
AC 2011-456: IPHONE/IPAD BASED INTERACTIVE LABORATORY FOR
SIGNAL PROCESSING IN MOBILE DEVICES

Jinru Liu, School of ECEE, SenSIP Center, Arizona State University
Jayaraman J Thiagarajan, School of ECEE, SenSIP Center, Arizona State University
Prof. Andreas S Spanias, Arizona State University, ECEE, SenSIP Center

Andreas Spanias is Professor in the School of Electrical, Computer, and Energy Engineering at Arizona
State University (ASU). He is also the founder and director of the SenSIP center and industry consortium
(NSF I/UCRC). His research interests are in the areas of adaptive signal processing, speech processing,
and audio sensing. He and his student team developed the computer simulation software Java-DSP (J-
DSP - ISBN 0-9724984-0-0). He is author of two text books: Audio Processing and Coding by Wiley
and DSP; An Interactive Approach. He served as Associate Editor of the IEEE Transactions on Signal
Processing and as General Co-chair of IEEE ICASSP-99. He also served as the IEEE Signal Processing
Vice-President for Conferences. Andreas Spanias is co-recipient of the 2002 IEEE Donald G. Fink paper
prize award and was elected Fellow of the IEEE in 2003. He served as Distinguished lecturer for the IEEE
Signal processing society in 2004.

Karthikeyan Natesan Ramamurthy, Arizona State University
Shuang Hu, ASU
Mahesh K. Banavar, SenSIP Center, School of ECEE, Arizona State University

c©American Society for Engineering Education, 2011

P
age 22.977.1

iPhone/iPad Based Interactive Laboratory for Signal Processing

in Mobile Devices

1. Introduction

The demand for using advanced mobile devices in education, business and research

has resulted in several powerful processors with an array of capabilities and large multi-touch

screens
1
. Advanced mobile devices are capable of handling tasks that are relatively complex

such as word processing, complex Internet transactions, and even human motion analysis
2
.

Furthermore, this compelling technology has become a part of everyday student life. Hence,

the design of exciting mobile applications and software represents a great opportunity to

build student interest and enthusiasm in science and engineering.

Apple’s iOS devices, including the iPhone, the iPod touch and the latest in the family – the

iPad, are among the most popular today
3
. In particular, the iOS platform is emerging into an

important tool for engineering and STEM online education and web-based simulations
4
.

There are several educational applications related to science and engineering some of which

are available commercially
5
.

The field of Digital Signal Processing (DSP) has occupied researchers and students because

of its enabling nature, modern applications and the need for sophisticated digital

implementations
6
. DSP algorithms have been used in the processing of a wide range of

signals such as speech, audio, image, video, radar, sonar, biomedical and seismic data. In

undergraduate engineering education signal processing courses involve complex

mathematical concepts and in some cases students have difficulty making the connections to

real-world problems and applications. Although several software components and web

courses have been designed for education, they are expensive and often lack interactive

capabilities. To address these problems, a web-based, platform-independent simulation

environment, Java-DSP (J-DSP), has been developed at Arizona State University. This visual

programming software enables users to perform online signal processing calculations and

simulations
7
. J-DSP was built from the ground up in Java to provide free and universal access

P
age 22.977.2

to an array of functions that can be used for research and education
8
. Several interactive

laboratories have been developed and successfully used in undergraduate courses
9, 10

. In

addition, several toolboxes have been developed for image processing
11

, control systems
12

,

genomics
13

, time-frequency analysis
14

, analog/digital communications
15

, earth system signal

processing
16

 and RF amplifier linearization
17

. Furthermore, hardware interfaces to TI DSK
18

and Crossbow sensor motes
19

 have also been developed. The interfaces to MATLAB
20

 and

LabVIEW
21

 allow synergies with other simulation environments.

The recent efforts to facilitate simulation of signal processing algorithms in iOS devices

include the MATLAB Mobile interface
22

. This provides a lightweight mobile desktop that

can connect via the Internet to the MATLAB software running on a remote computer. It

features a traditional command line interface and allows users to type commands, execute

scripts and view the corresponding results. However, this application requires a running

instance of MATLAB on a remote machine and does not support sophisticated User

Interfaces (UI). More importantly, this implies that the application cannot be used without

Internet connectivity. Furthermore, rendering of the MATLAB figures relies heavily on the

internet connection, since figures are not generated on the mobile device but simply

transferred from the MATLAB instance running on the remote machine.

In this paper, we present the design and implementation of an interactive signal processing

simulation environment that offers an intuitive, all-graphical programming experience on the

iOS platform. The proposed application executes functions on the iOS device directly and

hence does not require Internet connectivity. Furthermore, the extensive support for user

interactivity provides scope for improved learning. This iOS-based object-oriented

application is called i-JDSP and is based on the (J-DSP) software. The current version of i-

JDSP offers functions for FFT, filtering and spectral analysis through an easy-to-use

graphical user interface (GUI) and provides a very compelling multi-touch programming

experience. Built-in modules also demonstrate concepts such as MIDI, DTMF and sound

capture and playback. All simulations can be visually established by forming interactive

P
age 22.977.3

Figure 1. The main simulation view of i-JDSP.

block diagrams through multi-touch and drag-and-drop procedures. Computations are

performed on the mobile device when required, making the block diagram execution fast. In

the rest of this paper, we describe the architecture of the proposed i-JDSP environment and

present some of the functions available in the current version of the software.

2. The i-JDSP Application

i-JDSP has been developed using Apple’s Xcode IDE with the iOS SDK. It has been

designed as a native Cocoa Touch application
23

 that can be run on any iOS device. For

performance considerations
24

, we have implemented the software using C and Objective-C.

The simple and intuitive GUI of i-JDSP is easy to understand with minimal assistance. All

functions in i-JDSP are represented as graphical blocks that can be visually added to the main

simulation view of the application. The main simulation view of the i-JDSP environment

(Figure 1) has been designed to provide maximum drawing space with minimal navigation

buttons. A detailed workflow that demonstrates the creation of a block diagram in i-JDSP is

shown in Figure 2. Since the user needs to navigate through the application to select

different DSP function blocks and configure their corresponding user-dialogs, i-DSP

framework contains multiple views. During any part of the application execution, users can

navigate through the view hierarchy. For example, in Figure 1, the user can push the “+”

button on the left corner to open the view that lists the set of available functions. After

selecting a function from the list, the user is prompted with an edit view, in which the

parameters of the function can be modified to the desired values. Finally, when the user is

P
age 22.977.4

Figure 2. Workflow for creating a block diagram in i-JDSP.

done editing, pressing the “Add” button places the selected function in the main simulation

view.

3. DSP Functions in i-JDSP

i-JDSP consists of a set of basic DSP functions that can be used to perform lab

exercises that are relevant to a DSP class. All functions are represented as graphical blocks

with appropriate connection terminals, as shown in Figure 3.

Figure 3. Pin layout of a function in i-JDSP.

A function can allow upto two input terminals and two output terminals, which can each

P
age 22.977.5

support a time or frequency domain signal. In addition, pin #2 and pin #3 can be used to

input and output filter coefficients respectively. The DSP functions implemented in the

current version of i-JDSP are listed below:

 Signal generator

 Fast Fourier Transform (FFT)

 Filter

 Filter coefficient

 Frequency response

 MIDI

 Pole Zero placement

 Plot

 Sound recorder and sound playback

As described earlier, adding a function to the simulation view can be performed by a simple

drag-and-drop procedure. By establishing connections between different blocks, a variety of

DSP systems can be simulated. The parameters corresponding to each function can be edited

by double-tapping on a block and navigating to the edit view. Changing the parameter

settings of the functions will automatically update the data in all later blocks that use these

data and parameters. Individual blocks can be deleted along with their connections to other

blocks, by a long-hold press. i-JDSP can support an unlimited number of functions and

multiple instances of the same function in a block diagram. However, the size of the block

diagram is limited by the screen space of the mobile device.

3.1. Signal Generator

The signal generator block supports a suite of basic deterministic signals such as

rectangular, triangular, delta, sinusoid, and sinc with configurable parameters and can

generate random signals from Gaussian and uniform distributions. The maximum length of

the time domain signals generated by this function is 256. The other parameters of the signals

that can be modified include the period and time-shift. This function can be extended to

include real-life signals such as speech, music and other time-domain signals. Furthermore,

P
age 22.977.6

users can be provided with options to record real-time sounds using the microphone.

3.2. Fast Fourier Transform (FFT)

The FFT block computes the discrete Fourier transform (DFT) of the input signal

using the Cooley-Tukey decimation-in-time FFT algorithm. The FFT block takes in a signal

vector and computes both magnitude and phase of the FFT. Possible FFT vector sizes that

can be provided by the user should be radix-2 (8 to 256). Figure 4 demonstrates the

computation of FFT in i-JDSP.

Figure 4. Computing FFT of an input signal in iJDSP.

3.3. Filtering

i-JDSP supports both Infinite Impulse Response (IIR) and Finite Impulse Response

(FIR) filter design by the combination of the filter block and the filter coefficient block. The

filter block simulates a digital filter that performs mathematical operations (multiply /

accumulate and convolution) on the incoming signal to reduce or enhance certain frequency-

P
age 22.977.7

domain components in that signal. More specifically, it filters the input signal based on the

filter parameters (numerator and denominator polynomials) specified in the filter coefficient

block. The filter coefficient block simply accepts the coefficients and thereby determines the

characteristics of the filter. In the current setup, a maximum of 11 coefficients can be used.

Users can change and edit the coefficients at any time by double tapping the block. When

updated, the block outputs the filter coefficients through pin #3 to the filter.

The frequency response block measures the frequency spectrum of the system

output in response to a unit impulse. The frequency response is displayed in both linear

and decibel (dB) scales, and the phase, measured in radians. Figure 5 illustrates the

process of filtering and plotting the frequency response in i-JDSP. Students can use this

simulation to visualize impulse and frequency responses of digital filters.

Figure 5. Filtering of a rectangular signal in i-JDSP with filter coefficients filter coefficients:

a = [1, 0.9], b = [1, 3].

P
age 22.977.8

Figure 6. MIDI synthesis in i-JDSP.

3.4. MIDI Synthesis

The MIDI block provides a simple piano keyboard interface and generates Musical

Instrument Digital Interface (MIDI) sounds at frequencies described by the MIDI standard. It

can generate MIDI tones of length 256 samples with sampling frequency at 8KHz. This

block can be used along with the FFT block in i-JDSP to analyze the spectrum of the MIDI

tones. Figure 6 illustrates the interface of the MIDI block. Students can use this to relate

musical and MIDI tones to frequencies in Hz.

3.5. Pole Zero Placement

This block allows the user to place poles and zeros graphically in the Z-plane and

analyze the corresponding frequency response. As it can be observed from Figure 7, moving

the poles and zeros dynamically updates the magnitude and phase responses of the

corresponding filter. It is important to note that the poles and zeros are added to the Z-plane

as conjugate pairs. In the current version of the software, a maximum of 10 poles and zeros

are supported. Students can use this to relate poles and zeros on the z plane to the frequency

response.

3.6. Plot

The plot block, as the name suggests, simply generates a 2D plot of the data. When

P
age 22.977.9

the user double taps on the block, it stores the data received from its parent block. Finally, the

Figure 7. Filter design using pole zero placement in i-JDSP.

plot block utilizes CorePlot
25

, an open source 2D visualization framework for iOS, in order to

plot and manipulate the figure.

4. Assessments

The i-JDSP software is currently in the final phase of development and alpha testing.

The release of the application is planned in early Fall of 2011. The students of the

undergraduate DSP course at Arizona State University (EEE 407) will use i-JDSP to perform

laboratory exercises and evaluate the software during Fall 2011. Furthermore, we are

currently involved in the design of suitable tools to build assessments of the i-JDSP software,

based on student feedback. Since the learning to use i-JDSP is self-directed, similar to the

online J-DSP software, we present some of the prior assessment results reported in
7
.

One of the fundamental problems in DSP classes is the overall perception and attitudes that

the students have toward the class material. A summary of the impact of the J-DSP software

in the DSP course (EEE 407) is presented below.

 The assessment results described in
7
 revealed that the J-DSP laboratories have indeed

enhanced and reinforced student learning, particularly in topics such as filter design,

FFT-based spectral estimation, and multirate signal processing. In particular, the

general and concept-specific assessment results supported the objectives associated

with the J-DSP labware and the pedagogy.

 The J-DSP simulations involving seamless animations and interactive GUI have

P
age 22.977.10

shown prominent differences in the prelab/postlab assessment.

 Moreover, the Effective Size measures in
7
 showed that the effect of J-DSP

involvement in student learning is mostly “medium” or “large”.

 The J-DSP visualizations involving PZ placement were shown to have prominent

impact in student understanding. This has indeed motivated integration of several

other seamless animations and interactive demonstrations.

To summarize, it was observed that the J-DSP exercises and software changed the attitudes

of the students toward the class, resulting in increased enrollments. Furthermore, the use of

the software provided the students hands-on experiences with basic DSP concepts.

5. Conclusions

In this paper, we motivated and presented a signal processing simulation environment

for Apple iOS devices including the iPhone, iPad, and iPod. The proposed framework has

been designed based on the architecture of the online J-DSP software. This all-graphical

programming environment has been developed using C and Objective-C, and runs as a native

Cocoa application in any iOS device. We also described a set of functions that can be used to

perform fundamental laboratory exercises in an undergraduate DSP class. Finally, a summary

of assessment results of the online J-DSP software, reported in
7
, was provided. Similar

assessment results are being compiled for i-JDSP in the DSP course (EEE 407) at Arizona

State University. The release of i-JDSP is planned in the Fall 2011. Plans to develop the

application on Android are under way.

5. Acknowledgements

This work has been funded in part by NSF CCLI (TUES) phase 3 award number

0817596.

P
age 22.977.11

Bibliography

 [1] Benko H., Wilson A.D, and Baudisch P., “Precise selection techniques for multi-touch screens”,

Proceedings of CHI ’06, pp. 1263–1272, 2006.

[2] Siewiorek D., Smailagic A., and Furukawa J., et al. “Sensay: A context-aware mobile phone”, ISWC ’03

IEEE, 2003.

[3] Chang E., “How popular is the iPhone”, Available online at: http://www.billshrink.com/blog/10071/how-

popular-is-iphone/. Last accessed 17 Jan. 2011.

[4] The Elements, Available online at: http://periodictable.com/ipad/.

[5] App Store, Available online at: http://www.apple.com/iphone/features/app-store.html.

[6] A. Spanias, Digital Signal Processing: An Interactive Approach. ISBN: 978-1-4243-2524-5, Lulu

Publishers, 2007.

[7] A. Spanias and V. Atti, “Interactive online undergraduate laboratories using j-dsp,” IEEE Transactions on

Education, vol. 48, no. 4, pp. 735–749, Nov 2005.

[8] A. Clausen et.al., “A Java signal analysis tool for signal processing experiments,” in Proceedings of IEEE

ICASSP, vol. 3, may 1998, pp. 1849–1852.

[9] A. Spanias et.al., “Development of a web-based signal and speech processing laboratory for distance

learning,” ASEE Computers in Educations, vol. X, no. 2, pp. 21–26, jun 2000.

[10] V. Atti and A. Spanias, “On-line simulation modules for teaching speech and audio compression

techniques,” in Proceedings of IEEE Frontiers in Education, vol. 1, nov 2003, pp. T4E–17–22.

[11] M. Yasin et.al., “On-line laboratories for image and two-dimensional signal processing using 2D J-DSP,”

in Proceedings of IEEE ICASSP, vol. 3, apr 2003, pp. 785–788.

[12] T. Thrasyvoulou et.al., “J-DSP-C, a control systems simulation environement: labs and assessment,” in

Proceedings of IEEE Frontiers in Education, vol. 1, nov 2003, pp. T4E–11–T4E–16.

[13] A. Spanias et.al., “Teaching genomics and bioinformatics to undergraduates using J-DSP,” in Proceedings

of ASEE Annual Conference and Exposition, Jun 2004.

[14] M. Zaman, “Advanced concepts in time-frequency signal processing made simple,” in Proceedings of

IEEE Frontiers in Education, vol. 1, pp. T2E10–15, Denver, Nov 2003.

[15] Y. Ko et.al., “On-line laboratory for communication systems using JDSP,” in Proceedings of IEEE

Frontiers in Education, vol. 1, pp. T3E–13–T3E–18, Denver, Nov 2003.

[16] K. Ramamurthy et.al., “On the use of J-DSP in earth systems,” in Proceedings of ASEE Annual Conference

and Exposition, Jun. 2006.

[17] R. Santucci et.al., “Advanced functions of Java-DSP for use in electrical and computer engineering

courses,” in Proceedings of ASEE Annual Conference and Exposition, jun 2010.

[18] A. Spanias et.al., “Using the java-dsp real-time hardware interface in undergraduate classes,” in

Proceedings of IEEE Frontiers in Education, Oct. 2006, pp. 12–17.

[19] H. Kwon et.al., “Experiments with sensor motes and Java-DSP,” IEEE Transactions on Education, vol. 52,

no. 2, pp. 257–262, may 2009.

P
age 22.977.12

[20] A. Spanias et.al., “Java-DSP interface with MATLAB and its use in engineering education,” in

Proceedings of ASEE Annual Conference and Exposition, Jun 2004.

[21] A. Spanias et.al., “Using JDSP and LabVIEW to perform undergraduate labs,” in Proceedings of ASEE

Annual Conference and Exposition, Jun 2007.

[22] MATLAB Mobile, Available online at: http://www.mathworks.com/mobile/.

[23] Cocoa Frameworks, Available online at: http://developer.apple.com/technologies/mac/cocoa.html.

 [24] Akten, M., “NSArray vs. C Array performance”, Available online at:

http://memo.tv/nsarray_vs_c_array_performance_comparison. Last accessed 17 Jan. 2011.

[25] core-plot, “Cocoa plotting framework for Mac OS X and iOS”, Available online at:

http://code.google.com/p/core-plot/. Last accessed 17 Jan. 2011.

P
age 22.977.13

