
Paper ID #27383

Investigating Communication Patterns for Distributed Fast Fourier Trans-
forms

Dr. Afrin Naz, West Virginia University Institute of Technology.

Dr. Afrin Naz is an assistant professor at the Computer Science and Information Systems department at
West Virginia University Institute of Technology. She is working with high school teachers to inspire the
K-12 students to the STEM fields. In last four years Dr. Naz and her team launched six workshops for
high school teachers. Currently her team is training the high school teachers to offer online materials to
supplement their face-to-face classroom.

Mardigon Max Toler, West Virginia University Institute of Technology

Mardigon Toler is a student of Computer Science and Mathematics at West Virginia University Institute
of Technology, finishing a bachelor’s degree in both fields in spring 2019. His interests include digital
audio, digital signal processing, and distributed and parallel computing. His past projects have included
applications of AI to real-time music accompaniment as well as real-time software-based audio synthesis
using Fourier transforms.

c©American Society for Engineering Education, 2019

Investigating Communication Patterns for Distributed Fast Fourier

Transforms

Introduction

 Fast Fourier Transforms are efficient signal processing algorithms for performing

frequency analysis on (or synthesis of) signals by computing the signal’s Discrete Fourier

Transform. In this paper, we describe two methods for parallelizing one-dimensional digital

signals in distributed memory computer clusters. The first method consists of assigning multiple

processes to different portions of the input signal and having half of the active processes send their

results to the remaining half during each successive stage. This communication pattern is easy to

implement but has the disadvantage that its scope of parallelism decreases during the operation of

the algorithm. A second algorithm is presented and described in which all processes remain active

throughout. Advantages and disadvantages of these two alternative patterns are explored, along

with ideas for improving the latter algorithm. Some data is collected on a small cluster of

inexpensive consumer-grade hardware to explore the feasibility of this algorithm.

Context

The Fast Fourier Transform (FFT) is an algorithm for computing the Discrete Fourier

Transform (DFT) of a sequence of samples of a signal. The DFT of a signal in time or space is a

representation of that signal in the frequency domain. The DFT is a useful tool in digital signal

processing because it describes how a digital signal is made up of complex sinusoidal components.

The 1-dimensional DFT of a signal y is defined as

where N is the number of samples in the signal being considered. When y is an N-point signal, the

DFT of y is also an N-point signal. By Euler's Formula

we can alternatively define the DFT as

As we can see, the DFT is a complex valued sequence of values that are derived from

multiplying each sample of the input signal with samples of complex sinusoids of varying

frequencies. The result, Y, is able to represent the how much a sinusoid of each of these frequencies

contributed to the input signal, as well as its phase [1][2].

Fast Fourier Transforms are a more efficient way of computing the DFT. The Cooley-

Tukey FFT algorithm takes advantage of the possibility of reusing intermediate calculations during

the computation of the DFT [2]. The sum in the DFT can be decomposed into its even and odd

terms, and we can use properties of the complex exponential function to rewrite it as in the

following derivation.

So, we see that a DFT of size N can be found by calculating two DFTs of size N/2 and

adjusting by multiplying with a complex sinusoid. Those two N/2 sized DFTs can again be

decomposed the same way. This version of the FFT involves rearranging the n input samples and

then, over log(N) stages, involving pairs of these samples in "butterfly operations" involving

multiplying them with samples of a complex sinusoid [1]. After the final stage, the input array will

have been replaced with its DFT. FFT algorithms are capable of being parallelized to a high degree

in computers by using distributed-memory, shared-memory, or a mixture of both. Although

parallelization is perhaps most effective in multi-dimensional FFTs, it is still possible in the one-

dimensional case.

We will examine two possibilities for parallelizing the one-dimensional FFT algorithm in

the context of a distributed-memory computing cluster. Data is presented from applying these ideas

on a small cluster of four cheap single-board computers (Rockchip Quad-Core ARM Cortex-A17

RK3288 processors, 1.8GHz, 32KB L1 cache, 1MB L2 cache) connected with gigabit network

cards on a gigabit Ethernet network. Processes are spawned equally across the network and

collaborate with message passing using MPI. In all cases, n will be a power of two, and the number

of processes will also be a power of two. It is not expected that the performance of these programs

on this cluster of inexpensive hardware is representative of clusters found in professional

applications, and no statistical tests were performed

Algorithms

A very common, easily implementable way to parallelize the FFT is to distribute all

samples of the input evenly across all processes. [3] describes this pattern of communication and

presents results for its performance compared with some alternative methods. In early first stage

of the FFT, the processes can perform butterfly operations on the samples assigned to them. For

the next stage, half of the processes will have samples that need to be involved with butterfly

operations with samples in the memory of process from the other half of the processes. So, after

the initial stage is complete, half of the processes pass their data to the other half and then

deactivate. The deactivated processes do not ever participate in the algorithm past this stage. At

the end of every stage, half of the remaining processes will deactivate, until finally the last stage

occurs in which all data and operations are in only one process. With this communication pattern,

the algorithm has a degree of parallelization that is variable across different stages. Many of the

processes do not contribute to most of the calculation of the DFT, and in later stages, the load on

some processors begins to increase as they become responsible for more and more data.

However, it is possible to devise a pattern of communication such that every process

remains active and participant during every stage of a parallel FFT. This solution would achieve a

uniform degree of parallelization at the cost of a more complicated pattern of communication and

possibly more communication overhead for message passing. Instead of processes merging their

samples into another process's memory and deactivating, they instead send half of their samples

to another process and receive an equal number of samples from a different process. The point is

to ensure that a process receives the samples that need to interact with its retained samples in

butterfly operations.

Figure 1 shows an example of the communication and operations that would occur during

this algorithm with n=16. A square in each stage represents one sample of the input sequence. The

samples of this buffer are, in practice, distributed evenly across all processes. Each process

allocates enough memory for the entire buffer to ease calculation of indices and reasoning about

the algorithm, but this could be further optimized. In this figure, solid lines represent a butterfly

operation, while dashed lines represent movement of samples to a different location in the buffer,

either through local copying or through MPI operations to another process’s memory.

Figure. 1 Example of data communication and organization

During each stage, butterfly operations will always be between adjacent points in the

buffer. Each pair of samples can be called a group. The buffer is logically divided at each stage

into “super groups,” which are collections of groups. During the MPI communication phase at the

end of each FFT stage, adjacent super groups are interleaved with each other, as shown in Figure

1. At the end of the last stage, all samples will need to be communicated back to the root process

that initially distributed all of the data if necessary. Note that the data will be out of order and must

be rearranged after (or during) being copied back to the root process.

To achieve this, it is necessary to calculate the indices and process rank that each process

needs to send its samples to during each stage. A process must also be able to receive samples

from the correct sender. Fortunately, this pattern does not depend on the actual input data; it only

relies on n. Therefore, a lookup table can be pre-computed and loaded at runtime. We first define

an algorithm in Python-based pseudocode that determines where samples should reside at each

stage of the algorithm, as in Figure 2.

Figure. 2 Algorithm for computing table A of sample indices at each stage

From this table, we can compute another table that explicitly states the destination index

that a sample needs to be sent to. That is, using the new table B, calculated using the algorithm in

Figure 3, during stage s, sample i in the current buffer should be sent to position B[s][i].

Figure. 3 Algorithm for determining table B, which contains the destination of the current stage's samples

Strided vector types in MPI can be used for efficiently communicating non-contiguous

samples with only a single call to MPI_Send [4]. Note, however, that in the initial stages of the

algorithm, before communication is necessary, samples don't need to be communicated. So, we

can rearrange those locally without using MPI calls, and then use table B once inter-process

communication becomes necessary.

A favorable outcome of this scheme is that all communication that any pair of processes

communicating with each other in a stage of the algorithm will not need to communicate with any

other processes. This makes synchronization trivial. However, this pattern of communication also

introduces a problem: the rearranging of samples during communication cannot be performed in

place because some samples may be overwritten before they are communicated to their destination.

Note that this issue is not present in the other variant of a parallel FFT and only exists after making

this experimental modification to the communication pattern.

There are multiple solutions to the issue. One easy solution is to simply allocate a second

buffer for the signal on each process. During one stage, one of these logical buffers will be sent to

the other logical buffer. Then, the recipient buffer will become the sending buffer during the next

stage. The disadvantages to this approach, however, is that twice as much memory must be

allocated, and the approach might be devastating for cache performance. In late stages of the

algorithm, some input samples will be received with MPI, processed in a butterfly operation, and

then immediately sent to another process’s memory. This constant moving of data in and out of

the processes’ memory space eliminates the opportunity to benefit from keeping data low in the

memory hierarchy.

Another approach would be to leverage the extra space that is already allocated. In this

algorithm, all processes allocate space for n samples, even though during each stage a process is

only ever responsible for computations involving n/z of the samples, where z is the number of

processes. Consequently, each process has at least enough space for receiving n/2 processes. So,

it is possible to send samples without risking overwriting a sample before it has a chance to be sent

(since the program could use the space for those extra n/2 samples for all received samples), but

this would violate assumptions in the above algorithms for determining the destinations for each

sample at each stage. However, it would be possible to tweak those algorithms to account for using

the extra allocated space when determining sample locations.

Testing

Some tests were performed to examine the extent of slow-down induced by the modified

scheme for performing this FFT while keeping the work balanced among all processes during all

stages. Data is collected for input problems sized at 2m with m = 8, 9, ..., 13. For each problem

size, the time taken to complete the FFT was recorded (using MPI_Wtime) for both algorithms.

The signal to be processed was randomized before each measurement.

Results

Table 1 – Time(s) for Variably Parallel FFTs

 Size of Input Sequence

Trial 2^8 2^9 2^10 2^11 2^12 2^13

0 0.00730491 0.007431984 0.007926941 0.006924868 0.007750034 0.009698868

1 0.07133007 0.071313858 0.04351902 0.013051033 0.003162146 0.004154205

2 0.03854990 0.001168013 0.002104044 0.002905846 0.003079176 0.003484964

3 0.07120109 0.099003077 0.067127943 0.002258062 0.003064871 0.002954006

4 0.03851008 0.001163006 0.002605915 0.007601023 0.00303793 0.003409863

5 0.04117298 0.066781044 0.036784887 0.002853155 0.003007889 0.003483057

6 0.00181007 0.069792032 0.001973152 0.002262831 0.002007008 0.003461123

7 0.06818318 0.069838047 0.037243128 0.002743006 0.002999067 0.003462076

8 0.00186586 0.069776058 0.002100229 0.00275898 0.002447128 0.003501892

9 0.06618714 0.069787025 0.037121058 0.002216101 0.002918959 0.004178047

10 0.06988001 0.069828033 0.002166033 0.002208948 0.002432108 0.003722906

11 0.06985283 0.069777012 0.037161827 0.002761841 0.002968073 0.002723932

12 0.06990814 0.06979394 0.002072096 0.002812862 0.002377033 0.002927065

13 0.03963590 0.069829941 0.036431789 0.002746105 0.002990007 0.003406048

14 0.06963706 0.069765091 0.039648056 0.002213955 0.00241518 0.002942085

15 0.06994104 0.069797993 0.039701223 0.002708912 0.002932072 0.003452063

16 0.06982207 0.069854975 0.039593935 0.002712965 0.002570868 0.003490925

17 0.06985497 0.069751024 0.039649963 0.002701044 0.003030062 0.003483057

18 0.06996107 0.069789171 0.039659977 0.002733946 0.002417088 0.003479958

19 0.06980300 0.069841862 0.039649963 0.002705097 0.003015995 0.003808022

20 0.06985712 0.069743872 0.002003908 0.002722025 0.002824783 0.00355196

21 0.06994915 0.069803953 0.038138151 0.002757072 0.002460957 0.002979994

22 0.06980300 0.069832087 0.002099037 0.002177 0.002427101 0.002853155

23 0.06989813 0.069780111 0.037167788 0.002722025 0.002985001 0.002868891

24 0.06991506 0.069793224 0.002062082 0.002695084 0.002968788 0.003398895

25 0.06980085 0.06983304 0.037271023 0.002158165 0.002403975 0.003415823

26 0.06990099 0.069769144 0.002050877 0.002693176 0.002967119 0.003442049

27 0.06992602 0.069809914 0.037245035 0.002707005 0.002974033 0.003482103

28 0.06978893 0.069830894 0.002064943 0.002163172 0.002886057 0.002927065

29 0.07150793 0.071377039 0.034326077 0.00224185 0.003145933 0.003787041

Averages

0.05915862 0.06412188 0.02495567 0.00323057 0.00295555 0.00359770

Table 2 – Time (s) for Uniformly Parallel FFTs

 Size of Input Sequence

Trial 2^8 2^9 2^10 2^11 2^12 2^13

0 0.048190832 0.034527063 0.072045803 0.02786994 0.025142908 0.007902145

1 0.10278511 0.069623947 0.039448977 0.035054922 0.00430584 0.004664898

2 0.070331097 0.071228027 0.003484964 0.038974047 0.003270864 0.004153013

3 0.099446058 0.09841609 0.06582284 0.039004087 0.004165888 0.00372386

4 0.099940062 0.099736929 0.069768906 0.038875103 0.004091978 0.003881216

5 0.039813995 0.099352121 0.069499969 0.039092064 0.004070044 0.003170013

6 0.069890976 0.100258827 0.069624901 0.038988113 0.004030943 0.004392862

7 0.070018053 0.069365025 0.039613962 0.039005995 0.004014015 0.004397154

8 0.03973794 0.069938898 0.039801836 0.039009809 0.004034996 0.003859043

9 0.034041882 0.069694996 0.003488064 0.003335953 0.004040003 0.004033089

10 0.096149921 0.033917904 0.065699816 0.034610987 0.004082918 0.004536152

11 0.099498034 0.065695047 0.0696311 0.039103985 0.003813982 0.003904104

12 0.099849939 0.10026598 0.069791079 0.003330946 0.004040003 0.004210949

13 0.069996834 0.069359064 0.069508076 0.034695864 0.004028082 0.004236937

14 0.049779177 0.099880934 0.069614172 0.039014101 0.004029036 0.004143

15 0.099843025 0.079758883 0.039669037 0.003334999 0.003643036 0.003968954

16 0.06794095 0.099900961 0.003491879 0.034675121 0.004034996 0.004012108

17 0.002577066 0.099697113 0.065859079 0.038953066 0.003113985 0.004140854

18 0.069594145 0.069805145 0.03963089 0.003231049 0.004021168 0.003963947

19 0.002990007 0.033792019 0.039625883 0.034854889 0.003689051 0.003678083

20 0.096901894 0.096262932 0.039643049 0.003186941 0.004007101 0.004445076

21 0.09040308 0.06936717 0.003262043 0.034844875 0.004003048 0.004640818

22 0.099215984 0.039815187 0.066157818 0.038962126 0.004034042 0.004565001

23 0.099939108 0.070269108 0.037755966 0.039004087 0.004302979 0.004540205

24 0.099407196 0.0375669 0.071440935 0.033571005 0.003838062 0.003786087

25 0.099906921 0.101622105 0.039632797 0.034384966 0.004076958 0.003834009

26 0.09987092 0.069844007 0.039784908 0.039079189 0.00407815 0.00384903

27 0.099901915 0.09978199 0.039489031 0.038994074 0.004050016 0.00436902

28 0.069833994 0.099843025 0.039635897 0.039017916 0.003705025 0.00404191

29 0.101825953 0.101678133 0.040146112 0.03910017 0.004173994 0.004628897

Averages

0.07632074 0.07734218 0.04740233 0.03150535 0.00466444 0.00425575

Table 1 and Table 2 show the time to completion for each algorithm and message size

combination for 30 trials each, as well as the average time taken for message sizes in each

algorithm. In all cases, with this particular cluster configuration and this set of problem sizes, lower

latency was achieved when using the variably parallel program. The impact of the extra time to

completion could be unacceptable for latency-sensitive applications. In addition, the recorded

times for the variably parallel algorithm had a lower variance than those of the other

implementation. Less consistency in performance could potentially be another detriment to the

uniformly parallel FFT.

The one-dimensional FFT can be performed in various ways with a differing impact on the

system in terms of load balancing, total latency, and network usage. For distributed-memory

systems in which it is desired to prevent some nodes from being overused (greater load balancing)

it may be beneficial to perform FFTs in parallel such that the degree of parallelization remains

uniform, as presented in the second algorithm. However, this can come at the cost of higher overall

latency. Even though this approach eliminates having the majority of data operations occurring on

the root process, it still requires that the root process participates in synchronous communication.

By waiting for data like this, the root process may end up taking more time to complete than if it

would have required to simply perform data operations. This data may not be representative of the

differences in latency that one could expect in more expensive computer clusters.

Conclusions

 We have seen that it is feasible for an FFT algorithm to be parallelized for a distributed

memory system such that the number of active processes participating in the algorithm remains

uniform through its entire duration. However, the method presented here was slower in these cases

for this hardware. This could be due to the extra communication overhead, as Meiyappam [3]

predicts.

 The choice to implement this alternative algorithm depends on context. It is possible that,

with less contention for a small number of processors in later stages of the algorithm, this

procedure might be useful for more efficiently balance the cluster’s load. The significance of the

decreased latency can be determined on a per-case basis. Further optimization can be performed

on the implementation of the uniformly parallel FFT implementation, and more quantitative

investigations into its performance are a clear next step.

References

[1] S. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing, San Diego:

California Technical Publishing, 1997.

[2] A. Oppenheim and R. Schafer, Digital Signal Processing, Connaught Circus: Prentice-Hall of

India Private Limited, 2002.

[3] S. Meiyappam, “Implementation and Performance Analysis of Parallel FFT Algorithms,”

ResearchGate, School of Computing, National University of Singapore, Singapore.

[Online]. Available:

https://www.researchgate.net/publication/228991757_Implementation_and_performance

_evaluation_of_parallel_FFT_algorithms. [Accessed: Jan. 28, 2019].

[4] S. Byna, W. Gropp, X. Sun and R. Thakur, "Improving the performance of MPI derived

datatypes by optimizing memory-access cost," 2003 Proceedings IEEE International

Conference on Cluster Computing, pp. 412-419, Hong Kong, China, 2003, doi:

10.1109/CLUSTR.2003.1253341. [Online]. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1253341&isnumber=28041.

[Accessed: Feb 1, 2019].

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1253341&isnumber=28041

