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Investigating Communication Patterns for Distributed Fast Fourier 

Transforms 

 

Introduction 

 

  Fast Fourier Transforms are efficient signal processing algorithms for performing 

frequency analysis on (or synthesis of) signals by computing the signal’s Discrete Fourier 

Transform. In this paper, we describe two methods for parallelizing one-dimensional digital 

signals in distributed memory computer clusters. The first method consists of assigning multiple 

processes to different portions of the input signal and having half of the active processes send their 

results to the remaining half during each successive stage. This communication pattern is easy to 

implement but has the disadvantage that its scope of parallelism decreases during the operation of 

the algorithm. A second algorithm is presented and described in which all processes remain active 

throughout. Advantages and disadvantages of these two alternative patterns are explored, along 

with ideas for improving the latter algorithm. Some data is collected on a small cluster of 

inexpensive consumer-grade hardware to explore the feasibility of this algorithm. 

 

Context 

 

The Fast Fourier Transform (FFT) is an algorithm for computing the Discrete Fourier 

Transform (DFT) of a sequence of samples of a signal. The DFT of a signal in time or space is a 

representation of that signal in the frequency domain. The DFT is a useful tool in digital signal 

processing because it describes how a digital signal is made up of complex sinusoidal components. 

The 1-dimensional DFT of a signal y is defined as 

 



where N is the number of samples in the signal being considered. When y is an N-point signal, the 

DFT of y is also an N-point signal. By Euler's Formula 

 

we can alternatively define the DFT as  

 

 

As we can see, the DFT is a complex valued sequence of values that are derived from 

multiplying each sample of the input signal with samples of complex sinusoids of varying 

frequencies. The result, Y, is able to represent the how much a sinusoid of each of these frequencies 

contributed to the input signal, as well as its phase [1][2].  

 

Fast Fourier Transforms are a more efficient way of computing the DFT. The Cooley-

Tukey FFT algorithm takes advantage of the possibility of reusing intermediate calculations during 

the computation of the DFT [2]. The sum in the DFT can be decomposed into its even and odd 

terms, and we can use properties of the complex exponential function to rewrite it as in the 

following derivation. 



 

 

So, we see that a DFT of size N can be found by calculating two DFTs of size N/2 and 

adjusting by multiplying with a complex sinusoid. Those two N/2 sized DFTs can again be 

decomposed the same way. This version of the FFT involves rearranging the n input samples and 

then, over log(N) stages, involving pairs of these samples in "butterfly operations" involving 

multiplying them with samples of a complex sinusoid [1]. After the final stage, the input array will 

have been replaced with its DFT. FFT algorithms are capable of being parallelized to a high degree 

in computers by using distributed-memory, shared-memory, or a mixture of both. Although 

parallelization is perhaps most effective in multi-dimensional FFTs, it is still possible in the one-

dimensional case. 

 

We will examine two possibilities for parallelizing the one-dimensional FFT algorithm in 

the context of a distributed-memory computing cluster. Data is presented from applying these ideas 

on a small cluster of four cheap single-board computers (Rockchip Quad-Core ARM Cortex-A17 

RK3288 processors, 1.8GHz, 32KB L1 cache, 1MB L2 cache) connected with gigabit network 

cards on a gigabit Ethernet network. Processes are spawned equally across the network and 

collaborate with message passing using MPI. In all cases, n will be a power of two, and the number 

of processes will also be a power of two. It is not expected that the performance of these programs 



on this cluster of inexpensive hardware is representative of clusters found in professional 

applications, and no statistical tests were performed 

 

Algorithms 

 

A very common, easily implementable way to parallelize the FFT is to distribute all 

samples of the input evenly across all processes. [3] describes this pattern of communication and 

presents results for its performance compared with some alternative methods. In early first stage 

of the FFT, the processes can perform butterfly operations on the samples assigned to them. For 

the next stage, half of the processes will have samples that need to be involved with butterfly 

operations with samples in the memory of process from the other half of the processes. So, after 

the initial stage is complete, half of the processes pass their data to the other half and then 

deactivate. The deactivated processes do not ever participate in the algorithm past this stage. At 

the end of every stage, half of the remaining processes will deactivate, until finally the last stage 

occurs in which all data and operations are in only one process. With this communication pattern, 

the algorithm has a degree of parallelization that is variable across different stages. Many of the 

processes do not contribute to most of the calculation of the DFT, and in later stages, the load on 

some processors begins to increase as they become responsible for more and more data. 

 

However, it is possible to devise a pattern of communication such that every process 

remains active and participant during every stage of a parallel FFT. This solution would achieve a 

uniform degree of parallelization at the cost of a more complicated pattern of communication and 

possibly more communication overhead for message passing. Instead of processes merging their 

samples into another process's memory and deactivating, they instead send half of their samples 

to another process and receive an equal number of samples from a different process. The point is 

to ensure that a process receives the samples that need to interact with its retained samples in 

butterfly operations. 

 



Figure 1 shows an example of the communication and operations that would occur during 

this algorithm with n=16. A square in each stage represents one sample of the input sequence. The 

samples of this buffer are, in practice, distributed evenly across all processes. Each process 

allocates enough memory for the entire buffer to ease calculation of indices and reasoning about 

the algorithm, but this could be further optimized. In this figure, solid lines represent a butterfly 

operation, while dashed lines represent movement of samples to a different location in the buffer, 

either through local copying or through MPI operations to another process’s memory. 

 

 

Figure. 1 Example of data communication and organization 

 

During each stage, butterfly operations will always be between adjacent points in the 

buffer. Each pair of samples can be called a group. The buffer is logically divided at each stage 

into “super groups,” which are collections of groups. During the MPI communication phase at the 

end of each FFT stage, adjacent super groups are interleaved with each other, as shown in Figure 

1. At the end of the last stage, all samples will need to be communicated back to the root process 

that initially distributed all of the data if necessary. Note that the data will be out of order and must 

be rearranged after (or during) being copied back to the root process. 

 



To achieve this, it is necessary to calculate the indices and process rank that each process 

needs to send its samples to during each stage. A process must also be able to receive samples 

from the correct sender. Fortunately, this pattern does not depend on the actual input data; it only 

relies on n. Therefore, a lookup table can be pre-computed and loaded at runtime. We first define 

an algorithm in Python-based pseudocode that determines where samples should reside at each 

stage of the algorithm, as in Figure 2. 

 

Figure. 2 Algorithm for computing table A of sample indices at each stage 

 

From this table, we can compute another table that explicitly states the destination index 

that a sample needs to be sent to. That is, using the new table B, calculated using the algorithm in 

Figure 3, during stage s, sample i in the current buffer should be sent to position B[s][i]. 

 



 

Figure. 3 Algorithm for determining table B, which contains the destination of the current stage's samples 

 

 

Strided vector types in MPI can be used for efficiently communicating non-contiguous 

samples with only a single call to MPI_Send [4]. Note, however, that in the initial stages of the 

algorithm, before communication is necessary, samples don't need to be communicated. So, we 

can rearrange those locally without using MPI calls, and then use table B once inter-process 

communication becomes necessary. 

 

A favorable outcome of this scheme is that all communication that any pair of processes 

communicating with each other in a stage of the algorithm will not need to communicate with any 

other processes. This makes synchronization trivial. However, this pattern of communication also 

introduces a problem: the rearranging of samples during communication cannot be performed in 

place because some samples may be overwritten before they are communicated to their destination. 

Note that this issue is not present in the other variant of a parallel FFT and only exists after making 

this experimental modification to the communication pattern. 

 

There are multiple solutions to the issue. One easy solution is to simply allocate a second 

buffer for the signal on each process. During one stage, one of these logical buffers will be sent to 



the other logical buffer. Then, the recipient buffer will become the sending buffer during the next 

stage. The disadvantages to this approach, however, is that twice as much memory must be 

allocated, and the approach might be devastating for cache performance. In late stages of the 

algorithm, some input samples will be received with MPI, processed in a butterfly operation, and 

then immediately sent to another process’s memory. This constant moving of data in and out of 

the processes’ memory space eliminates the opportunity to benefit from keeping data low in the 

memory hierarchy. 

 

Another approach would be to leverage the extra space that is already allocated. In this 

algorithm, all processes allocate space for n samples, even though during each stage a process is 

only ever responsible for computations involving n/z of the samples, where z is the number of 

processes. Consequently, each process has at least enough space for receiving n/2 processes. So, 

it is possible to send samples without risking overwriting a sample before it has a chance to be sent 

(since the program could use the space for those extra n/2 samples for all received samples), but 

this would violate assumptions in the above algorithms for determining the destinations for each 

sample at each stage. However, it would be possible to tweak those algorithms to account for using 

the extra allocated space when determining sample locations.  

 

Testing 

 

Some tests were performed to examine the extent of slow-down induced by the modified 

scheme for performing this FFT while keeping the work balanced among all processes during all 

stages. Data is collected for input problems sized at 2m with m = 8, 9, ..., 13. For each problem 

size, the time taken to complete the FFT was recorded (using MPI_Wtime) for both algorithms. 

The signal to be processed was randomized before each measurement. 

 

Results 

Table 1 – Time(s) for Variably Parallel FFTs 



 Size of Input Sequence 

Trial 2^8 2^9 2^10 2^11 2^12 2^13 

0 0.00730491 0.007431984 0.007926941 0.006924868 0.007750034 0.009698868 

1 0.07133007 0.071313858 0.04351902 0.013051033 0.003162146 0.004154205 

2 0.03854990 0.001168013 0.002104044 0.002905846 0.003079176 0.003484964 

3 0.07120109 0.099003077 0.067127943 0.002258062 0.003064871 0.002954006 

4 0.03851008 0.001163006 0.002605915 0.007601023 0.00303793 0.003409863 

5 0.04117298 0.066781044 0.036784887 0.002853155 0.003007889 0.003483057 

6 0.00181007 0.069792032 0.001973152 0.002262831 0.002007008 0.003461123 

7 0.06818318 0.069838047 0.037243128 0.002743006 0.002999067 0.003462076 

8 0.00186586 0.069776058 0.002100229 0.00275898 0.002447128 0.003501892 

9 0.06618714 0.069787025 0.037121058 0.002216101 0.002918959 0.004178047 

10 0.06988001 0.069828033 0.002166033 0.002208948 0.002432108 0.003722906 

11 0.06985283 0.069777012 0.037161827 0.002761841 0.002968073 0.002723932 

12 0.06990814 0.06979394 0.002072096 0.002812862 0.002377033 0.002927065 

13 0.03963590 0.069829941 0.036431789 0.002746105 0.002990007 0.003406048 

14 0.06963706 0.069765091 0.039648056 0.002213955 0.00241518 0.002942085 

15 0.06994104 0.069797993 0.039701223 0.002708912 0.002932072 0.003452063 

16 0.06982207 0.069854975 0.039593935 0.002712965 0.002570868 0.003490925 

17 0.06985497 0.069751024 0.039649963 0.002701044 0.003030062 0.003483057 

18 0.06996107 0.069789171 0.039659977 0.002733946 0.002417088 0.003479958 

19 0.06980300 0.069841862 0.039649963 0.002705097 0.003015995 0.003808022 

20 0.06985712 0.069743872 0.002003908 0.002722025 0.002824783 0.00355196 

21 0.06994915 0.069803953 0.038138151 0.002757072 0.002460957 0.002979994 

22 0.06980300 0.069832087 0.002099037 0.002177 0.002427101 0.002853155 

23 0.06989813 0.069780111 0.037167788 0.002722025 0.002985001 0.002868891 

24 0.06991506 0.069793224 0.002062082 0.002695084 0.002968788 0.003398895 

25 0.06980085 0.06983304 0.037271023 0.002158165 0.002403975 0.003415823 

26 0.06990099 0.069769144 0.002050877 0.002693176 0.002967119 0.003442049 

27 0.06992602 0.069809914 0.037245035 0.002707005 0.002974033 0.003482103 

28 0.06978893 0.069830894 0.002064943 0.002163172 0.002886057 0.002927065 

29 0.07150793 0.071377039 0.034326077 0.00224185 0.003145933 0.003787041 
       

 
Averages 

     

 
0.05915862 0.06412188 0.02495567 0.00323057 0.00295555 0.00359770 

 

Table 2 – Time (s) for Uniformly Parallel FFTs 

 Size of Input Sequence 



Trial 2^8 2^9 2^10 2^11 2^12 2^13 

0 0.048190832 0.034527063 0.072045803 0.02786994 0.025142908 0.007902145 

1 0.10278511 0.069623947 0.039448977 0.035054922 0.00430584 0.004664898 

2 0.070331097 0.071228027 0.003484964 0.038974047 0.003270864 0.004153013 

3 0.099446058 0.09841609 0.06582284 0.039004087 0.004165888 0.00372386 

4 0.099940062 0.099736929 0.069768906 0.038875103 0.004091978 0.003881216 

5 0.039813995 0.099352121 0.069499969 0.039092064 0.004070044 0.003170013 

6 0.069890976 0.100258827 0.069624901 0.038988113 0.004030943 0.004392862 

7 0.070018053 0.069365025 0.039613962 0.039005995 0.004014015 0.004397154 

8 0.03973794 0.069938898 0.039801836 0.039009809 0.004034996 0.003859043 

9 0.034041882 0.069694996 0.003488064 0.003335953 0.004040003 0.004033089 

10 0.096149921 0.033917904 0.065699816 0.034610987 0.004082918 0.004536152 

11 0.099498034 0.065695047 0.0696311 0.039103985 0.003813982 0.003904104 

12 0.099849939 0.10026598 0.069791079 0.003330946 0.004040003 0.004210949 

13 0.069996834 0.069359064 0.069508076 0.034695864 0.004028082 0.004236937 

14 0.049779177 0.099880934 0.069614172 0.039014101 0.004029036 0.004143 

15 0.099843025 0.079758883 0.039669037 0.003334999 0.003643036 0.003968954 

16 0.06794095 0.099900961 0.003491879 0.034675121 0.004034996 0.004012108 

17 0.002577066 0.099697113 0.065859079 0.038953066 0.003113985 0.004140854 

18 0.069594145 0.069805145 0.03963089 0.003231049 0.004021168 0.003963947 

19 0.002990007 0.033792019 0.039625883 0.034854889 0.003689051 0.003678083 

20 0.096901894 0.096262932 0.039643049 0.003186941 0.004007101 0.004445076 

21 0.09040308 0.06936717 0.003262043 0.034844875 0.004003048 0.004640818 

22 0.099215984 0.039815187 0.066157818 0.038962126 0.004034042 0.004565001 

23 0.099939108 0.070269108 0.037755966 0.039004087 0.004302979 0.004540205 

24 0.099407196 0.0375669 0.071440935 0.033571005 0.003838062 0.003786087 

25 0.099906921 0.101622105 0.039632797 0.034384966 0.004076958 0.003834009 

26 0.09987092 0.069844007 0.039784908 0.039079189 0.00407815 0.00384903 

27 0.099901915 0.09978199 0.039489031 0.038994074 0.004050016 0.00436902 

28 0.069833994 0.099843025 0.039635897 0.039017916 0.003705025 0.00404191 

29 0.101825953 0.101678133 0.040146112 0.03910017 0.004173994 0.004628897 
       

 
Averages 

     

 
0.07632074 0.07734218 0.04740233 0.03150535 0.00466444 0.00425575 

 

 

Table 1 and Table 2 show the time to completion for each algorithm and message size 

combination for 30 trials each, as well as the average time taken for message sizes in each 



algorithm. In all cases, with this particular cluster configuration and this set of problem sizes, lower 

latency was achieved when using the variably parallel program. The impact of the extra time to 

completion could be unacceptable for latency-sensitive applications. In addition, the recorded 

times for the variably parallel algorithm had a lower variance than those of the other 

implementation. Less consistency in performance could potentially be another detriment to the 

uniformly parallel FFT. 

 

The one-dimensional FFT can be performed in various ways with a differing impact on the 

system in terms of load balancing, total latency, and network usage. For distributed-memory 

systems in which it is desired to prevent some nodes from being overused (greater load balancing) 

it may be beneficial to perform FFTs in parallel such that the degree of parallelization remains 

uniform, as presented in the second algorithm. However, this can come at the cost of higher overall 

latency. Even though this approach eliminates having the majority of data operations occurring on 

the root process, it still requires that the root process participates in synchronous communication. 

By waiting for data like this, the root process may end up taking more time to complete than if it 

would have required to simply perform data operations. This data may not be representative of the 

differences in latency that one could expect in more expensive computer clusters.  

 

Conclusions 

 

 We have seen that it is feasible for an FFT algorithm to be parallelized for a distributed 

memory system such that the number of active processes participating in the algorithm remains 

uniform through its entire duration. However, the method presented here was slower in these cases 

for this hardware. This could be due to the extra communication overhead, as Meiyappam [3] 

predicts.  

 The choice to implement this alternative algorithm depends on context. It is possible that, 

with less contention for a small number of processors in later stages of the algorithm, this 

procedure might be useful for more efficiently balance the cluster’s load. The significance of the 



decreased latency can be determined on a per-case basis. Further optimization can be performed 

on the implementation of the uniformly parallel FFT implementation, and more quantitative 

investigations into its performance are a clear next step. 
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