. Knowing the diameter of the cord the area of cross-section can be 
found and the internal tension in the cord can be determined. By equilibrium the internal tension 
at point A is the force exerted by the cord on the carrier of the car. Thus the students see the solu-
tion as a straight forward application of the logic shown in Fig.1.

After the presentation of the solution, the various approximations can be highlighed and the stu-
dent shown how the accuracy of the solution can be improved by addition of one complexity at a 
time. This is described briefly below.

(i) The cord should follow the contour of the canoe from the point of contact leading to non-
uniform distribution of the strain along the cord. Suppose marks are made on the cord every 
2 in before the cord is stretched. Strain can be found in each of the 2 in segment and the calcu-
lations for finding internal force can be repeated as before. Attention could be drawn to prob-
lem example 1 in appendix A and could be given as a bonus homework problem. 

(ii) The stress-strain curve of the rubber cord is non-linear. Thus, as the strain changes along 
the length, so does the modulus of elasticity E. The variation of E must be accounted in the 
calculation of stress. The tangent modulus of elasticity can be used in Hooke’s law for each 
segment and more accurate stresses in each segment can be obtained. The internal force in 
each segment can be found as before. Now the attention can be drawn to problem example 2 in 
appendix A and could be given as a bonus homework problem.

(iii) The area of cross-section for rubber will change significantly with strain and must be 

36 in

12 in
17 in

Figure 2. Approximation of stretch cord path on top of canoe.
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accounted for in the calculation of the internal tension. Rubber has a Poisson’s ratio of 1/2. 
Knowing the longitudinal strain for each segment, the transverse strain in each segment can be 
found, from which the diameter of cord in the stretched position in each segment can be deter-
mined. This will give a more accurate area of cross-section, and hence a more accurate value 
of internal tension in the cord. Now the attention can be drawn to problem example 3 in 
appendix A and that could be given as a bonus homework problem. 

The above example describes the process by which the student focus is kept on learning the logic 
shown in Fig.1 which is fundamental to mechanics of materials, but the student can appreciate 
how complexities can be added to simplified analysis, even if no bonus problems are solved. This 
type of process can also used in developing the simplified theories of axial members, torsion of 
shafts, and bending of beams with assumptions clearly identified and associated bonus problem in 
which the assumption is violated can be identified (see reference 11 for details). The logic shown 
in Fig.1 is used four different times in the course with same type of assumptions made for axial 
members, torsion of shafts, and bending of beams. This repetition is one reason to expect that the 
students will leave the course with a firm grasp of the logic and a good appreciation of the limita-
tions (assumptions) of the theory and where the complexities are added. 

4.  Prelude to theory

Compact organization of information seems like an abstract reason for learning theory to some 
engineering students. Some students have difficulty visualizing a continuum as an assembly of 
infinitesimal elements whose behavior can be approximated and / or deduced. As faculty mem-
bers we all know that the students are more attentive when a numerical problem is being solved 
then when the theory is being derived in the class. A survey of reading habits of students in my 
class showed that only 76% of the students read text but 100% read the numerical examples. Thus 
if the ideas that are used in the derivation of the theory are developed as a numerical problem then 
one may expect that these ideas will be retained by the student more easily—this is the gist of pre-
lude to theory. Consider the example below.

EXAMPLE 2:  Two thin bars of hard rubber (Shear Modulus G = 280MPa) have a cross-sectional 

area of 20 mm2. The bars are attached to a rigid disc of radius 20 mm as shown in Fig.3(a). Due to 
the applied torque Text, the rigid disc is observed to rotate by an angle of 0.04 rads about the axis 
of the disc. Determine the external torque Text. 

The solution to the problem is briefly described below.

Text

Α

C

Figure 3. (a) Geometry in example 2 (b) Deformed geometry. (c) Free body diagram
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1. Strain Calculations: The deformed shape of the two bars is drawn as shown in Fig.3(b) and the 
shear strain calculated as:

2. Stress Calculations: From Hooke’s Law the shear stresses are:

3. Internal Forces: Assuming uniform shear stresses across the cross-section, the shear forces can 
be obtained as

4. External Torque: By equilibrium of moment in the free body diagram shown in Fig.3(c) the 
external torque can be found as:

.

The kinematics of obtaining the shear strain is similar to that of a circular shaft in torsion. As the 
geometry is made of discrete elements rather than a shaft continuum, the students can visualize 
the deformed geometry of Fig.3(b) more easily. The steps executed in solving the problem are the 
same as in development of the theory of torsion of circular shafts. As the number of bars increase 
the discrete system becomes a shaft continuum. The impact of the increase in number of bars can 
be explained as follows. The summation in the expression of external torque can be rewritten as 

, where τ is the shear stress acting at the radius r, and ∆Ai is the cross-sectional area of the 

of the ith bar. If there were n bars attached to the disc at the same radius, then the total torque 

would be given by . As the number of bars n increases to infinity, the cross-sectional area 

∆Ai will tend to zero (infinitesimal area written as dA) —resulting in a continuous body with the 
summation replaced by an integral.

In a similar manner, using other numerical examples additional ideas that are needed in the theory 
can be developed. Assignment problems of similar nature then consolidates these ideas. The pre-
sentation of the theory is now formalizing of the ideas the students have learned through numeri-
cal examples. The advantage of this approach is that as the ideas are being developed for discrete 
systems first which the students can visualize, that is, understand the ideas intuitively. Mathemat-
ical development of theory then can quickly consolidate these ideas understood intuitively. In a 
similar manner discrete bars welded to a rigid plate subjected to displacements that simulate the 
behavior of the cross-section in bending can be used to develop the ideas in the theory of bending 
for symmetric beams as described in detail in reference 11.

Experimental evidence can now be used to convince the students that the rigid plate subjected to 
the rotation in Fig.3(a) is simulating the behavior of a cross-section of a circular shaft in torsion. 
Fig.4 shows the photographs a a rubber shaft deforming under torsion. The students can see with 

γAtan γA≈ BB1( ) AB( )⁄ 0.02( )∆φ 0.2⁄ 0.004= = = and γc γA 0.004= =

τC τ A GAγA 280 106( ) 0.004( ) 1.12 106( ) N m
2⁄= = = =

V A AAτ A 22.4 N= = VC ACτC 22.4 N= =

T ext r( ) V A( ) r( ) VC( )+ 0.896 N m–= =

rτ∆ Ai
i 1=

2

∑

rτ∆ Ai
i 1=

n

∑
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their own eyes that the vertical lines representing the cross-sections remain plane but rotate about 
the axis of the shaft just like the rigid disc in Fig.3(a).

We thus see that the logic in Fig.1 is the mathematical generalization, the prelude to theory is the 
intuitive development, and the photographs in Fig.4 are the experimental evidence.

5.  Double subscripts

Textbooks1,2 at the beginning of twentieth century did not use any subscripts on stresses and 

strains. Textbooks9,10 today generally use a single subscript for normal stress and strain compo-
nents and double subscripts for shear stress and shear strain components in order to better explain 
the character of stress and strain. The next step in this evolution of subject material is to use dou-

ble subscripts and explain the concept of stress and strain in a consistent manner11. There are 
three distinct advantages to using double subscripts: (i) It provides students with a procedural way 
to compute the direction of a stress component which they calculate from a stress formula. This 
procedural determination of direction of a stress component on a surface can help many students 
overcome the shortcomings in intuitive ability. (ii) Computer programs such as finite element 
method or those that reduce full-field experimental data, produce stress and strain values in a spe-
cific coordinate system that must be properly interpreted, which is possible if the students know 
how to use subscripts in determining the direction of stress on a surface. (iii) It is consistent with 
what the student will see in more advanced courses such as those on composites where the mate-
rial behavior can challenge many intuitive expectations. 

The use of double subscripts should be to compliment not substitute intuitive determination of 
stress direction. Internalizing the concept of stress needs the cultivation of intuitive determination 
of stress direction on a surface. If the students are able to draw the stress cube in a procedural 
manner and check the answer by inspection then the benefit of both approaches can be realized. 
The use of double subscript is described briefly first to elaborate this teaching approach.

Through numerical examples the need to specify the orientation of the internal surface and the 
direction of internal force in describing a stress component can be established. Then the following 
mathematical definition for a stress component can be introduced.

Figure 4. Torsional Deformation.
Courtesy of Professor J.B. Ligon.
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where, ∆Fj is the component of the internal force in the j-direction, and ∆Ai is the differential area 
on the imaginary cut surface that has an outward normal in the i-direction. Now the sign conven-
tion is that ∆Ai will be considered positive if the outward normal of the imaginary cut surface is in 
the positive i (coordinate) direction. The students do not have difficulty understanding that for a 
stress component to be positive the numerator and denominator must have the same sign other-
wise the stress component will be negative. This concept can be consolidated by assigning prob-
lems like that in Example 3.

EXAMPLE 3:  Show the following stress components on the surfaces A, B, and C of the two 
cubes shown in different coordinate systems in Fig.6.

In the past 12 years I have given the above type of problem as a short exam problem and have 
observed that over 90% of the students get it correct, which is not surprising as students love pro-
cedures. 

Now consider the torsional shear stress formula in which the shear stress in polar coordinate is 
shown with the subscripts as: . If the internal torque T is drawn on the free body dia-

gram as per the sign convention (counter-clockwise with regard to the outward normal) then 
moment equilibrium will result in a positive or a negative value for the internal torque. The stu-
dents already know how to draw a positive or negative stress component using subscripts in a pro-
cedural manner. Thus the determination and depiction of torsional shear stress on a stress cube 
can be done in a very procedural manner. Consider now the following example.

i

∆Fj

∆Ai

direction of
outward normal to the
imaginary cut surface.

direction of the 
internal force component.
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----------
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Figure 5. Stress at a point.
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EXAMPLE 4:  A solid circular steel (Gs = 12,000 ksi) shaft of variable diameter is acted upon by 
torques as shown. The diameter of the shaft between wheels A and B, and between wheels C and 
D is 2 inches, and the diameter of shaft between wheels B and C is 4 inches. Determine the shear 
stress at point E and show it on a stress cube.

The use of torsional shear stress formula yields . The two methods of deter-

mining the direction of shear stress may be described briefly as below.

Shear stress direction using subscripts: In the Fig.8(a), we note that τxθ is +1.5 ksi. The outward 
normal is in the positive x-direction, the force has to be pointed in the positive θ-direction (tan-
gent direction) which at point E is downward. 

Shear stress direction determined intuitively: In Fig.8(b) a schematic of section BC is drawn. 
Consider an imaginary section through E in section BC. The section BE tends to rotate clockwise 
with respect to section EC. The shear stress will oppose the imaginary clockwise motion of sec-
tion BE, hence the direction will be counter-clock-wise as shown. 

The stress cube Fig.8(c) is drawn using the fact that pair of symmetric shear stresses either points 
towards the corner or away from the corner.

The procedural determination of stress direction from a formula requires drawing of internal 
forces and moments as per the sign convention. If as a teacher we rely the cultivation of intuition 
only as a check to answers then some students may simply ignore it. If both ideas are considered 
important then problems have to be designed that emphasize the sign conventions and problems 
that emphasize determination of stress direction by inspection. Consider the following example:

EXAMPLE 5:  Determine the direction of shear stress at points A and B (a) by inspection, and (b) 
by using the sign convention for internal torque and the subscripts. Report your answer as a posi-

τ xθ 1.5 ksi+=

Figure 8. Direction of shear stress (a) using subscripts. (b) by inspection. (c) stress element.
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tive or negative τxy. 

The last part of reporting the answer as positive or negative τxy is important because equations of 
stress and strain transformation that students will use later in the course relate stresses and strains 
in cartesian coordinates to normal and tangential coordinates. 

In similar manner the determination of bending stresses by subscripts require a sign convention 
for internal shear force and bending moment that can be emphasized with problems such as 
shown in example 6.

EXAMPLE 6:  A beam and loading in three different coordinate system is shown. Determine the 
internal shear force and bending moment at the section containing point A for the three cases 
shown using the sign convention described in class.

The cultivation of intuitive determination of bending normal stress can be emphasized with prob-
lem such as shown in example 7, where the deformed shape of the beam shown in Fig.11(b) must 
be drawn or visualized. 

EXAMPLE 7:  By inspection determine whether the bending normal stress is tensile or compres-
sive at points A and B for the beam and loading shown in Fig.11(a). 

The cultivation of intuitive determination of bending shear stress (shear flow) can be emphasized 
with problem such as shown in example 7, where using the symmetry about the y-axis and force 
equilibrium in y and z direction require the direction of shear flow shown in Fig.12(b).

EXAMPLE 8:  Assuming a positive shear force in the y-direction, sketch the direction of the shear 
flow along the center-line on the thin cross-sections shown in Fig.12(a). 
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One of the difficulty students face with combined loading is visualizing the stress components 
due to various loading. The procedural approach of determining stress components using sub-
scripts that is developed for individual loading can be extended to combined loading as elaborated 
in reference 11. But once more it is equally important to be able to determine by inspection the 
manner in which stress components superpose. This can be facilitated by example of the type 
shown below.

EXAMPLE 9:  By inspection determine and show the total stresses at points A and B on stress 
cubes using the following notation for the magnitude of stress components: 

The solution is as shown below. 

The normal stresses due to bending about the z-axis are compressive at point A and zero at the 
neutral axis at point B. The shear stress due to torsion is shown in Fig.14(a) and (b). Fig.14(c) and 
(d) show the stress cubes at points A and B, respectively.

For simple problems such as in example 9 if the students can see how various stress components 
superpose then they will have an easier time tackling more complex combined loading that arise 
in design of simple structures described in reference 13. Bent pipes with simple loading can be 
used for cultivation of intuition for combined loading.

The above examples demonstrate the generalization of double subscript in stresses and the devel-
opment of intuition can be done in a complimentary manner, thus enhancing the student under-
standing of the concept of stress.

6.  Conclusions

In the past one hundred years the presentation of concept of stress has moved from no subscripts 
on stress and strain symbols to single subscript on normal stresses and strains and double sub-
scripts on shear stresses and strains. Thus the next evolutionary generalization is the use of double 
subscripts on stresses and strains as elaborated in this paper. In the past hundred years, the deriva-
tion of theories for axial members, torsion of shafts, and bending of beam has moved from heuris-
tic arguments to increase use of deductive logic. Thus the logic in Fig.1 represents the next 
evolutionary generalization as elaborated in this paper. Generalization permit teaching of greater 
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σaxial —axial normal stress; 
τtor—torsional shear stress; 
σbend-y —normal stress due to bending about y-axis;
τbend-y —shear stress due to bending about y-axis; 
σbend-z —normal stress due to bending about z-axis;
τbend-z —shear stress due to bending about z-axis.
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amount of knowledge in compact form. It does not require structural changes in the curriculum as 
the changes can be made in the presentation of the subject matter of mechanics of materials as 
demonstrated in this paper. Generalization caters to the interdisciplinary needs of research and 
education. The difficulties that arise from the abstraction that is intrinsic in any generalization can 
be overcome by complimentary presentation of experimental observations and problems that cul-
tivate intuitive development as demonstrated by several examples in this paper. Design can be 
used to show the practical relevance of these generalized concepts as presented briefly in refer-
ence 13 and in detail in reference 11. Thus this paper shows one way by which the presentation of 
mechanics of material concepts can alleviate some of the pressures from burgeoning curriculum 
and increasing graduation time.
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Appendix A: Bonus problems

example 1—example 3Marks were made on the cord used for tying the canoe on top of the car in 
example 1 These marks were made every two inches to produce a total of 20 segments. The 
stretch cord is symmetric with respect to the top of the canoe. The starting point of the first seg-
ment is on the carrier rail of the car and the end point of the tenth segment is on the top of the 
canoe. The measured length of each segment is as shown in the table below. Using this informa-
tion and the data given in each of the problems example 1 through example 3, determine: (a) the 
tension in the cord of each segment. (b) the force exerted by the cord on the carrier of the car.

A.1  Use Modulus of Elasticity of E = 510 psi and the diameter of the stretch cord as (1/2) inch.
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A.2  Use the diameter of the stretch cord as (1/2) inch and the following equation for stress-strain 
curve:

A.3  Use Poisson’s ratio of ν=1/2 and initial diameter of 1/2 inch and calculate the diameter in 
deformed position for each segment. Use stress-strain relationship given in problem example 2.

Segment
Number

1 2 3 4 5 6 7 8 9 10

Deformed 
Length
(inches)

3.4 3.4 3.4 3.4 3.4 3.4 3.1 2.7 2.3 2.2

σ 1020ε 1020ε2
–( ) psi

255 psi



=
ε 0.5<
ε 0.5≥
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