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Investigating engineering students’ mathematical modeling 
abilities in capstone design 

 

Abstract  

 

Engineering capstone design is a culminating experience that is intended to provide an 

opportunity for students to apply their previous engineering knowledge to develop solutions to 

open-ended problems. Capstone design problems are often analytically complex, and their 

solutions integrate several disciplinary fundamentals, as well as more general design process 

knowledge. Often, the expectation is that a thorough or rigorous solution to a capstone level 

problem would include some type of computational or mathematical analysis appropriate to that 

discipline. However, engineering students often struggle in recognizing when and how 

disciplinary knowledge (e.g. mathematical analysis inherent in many engineering fundamentals) 

applies to their particular design solutions.  

 

This paper describes the strategy for and initial results of a study exploring how students use 

mathematical reasoning when developing design solutions. Specifically, we want to understand 

where students struggle in the development and implementation of a mathematical model. We 

conducted our study in a biomedical capstone (senior) design course. We presented students with 

a scenario based on a design problem in using phototherapy to treat jaundice, and asked specific 

questions relating to mathematical modeling in the solution to this problem. 

 

We developed the scenario and corresponding assignments based on previous work that 

identified six steps for what mathematical modeling should include. We staged the activities over 

a four-week period such that students addressed two of these steps at each time interval, or 

assignment stage. This report analyzes results from the first two activities, which focused on 

identifying the real-world phenomenon and simplifying or idealizing it.  We found that in an 

open-ended statement of the problem, no students proposed using a mathematical model to assist 

in designing the device.  When we specifically asked for a mathematical model in a second 

activity, only five students of thrity-eight proposed a purely mathematical model, and another 

two proposed experiments that would lead to predictive equations.  When asked to identify 

parameters that would be important to model, 37% of students chose ones that were part of the 

design requirements, and therefore fixed, and only 35% correctly chose parameters that could be 

adjusted to meet the design requirements. These results show a gap in using modeling skills in 

design, and suggest that educational interventions are needed to improve these capabilities.  

 

Introduction 

 

Mathematical modeling is essential to engineering practice and a valuable tool for engineering 

design.  Engineers who generate mathematical models or use mathematical and conceptual 

knowledge to reason, interpret, and communicate solutions have some level of “quantitative 
literacy.”  Dossey

1
 defines quantitative literacy as “the ability to interpret and apply these aspects 

of mathematics to fruitfully understand, predict, and control relevant factors in a variety of 

contexts.”  By “these aspects,” Dossey means “data representation and interpretation, number 
and operation sense, measurements, variables and relations, geometric shapes and spatial 

visualization, and chance.”  The education of future engineers must prepare them to approach 
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situations with quantitative literacy, at least with the tools in Dossey’s list, and ideally with 
higher level tools including the ability to frame problems in terms of appropriate mathematical 

models and finding solutions to those models.  Modeling can be used in the design process in 

many ways: to avoid expensive and time-consuming tests of physical prototypes, to guide the 

range of physical models that should be tested, to rule out seemingly reasonable designs that are 

destined to fail, to avoid overdesign of components, to explore the likely range of performance of 

a device, and to estimate failure rates of a device composed of many elements. Thus, there are 

many reasons why engineering students should possess the capabilities to do modeling.   

 

To further understand how to prepare students to have “quantitative literacy,” we are 
investigating students’ abilities at creating mathematical models in the context of design.  

Specifically, we seek to explore where students struggle in moving from routine use of 

mathematically-based disciplinary knowledge to a more flexible use of developing unique yet 

appropriate mathematical models in the process of design. We aim to use results from this 

research to inform how instruction may be improved, both in design courses as well as in 

traditional analysis-focused courses.   

 

This study explores where students may struggle in the building of a mathematical model in the 

context of an innovation situation such as design, with a practical goal of using the results to gain 

insight into how instruction might be used to improve students’ “quantitative literacy.”  Since 

our focus is on mathematical modeling in the context of engineering design, we used 

Gainsburg’s2
 framework to structure our activities and data collection.  (Other authors

3-5
 have 

presented additional, similar frameworks for the creation of mathematical models.)  Specifically, 

Gainsburg identified six steps for what mathematical modeling should include:  

 

1. Identify the real-world phenomenon 

2. Simplify or idealize the phenomenon 

3. Express the idealized phenomenon mathematically (i.e., “mathematize”) 
4. Perform the mathematical manipulations (i.e., “solve” the model) 
5. Interpret the mathematical solution in real-world terms 

6. Test the interpretation against reality 

 

She studied the use of mathematical models in the workplace, answering the question “What 
does adult mathematical modeling look like?” Her study involved observing structural engineers 

at different levels of experience at an engineering firm solving a problem on supports and 

compression forces, and drew insight mainly from one extended and detailed observation of the 

interaction between a junior and a senior engineer.  This paper follows Gainsburg’s six steps for 

the creation and use of mathematical models, and focuses on the way that these are employed in 

an educational setting. 

 

Research Method 

 

This project investigates students’ abilities at generating models that they can use in the 

development of their design solutions.  We seek to understand how students approach the 

creation, solution, and interpretation of a mathematical model, especially as it applies to creating 

a design. Our project is guided by the following research questions: 

P
age 15.812.3



P
age 15.812.4



 

positioned at some distance away, and this in turn requires some understanding of the light 

distribution provided by one LED. These are the elements that would lend themselves to 

mathematical modeling.   

 

Students had all taken the physics course covering light, waves and optics, but few if any had 

used this type of information in an engineering context. They all had freshman design courses in 

which they had learned the design process and worked in teams on various types of designs. Few 

students had taken any additional design courses before their capstone course.  In the capstone, 

they were learning further aspects of the design process, and were organized into teams to work 

on different problems posed by actual clients. None of the teams were working on KMC 

phototherapy. Students were not informed about our conception of the stages of modeling.  They 

performed the activities for our study as regular activities for the course, for which they received 

credit.  They were informed that their work on these activities would be helpful to their own 

design project and that they would also be analyzed as part of a research project.   

Implementation Strategy 

 

Iteration 1: This phase was designed to assess student ideas of what constitutes modeling, and 

covered Gainsburg’s first two steps, 1) Identify the real-world phenomenon, and 2) Simplify or 

idealize the phenomenon.  We planned this phase to be very open-ended.  Students were asked to 

“tell the Phototherapy Design Team what you think should be modeled, how you would 

approach the modeling, and how you expect the model to eventually be helpful in the design.” 
Ideally, we hoped that students would provide their conceptions of what modeling is, and not just 

list the steps in the overall design process.  Note that we never said “mathematical model” or 
anything comparable. 

 

This phase was completed in class in order to collect students’ individual responses to this 

question.  Students had 45 min to complete the task.  Student responses were collected and were 

analyzed in terms of the first two Gainsburg steps.  

 

Iteration 2: Just prior to this iteration, the instructor discussed responses to Iteration 1 (creating 

physical models, designing experiments, and mathematical models) and then indicated that what 

the Phototherapy Team needed was a mathematical model that will help them design the device, 

given certain specifications or design requirements.     

 

This phase addressed steps one and two of the Gainsburg paper again, but with a guided 

approach. Specifically, in addition to highlighting “mathematical,” students were asked to sketch 

the system they planned to model, list relevant parameters and variables, give reasons for why 

those parameters are important to the creation of the model, note any relationships between 

parameters or variables, note any judgments that would have to be made about the model 

components, describe possible geometries they may consider for the device, and propose 

possible mathematical approaches to the problem.   

 

This strategy allowed us to return everyone to a common starting point, regardless of their 

performance level on Iteration 1, and it allowed us to probe deeper into their capabilities on these 

two steps. Again, this phase was completed in class so that students would have to answer the 

questions independently. Student responses were again interpreted in terms of the first two 
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Gainsburg steps.  Student responses were compared to each other and to their own responses 

from Iteration 1.  

 

Iteration 3: Just before this iteration, the instructor discussed problem areas from Iteration 2 and 

provided an example of a good response (sketches, parameters, simplifications, and approach) 

but did not discuss the geometry or possible layout of the LEDs, or their light distribution.  Thus, 

again the students were brought to a common point of departure for Iteration 3. The activity 

associated with this phase was designed to address steps three and four of Gainsburg’s list:  

3) Express the idealized phenomenon mathematically (i.e., “mathematize”), and 4) Perform 

mathematical manipulations.   

 

Students were asked to find the equations and list the assumptions that would be useful to create 

the model.  Then students were asked to manipulate the equations. Because students would need 

additional time outside of class to look up or develop the mathematical equations, this part of 

Iteration 3 was given as homework.    

 

In the following class, students were asked to submit comments on some assumptions that could 

be made in their models.  Students were asked about the error associated with the assumptions 

and whether they thought the model’s predictions would be accurate for a real situation.   To 

begin to address Gainsburg’s step 4, students were asked to solve for one parameter of the 

model.   

 

For the purpose of simplifying the analysis of students’ abilities at “mathematizing” the 
phenomena, we gave the students a few key simplifications in the hopes that their equations 

would be similar (i.e. a baby wrapped in a thin blanket could be approximated as two concentric 

cylinders, in which the diameter of the inner cylinder approached the diameter of the outer 

cylinder leading to essentially parallel plates when looking at a small patch of the circumference.  

This indicated that spherical coordinates were not necessary).   

 

Iteration 4: As part of the last iteration, students were provided with a particular model, 

equations, model outputs, and real experimental data generated by a design team that had worked 

on the phototherapy device in a prior year.  This allowed us to start the students with common 

information again, and attempt to isolate their capabilities in Gainsburg’s steps five and six:  

5) Interpret the mathematical solution in real-world terms, and 6) Test the interpretation against 

reality.  

 

Students were asked to explain the model outputs in their own words, to decide whether the 

experimental data provided verified the model, and to provide a recommendation for the design 

of the Phototherapy device based on the model outputs.  This phase was also completed as a 

homework assignment.   

 

Expert responses, to which student work can be compared, will be obtained from several post-

doctoral and grad students in BME with experience in optical design and analysis.  
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Data Analysis 

 

The first two iterations were both scored with the same rubric, in order to facilitate comparison 

between responses to the problem posed in an open-ended way (Iteration 1) and a guided way 

(Iteration 2).  Figure 1 shows the scoring rubric, which was developed after reading a few 

responses.  Student responses were read thoroughly and their modeling approach was captured in 

the rubric.  Parameters and variables are categorized and recorded in the top section.  The middle 

section is intended to record the type of model proposed.  First, we tried to determine if a 

mathematical approach was considered at all; this led to the creation of two “yes” categories.  
The first was the pure mathematical model, and the second was a proposal for a physical model 

of the device in which variables could be altered and tested, and the output measured, recorded, 

and used to create a mathematical relationship.  These relationships were most often in the form 

of plots or simple equations that could then be used as the “math model” for the purposes of 

aiding in the design of their device.  Credit for creating a mathematical model was given even if 

the model had flaws.  The bottom section of this rubric was intended to record students’ attempts 
at simplifying and mathematizing the problem.   

 

We found that the rubric worked well in allowing us to capture almost all of what students 

discussed in their answers.  This allowed us to categorize responses without attempting to reduce 

their answers to specific scores. Two of the authors independently assessed papers from six of 

the 38 subjects, and had over 85% agreement on how to categorize responses for these subjects.  

Where they differed, it was generally in how to characterize student responses that were off-

target.  Following this preliminary analysis, the rest of the data were analyzed by one author.  
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Figure 1: Scoring rubric for recording student responses to Iterations 1 and 2 

 

Results  
 

Due to the large amount of very revealing data collected in the first two iterations of this project, 

this results section will be limited to an initial analysis of the first two iterations, which provide 

insight into students’ conceptions of modeling related to design.   

 

Following the Gainsburg steps, we first analyzed whether students were able to “Identify the 
real-world phenomena.”  Reading through student responses to the open-ended iteration 

(Iteration 1) we noted the student responses for what parameters they would be modeling.  We 

followed the same procedure for student responses from Iteration 2 (with the guiding questions) 

that was completed by students one week later.  Tallying up the student responses we identified P
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37 items that students felt should be modeled.  Of those 37 “parameters” we found several things 

worthy of note.   

 

Figure 2 shows the frequency with which students identified different parameters that should be 

modeled.  Students frequently listed the Design Requirements of the device given in the scenario 

statement as parameters to be varied in their models (three left bars in Figure 2 for each 

iteration).  In the first iteration, two of the three design requirements (the best wavelength and the 

baby’s surface area covered by the light) were listed by over 26% of the students as parameters 

that could be varied in their model. We regard these as inappropriate choices of parameters to be 

modeled, because the scenario statement gave a set value to be achieved.   

 

 
Figure 2: Frequency of students stating the parameters that should be modeled in response to 

Iterations 1 and 2 of the Phototherapy Modeling Scenario 

 

However, parameters that affect the ability to achieve those requirements were appropriate 

parameters to model.  On the right hand side of the table legend are the parameters that affect the 

design requirements and are the ones that are adjustable, both in the model and in the physical 

design. With one exception, students listed these parameters less frequently than they listed the 

design requirements.  Of these five main parameters that students listed, they were more likely to 

state that the distance of the phototherapy treatment light from the skin was a key parameter to 

be modeled.  What we felt were equally important but not as frequently listed, were the spacing 

of the lights in the KMC blanket, the power of the bulbs, and the light distribution from the 

source, projecting onto the skin.  Less than 20% of students listed these three parameters in 

Iteration 1.   

 

During Iteration 2, in which the problem statement was more specific about mathematical 

modeling, students’ ability to identify what they believed to be relevant parameters nearly 

doubled with respect to Iteration 1.  While over 40% of students restated all three design 

requirements, at least 45% of students were able to identify two of the key parameters that were 

appropriate to model because they affected the design requirements.  These two parameters were 
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the distance of the phototherapy treatment light from the skin and the power at which the bulbs 

are operated.   

 

Indeed, Figure 3 shows that in Iteration 1, the design requirements averaged 27% of a student’s 
list of parameters, while the key parameters that affect the design requirements averaged 26% of 

the list.  In Iteration 2, these averages increased to 37% and 35% for the design requirements and 

key parameters, respectively.  Therefore, with more prompting about modeling, in Iteration 2, 

students did identify the correct parameters more frequently, but they also identified the design 

requirements themselves more frequently.  We note that the identification of design requirements 

may be specific to this study, since we provided the design requirements in the problem 

statement.  We did this to prevent students from spending too much time looking through the 

literature for the design requirements, allowing them to focus solely on the creation of the model.  

It is unclear whether students would have stated the design requirements if the problem statement 

had not included them.   

 

It is also interesting to note that students listed several design issues that could be important to 

the overall design, but were not relevant to the specific question we asked about a mathematical 

model of phototherapy light.  The “other design issues” most often given were the duration of 

exposure to phototherapy light, materials to be used in the device, LED and battery lifetime, the 

temperature of LEDs, and bilirubin concentrations in the infant (or the amount of jaundice).  We 

did see that from Iteration 1 to Iteration 2, students increased their lists of key parameters, while 

the list of other design issues decreased.   

  

 
Figure 3: Frequency that the design requirements, key parameters, and other design issues 

appeared on the average student’s list of parameters to be modeled.  
 

For Gainsburg’s second step, “Simplify or idealize the phenomenon” we were interested in how 

students articulated the details necessary for creating a model.  Reading through student 

responses from Iteration 1 (open-ended), we first evaluated whether or not they were using a 

mathematical approach.  Then we placed their responses into one or more of 4 categories:  

1) Mathematical model mentioned (i.e. a mathematical model was explicitly mentioned), 2) Use 

of a physical model or experiments that could establish a mathematical relationship that could be 
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used in a predictive way, 3) No mathematical model (i.e. a physical model or experiments only), 

and 4) Other.  The category of “Other” contained student responses in which no model at all was 
proposed, researching the literature was proposed, or there was no plan for using a proposed 

physical model or device.  Figure 4 illustrates the percentage of students falling into those 

categories.   

 

 
Figure 4: Number of students’ proposed models that fell into the four categories on Iterations 1 

and 2 

 

In the first Iteration no students proposed an entirely mathematical modeling approach.  One of 

the thirty-eight students proposed a physical model that they could use to develop some 

mathematical relationship.  For example, this student proposed a model of light where the light 

would be shining through the blanket material which would be in direct contact with the skin:  

 

One would need to test the irradiance and amount of light emitted at all areas of the 

surface of the blanket from one LED bulb buried in the blanket.  Once the irradiance as a 

function of distance from the buried bulb is determined, this could be extrapolated to 

determine the required spacing of the bulbs to allow at least the minimum irradiance to 

be present at all areas on the surface of the blanket.    

 

This student proposes creating a physical device to make some measurements that would lead to 

a mathematical relationship between distance (a key parameter) and irradiance (a design 

requirement).  A further calculation was proposed by the student to estimate the spacing of the 

bulbs (another key parameter) while maintaining the desired irradiance.     

 

However, these types of insights were relatively rare.  Seventeen of the thirty-eight students 

proposed models that ended up in the third category, no math – physical model or experiments 

only.  And twenty of the responses were categorized as “Other.”   The most common response 

categorized as “Other” was solving for power using an incorrect interpretation of the units of 

spectral irradiance (power = spectral irradiance × surface area × wavelength). Thus, even though 

the question specifically asked the students to help the phototherapy team create a model, and 
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general phototherapy system interacting with a baby, a sketch of a general phototherapy system 

device incorporating LEDs, a relevant sketch of LED spacing, and a relevant sketch of light 

distribution.  These “relevant” sketches were considered useful, or relevant, to the creation of a 

mathematical model, and were accompanied with labels (often they noted the presence of key 

parameters relevant to the model.)   

 

We noted that in Iteration 1 only eight of 38 students submitted any sketches with their response.  

Those eight students provided ten sketches; four were general systems interacting with a baby 

and six were general systems incorporating LEDs.  No student submitted a simplified sketch in 

Iteration 1.  In Iteration 2, students were explicitly asked to provide a sketch.  The distribution of 

sketch types can be seen in Figure 5.   

 

 
Figure 5: Sketches provided by students in Iterations 1 and 2, categorized by the components 

within the sketch.  

 

All students in Iteration 2 provided a sketch, and many students drew several sketches.  In fact, 

every student that submitted a sketch that fell into one of the “Relevant” categories had 
additional sketches in the “General” categories as well.  To determine whether the category of 
sketch impacted the type of model the student created, we matched the proposed models with the 

sketches provided by students.  Figure 6 shows that students with only a general system sketch 

did not create a mathematical model or a physical model with a mathematical relationship.  Only 

students who generated simplified sketches developed appropriate mathematical relationships or 

models.   

 

P
age 15.812.13



 

 
Figure 6: Matching students’ sketching to development of mathematical models.  Total number 
of students developing mathematical relationships for two categories of sketch: General system 

and Relevant system. 

                                                                                                                                                                                                                    

Discussion 

 

Our project was motivated by several factors. Specifically, there is general recognition of the 

importance of computational expertise in engineering.  In the research described here, we were 

specifically interested in how students approach mathematical modeling in the context of design. 

In addition, our work is motivated by our previous experience teaching design, and noticing the 

persistent and common struggles students have in recognizing when engineering knowledge 

applies in the process of design. Moreover, students find it particularly challenging to generate 

mathematical models or use mathematical and conceptual knowledge to reason, interpret, and 

communicate solutions, in other words demonstrate “quantitative literacy” as described by 
Dossey.  Many would argue that this kind of quantitative literacy is a core competency of 

engineers. Therefore, our work seeks to understand how and why students struggle with 

developing this type of quantitative fluency.  

 

This paper reports an initial analysis of students’ conceptions and abilities in the first two steps 

of the mathematical modeling process, as identified by Gainsburg.  We found that when students 

were asked to identify the real-world phenomena to be modeled (Gainsburg’s first step), they 

were very likely to repeat the design requirements back as parameters. Figures 2 and 3 illustrated 

that nearly 30% of the parameters for modeling that students listed were the design requirements 

that had predetermined values based on medical recommendations.  Students listed key 

parameters relevant to the modeling of phototherapy light only 26% and 35% of the time 

(Iterations 1 and 2, respectively).  This indicates that students may be struggling with how to 

determine the key parameters, regardless of how much prompting they receive.     

 

When looking at how students were approaching the mathematical model (Gainsburg’s second 
step, “Simplify or idealize the phenomenon”) we found that in the first Iteration no students were 

proposing entirely mathematical modeling approaches.  Only one student of thirty-eight 

proposed a physical model that they could use to develop some mathematical relationship, 
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seventeen proposed physical model or experiments without mathematical relationships, and 

twenty did not propose any model or experiments.   

 

In the second Iteration we saw some improvement in the incorporation of mathematics. Five 

students proposed a mathematical model, two proposed a physical model to generate a 

mathematical relationship, six proposed physical model or experiments without mathematic 

relationships, and twenty-five were “Other.” The increase in “Other” may have been due to the 
wording of the question “propose possible mathematical approaches to the problem.” Had this 

question been worded differently, more students may have created or suggested a mathematical 

model rather than performing a simple calculation.   

 

Students who sketched a system that showed some aspect of the light distribution (called relevant 

sketches in the analysis) were more likely to generate mathematical relationships.  Students who 

failed to develop a mathematical model, failed to break down the problem into the basic elements 

of one (or more) LED(s) shining on a surface during the early stages of model development.  

Those who succeeded better in developing the mathematical relationships saw this as important.  

We do not yet know whether the sketching contributed to their ability to generate a model, but 

our initial analysis suggests exploring this in more detail.  

 

It is possible that the phototherapy problem was too difficult as a first attempt at modeling.   We 

chose phototherapy because students all had some background in previous coursework related to 

light, and because it was unlikely to give an advantage to any students as a problem in 

mechanical or electrical modeling might have.  We would have given students credit for a 

mathematical approach, however, even if it were entirely incorrect, and we were not especially 

harsh in our analysis of their answers, so the difficulty of the subject should not have 

substantially influenced their performance on these first two iterations.  For example, a student 

with a flawed conception of light distribution would still have been given credit for creating a 

mathematical model even though his or her equations were incorrect.  In practice, a designer 

would usually become adept with a restricted range of models
2
.  He or she usually does not have 

to create a model from scratch, but only choose the parameters, or the ranges of parameters to be 

modeled. It is possible that our students would have done better if we had provided the model 

and asked them to identify the parameters, but this would not have tested their abilities on the 

first steps in modeling, and we speculate that abilities in those steps might be among the factors 

that distinguish the practicing designers.  

 

When students proposed creating physical models or experimental systems with no mathematics 

involved, they were often thinking of ways that they could justify the design requirements.  In 

the capstone design course we often emphasize that students should not take the client’s ideas for 
granted, or assume that the client’s proposed solution is really solving the important problem.  
Students are instructed to evaluate the situation and work with the client to get to the root of the 

need. However, this mindset may have misled them in the phototherapy problem.  Here, the 

problem identification had already been done and a set of conditions, in terms of the required 

wavelength, coverage, and irradiance, exists.  These conditions were given to the students in the 

problem statement.  Their job was to be a designer meeting those requirements.  Instead, a 

number of students wanted to perform tests on babies to determine whether light meeting the 
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design requirements would actually cure the jaundice, and this may have distracted them from 

creating an appropriate design. 

 

The fact that many students did not propose anything that could be called a mathematical model 

even on the second iteration, after the questions explicitly referred to “mathematical models,” 
indicates that modeling of the type that practicing or professional engineers use is nuanced and 

complex, and is disconnected from how students approach solving problems. We did see a small 

increase in the number of students proposing a mathematical approach to their scenario on the 

second iteration.  This may indicate that a guided approach to the use of models in design would 

be beneficial to novice modelers, although our Iteration 2 still did not provide enough of that 

type of guidance.   It is not too surprising that students would need help with this, since, in 

general, an engineering curriculum tends to teach the disciplinary fundamentals in an abstract 

way, with routine and well-posed problems, which are often disconnected from how one would 

reason through a solution to a non-routine, “real-life” situation.  While we have used the scenario 

here primarily as a research tool, it can be adapted in the future into a teaching tool to aid 

students in modeling.  Additional research would be needed to create the best guiding questions 

that would be beneficial to students.   

 

Due to the large amount of information gathered from the first two iterations of this study, we 

decided to limit this report to the analysis of those data.  We will present the results of the other 

two iterations of this project in a subsequent paper.  We also have further plans to compare our 

students’ responses to those of experts, and to study students’ abilities in mathematical modeling 
by repeating this process for capstone courses in other disciplines and in the freshman design 

courses.   

 

Acknowledgements  
 

This work was supported by the National Science Foundation Grant #0648316.  Special thanks 

to Greg Light and Denise Drane of Northwestern University’s Searle Center for Teaching 
Excellence for advice on creating rubrics.  

 
Bibliography 

 
1. Dossey, J.A., Defining and Measuring Quantitative Literacy, in Why Numbers Count: Quantitative 

Literacy for Tomorrow's America, L.A. Steen, Editor. 1997, College Entrance Examination Board. 

2. Gainsburg, J., "The Mathematical Modeling of Structural Engineers." Mathematical Thinking and 

Learning, 2006. 8(1): p. 3-36. 

3. Bissell, C. and C. Dillon, "Telling Tales: Models, Stories and Meanings." For the Learning of 

Mathematics, 2000. 20(3): p. 3-11. 

4. Edwards, D. and M. Hamson, Guide to Mathematical Modelling. 1990, Boca Raton, Florida: CRC Press. 

5. Pollack, H.O., Solving Problems in the Real World, in Why Numbers Count: Quantitative Literacy for 

Tomorrow's America, L.A. Steen, Editor. 1997, College Entrance Examination Board. 

6. Subcommittee on Hyperbilirubinemia, "Management of Hyperbilirubinemia in the Newborn Infant 35 or 

More Weeks of Gestation." Pediatrics, 2004. 114: p. 297-316. 

 

  P
age 15.812.16


