Session 2533

A Java-based Authoring Tool for

Developing Power Systems Labware

P. Jayanetti, J. Olcott, J. Johnson, J. Patton
Department of Electrical and Computer Engineering
University of Maine

This paper describes our efforts in developing Java class libraries to provide multi-
media authoring capability similar to many high level commercial programming environ-
ments while also providing a rich mathematical simulation capability. The tools are being
used to develop multimedia based simulation labware to augment junior and senior power
systems labs. This authoring system will alow us to easily integrate C++ or Java models
of protective relays, three phase transformers, synchronous machines, and other equip-
ment. A World Wide Web page was created that contains additional material showing the
user interface. The Web page can be accessed at http://www.eece.maine.edu/Power/Java.

1 Introduction

Recently there has been a great deal of interest in developing multimedia based courseware
and labware [1, 2, 3,4, 5,6]. This project involves the creation of a Java based, multimedia
power plant simulator, to be used in coordination with a power system lab course [7]. The
simulator emulates Bangor Pacific’'s West Enfield Hydro-Electric Power Plant, located on
the Penobscot River in Maine.

Junior engineering students at the University will augment traditional labs with the
multimedia power plant simulator. The simulator will enable students to “connect” lab
experience using scaled down equipment to real-world power production and control sit-
uations.

Initially, we attempted to use commercialy available packages to develop the simu-
lator. Most multimedia authoring tools such as Apple’'s Apple Media Tool, Macromedia
Director, and mFactory’s mTropolis, do not provide the ability to easily integrate simu-
lation models written in C or C++. Furthermore, most of these tools are written for the
Apple Macintosh platform, and problems inevitably arise during porting of code to a PC
platform. Many platform and programming options were explored before we chose Java
as the development vehicle.

Java not only gives the ability to create a multimedia development environment, it
provides the ability to integrate C++ models into the project. Java is platform indepen-

T1°0/2'¢ abed



dent, and because its syntax is similar to C++, it allows easier porting of existing code.
Because network capabilities are also built into the Java language, we obtained the added
benefit of being able to make portions of the simulator available over our LAN and the
Internet.

Two major efforts were required in the development of the authoring environment.
The first focused on the Navigator, a class that defines the interaction between all the
other classes (and is the primary component the user must write). The Navigator is
further described in Section 2.

2 The Multimedia Authoring Tool

Using Java, we created the multimedia authoring tool, mmBrewer. This tool is comprised
of a collection of multimedia components al of which begin with the prefix “mm.”

The structure of the mmBrewer is analogous to a story book. Just as a story book
contains different pages, mmBrewer contains screens which serve as the framework. Each
screen contains images, text, and interactive components capable of initiating a variety
of responses. A collection of components comprise a screen, and a collection of screens
make up a title or the entire story book.

Class Library

The first objective was to create a multimedia class library. These classes are fairly
simple code snippets that access much more detailed Java code, and supply the variables
needed to initiate an action. Although Java libraries aready exist that provide a range
of functionality from basic data types to graphical user interface toolkits, they do not
directly facilitate multimedia programming. The classes developed in the mmBrewer
package make multimedia programming in Java as quick and easy as nearly any package
offered commercially.

The classes of mmBrewer extend other classes which share the same characteristics. In
Figure 1, note how the classes extend from one another. With the mmBrewer authoring
tool to build from, the ssimulation labware can be created easily without much knowledge
of Java. For example, one line of code can be substituted for pages of code and reused.
This saves time and minimizes the amount of redundant code.

Classes are placed within the tree structure based on information which is passed to
them. For example, mmimage is a class which contains a screen name, an image file
name, and placement coordinates. If a new class is developed which requires an image
and placement coordinates, its appropriate location is below mmimage. Furthermore, the
new class can contain inputs in addition to those provided by mmimage. This inheritance
property is a strong feature of object-oriented programming.

At the root of a string of classes is a superclass. All characteristics of a superclass
are inherited by the subclass. For example, a capability built into mmPainter (a subclass
of mmimage), such as the recognition of HotSpots (an area which warrants a specific
response), will be acquired by all other classes extended from mmpainter. However,

2'0/2'¢ abed



mmBREWER CONTAINER STRUCTURE
RUN TIME LAYER

STORAGE LAY —

——
.
~—
mmSCREEN mnscaes %2 TMSCREEN TMODEL 4 TASODEL

WITHI{V CQ%T’BNENT LAYER

i:}. ﬁ

Figure 1. Structure of mmBrewer

| mm#OTSPOT
{

if mmPainter includes the ability to change shades of color, another branch such as
mmlmage does not inherit this ability.

Navigator

The navigator acts as a “binding” of the multimedia title, connecting all pages and
defining all interaction. Typically, the user is not concerned with defining classes below
this root class. The user smply uses these sub-classes.

The navigator performs important tasks, which include:

loading of images and text

displaying screens as required

sending user interactions to the current screen

initializing start up

navigating between screens

e ordering shut down upon user-initiated quit

Each screen can be thought of as a “container” of media components, such as the
power plant background image, levers, switches, and lights. Once a screen is initiated,
Java renders the screen and its media objects. Some of the media objects, such as levers
and lights, can respond to events and messages.. Messages are coded into each screen not
only to act upon a certain event, but also to look for an action on any other screen. For
example, if there is a mouse down event indicating a breaker closed, the Java program
sends messages such as “show-red” to the breaker lights and “show-next-frame” to the
breaker lever to animate the action. When such events occur, a message is sent to other

€'0.2'z abed



objects and screens. For example, a “breaker-closed” message can be sent to the generator
model. Figure 2 describes the message structure of mmBrewer.

mmBREWER MESSAGE FLOWS

NAVIGATOR
e
S .
- ~

mmmmmmmmm MmMSCREEN 2 mmSCREEN o MMMODEL l mmMOPEL n T
I
IS N |

F |
; A TR Messages to SELF are . System messages
‘i X, \\ not posted .
B, ey Navigator reposts the message
¥ s " 10 ALL Screens

Screen reposts the message
to ALL Compornents

Figure 22 mmBrewer's Message Structure

During the preliminary construction of the simulator, images were collected from a
variety of sources. A portion of the images were rendered on a Macintosh using Alias
Sketch and Adobe Photoshop 3.0, and later imported to the PC platform. A number of
images were digitized from actual photographs of the plant. Other images were created
and rendered using MicroStation.

Two forms of animation are possible and were tried. The first method involves running
a Quicktime Movie to produce the desired animation. The second method is a process
of combining multiple images with Java painting actions. Painted animations were dis-
covered to have an advantage over Quicktime Movies. Quicktime Movies tended to slow
the program down, especially when animating several meter dials simultaneously. The
needle movement became jerky. Using Java, this problem was solved by simply rendering
a needle dynamically, similar to a clock’s second hand. The class responsible for this
animation runs on a different execution thread. Upon receiving a message, such as “turn
needle 40 degrees,” the thread keeps erasing and redrawing the needle until it reaches
its fina angle. The erase and redraw (called double buffering) is fast enough to provide
smooth animation. This technique aso reduces required storage for external media (e.g.
Quicktime Movies).

Interaction Modes

There are three modes of interaction with the simulator: control mode, exercise mode
and information mode. The control mode is the primary way students interact with the
simulator. Figure 3 depicts a screen in control mode. This mode stimulates learning
through trial and observation. The most obvious indication of control mode is the ability
to manipulate switches and adjust equipment settings and parameters. Meters, lights,

¥'0.2'Z abed



Figure 3: Control Screen

live text, flags, and audio indicators provide feedback comparable to that obtained in the
actual plant.

The exercise mode provides reinforcement of theory and principles learned in lecture
that are not immediately obvious from controlling the electrical plant simulation. For
example, students are able to view phasors related to synchronizing operations and the
effects of unlike phase sequence on each side of a connecting breaker. Although these
actions are illustrated in the simulator, the exercise provides more theoretical background.
A goal of the smulator is to model the (many times) limited feedback a plant operator has
in observing the plant operation. No such limitation exists in exercise mode. Its purpose
is to help explain the concept and can show phasors or other mathematical modeling
tools.

These exercises may or may not be directly required for plant simulation control, but
the simulator provides information or background on any such inquires.

‘The six stabs stown in this pictre connect
the e and loac sides of e besaker 10 ‘he
o Genaralor ug stared by both eaaIsar.

Figure 4: Information Screen

G'0.2'z abed



Information mode provides photographic and text information constituting a physical
description and context for the simulation. A sample information screen is shown in
Figure 4. A “drag and drop” question mark automatically acquires information about
any component upon which it is dropped. By means of two classes called mminfoBtn and
mminfoSc, information screens are reduced to a single line entry, a list of needed images,
and the appropriate text file. Associating each information screen with a component
allows the navigator to open the correct screen when the “drag and drop” message is
detected.

3 Simulator Model Description

With the multimedia authoring environment in place, the next step is to incorporate the
mathematical plant model. This is the component that calculates all values presented to
and received from the interactive screens. The simulator models the control and operation
of the West Enfield hydro-electric power station.

The model is sufficiently detailed to illustrate the fundamental concepts of the Junior
level Power System Lab course, but not so detailed as to overwhelm the student. Each
plant subsystem of interest is represented as a simulation module that is interconnected
to other simulation modules or physical devices. Where possible, an interface is made
to physical devices. In particular, programmable logic controllers (PLCs) can be pro-
grammed separately by students and interfaced to the power system simulator in much
the same way they are interfaced to the real world plant.

The heart of the model is a dual synchronous generator representation written in
Java. The output terminals of the synchronous machines contain three-phase voltage and
current information that is fed to the metering and protective relays. The relay outputs
are interfaced to the laboratory PLCs. Manual or PLC-operated generator field and gov-
ernor controls determine the machines behavior. A synchronizing switch enables manual
synchronization. The wye-grounded/delta power transformer is connected between the
main bus and the equivalent system. The equivalent system represents an infinite bus
behind the system impedance and draws or supplies real and reactive power based on the
synchronous machine field and governor controls.

4 Conclusions and Future Goals

At this point, the multimedia authoring tool has been completed. In addition, the major
components of the simulation model and several exercises have been completed. Present
activities include networking the PLC's and simulator and integrating all the systems.
We anticipate using the simulator for the first time in our lab class beginning in January
of 96.

The mmBrewer toolkit has drastically decreased component development time (e.g.
meters, levers, and breakers). Not only has the creation time been expedited, but expan-
sions and modifications involve minimum adjustments. The integration of existing C++

9'0/2'z abed



models has not only decreased the completion time of the project, but has created a truly
interactive environment. Although mmBrewer is currently being used for the power plant

sm

ulator, this tool is capable of developing a wide range of multimedia applications.
Our future goals include:

e high quality 16-bit audio support, Java currently handles only 8-bit format which
has proven inadequate

e a video class, athough Java does not support video, we hope to develop this capa-
bility through native code

e expand the simulator to include mechanical engineering functions and use the sim-
ulator in mechanical engineering undergraduate labs

Acknowledgements

The authors wish to thank the National Science Foundation Division of Undergraduate
Education Instrumentation and Laboratory Improvement Program, Bangor Hydro-Pacific
Associates, and the University of Maine Power Research Association.

References

il

f
3
4

)
6]

S.I. Mehta and S.M.Gronhovd, “Instrumentation and Communication Modules on
CD-ROM’s for Enriching Engineering Education”, IEEE Transactions on Education,
August 1996, pp 304-309

P.J. Mosterman et al, “Design and Implementation of an Electronics Laboratory
Simulator”, IEEE Transactions on Education, August 1996, pp 309-310

B. Aktan et al, “Distance Learning Applied to Control Engineering Laboratories’,
IEEE Transactions on Education, August 1996, pp 320-327

R. Ybarra, J. Glatz, and M Becvar,” Animations, Simulations and Other Learning
Stimulations: An Electronic Laboratory Tour” ,ASEE 1995 Annual Conference June,
1995 pp 1713-1717

A. Oloufa, “Bringing the Real World to the Classroom with Multimedia” ,ASEE 1994
Annual Conference June, 1994 pp 2742-2745

R. Abbanat, K Gramoll, J.Craig “Use of Multimedia Development Software for
Engineering Courseware” 1994 Annua Conference June, 1994 pp 1217-1222

J.B. Patton, P. Jayanetti, “The Making of Multimedia Power Systems Control and
Simulation Labware’, IEEE Transactions on Education, August 1996, pp 314-320

10,2’ abed



