Kepler Tech Lab: Developing an affordable skills-based engineering lab course in Rwanda

Ms. QinQin Yu, University of California, Berkeley

QinQin Yu is a first year physics Ph.D. student at UC Berkeley. Before starting her Ph.D., she spent one year as a part of the Kepler Tech Lab team, developing and testing a low-cost engineering teaching lab in Rwanda. She is interested in studying problems at the intersection of experimental physics and international development, including renewable energy, complex systems, and education.

Jakob Dahl, University of California, Berkeley

BS. Chemistry, Massachusetts Institute of Technology 2015, Cambridge, MA Laboratory Developer at Kepler Tech Lab, Kigali, Rwanda 2015-2016 Currently Graduate Research Assistant, Alivisatos Group, University of California, Berkeley, CA

Mr. Alphonse Habyarimana, Kepler Tech Lab

Alphonse Habyarimana is manager & developer of Kepler Tech Lab with the aim to improve and provide hands-on learning experiences for high school students and accelerates innovation through human-centered design, workshops, outreaches, and advising. He’s a member of International Development Innovation Network and a fellow at Stanford FabLearn. Alphonse holds an Associate of Arts degree in General Studies from Southern New Hampshire University with the partnership of Kepler Kigali, where he is completing Bachelor of Arts in Management. Prior to joining Kepler in the summer of 2014, Alphonse has studied Electronics and Telecommunication for three years at the Integrated Polytechnic Regional Center and earned a professional diploma, A2. At IPRC, he involved in electrical, electronics, and telecommunication workshops which all stimulated his interest in engineering education and digital fabrication. He educates youth to help them acquaint themselves with technical skills and hands-on experiments through STEM courses and independent projects.
Kepler Tech Lab: Developing an affordable skills-based engineering lab course in Rwanda

Practical hands-on education remains one of the main challenges of science and engineering education worldwide [1]. Numerous innovations have made it easier for teachers to incorporate hands-on lab activities into their curricula, including commercially available student lab kits, virtual labs [2], and maker space technology [3]. However, these innovations are often expensive and inaccessible in lower-income communities.

In addition to adapting existing technologies from developed to developing contexts, we need to find novel approaches to incorporate hands-on activities into global engineering education. The following problems should be addressed at all levels of education:

1. Current engineering curricula are designed to teach concepts important for western concepts.
2. Lab equipment is expensive and requires outside training to repair.
3. High student-to-teacher ratios lead to only a small number of students learning well.

Recent work in this area includes: Practical Education Network (PEN) [4], which runs teacher training workshops on incorporating low-cost science lab experiments into secondary school classrooms in Ghana. Peace Corps volunteers in Tanzania have created Shika na Mikono [5], a practical guide with hundreds of low-cost experiments for constructing physics, chemistry, and biology laboratories in secondary schools. Seeding Labs [6] and TReND [7] provide refurbished lab equipment to research universities in developing countries as well as run an in-person training program for technicians using the equipment.

While most engineering education innovation in developing communities address the primary, introductory secondary and advanced university levels, there are few efforts focused on the advanced secondary and introductory university levels, where engineering students are at a critical point for developing essential career skills.

Purpose

We developed and implemented open-source curricula for enrichment programs at the advanced secondary school and introductory university levels in Rwanda. Our purpose can be broken up into three parts:

1. Identify important engineering topics that are relevant in the local community and build a curriculum around these topics to teach essential skills.
2. Identify availability and cost of lab equipment, and design a rigorous curriculum that primarily uses affordable and easily accessible equipment or equipment that can be easily built (<$5000 in materials costs).
3. Develop lab guides and other learning resources that allow students to work self-guided, with the teacher being a facilitator rather than a lecturer.

In this paper, we describe the methods used in developing the lab model, including curriculum design, equipment acquisition, assessment techniques, and teacher support. We also present results of sample student works and student feedback as a qualitative measure of the impact of the lab model. Finally, we present challenges and limitations of the model as well as further
changes to adapt the model to other contexts.

Local partner organization
The project is a joint collaboration with students and staff at Kepler, in Kigali, Rwanda. Kepler is a private university program that uses a blended learning model to allow students to get an American-accredited Bachelors of Arts (B.A.) degree from Rwanda. Students receive a B.A. in communications, health care management, or management. The Kepler administrative staff expressed interest in developing a low-cost science and engineering lab on their Rwandan campus as well as in training student leaders to manage the lab.

Students enrolled in the Kepler B.A. program played main roles in the design, teaching, and revision of the lab model. While Kepler teachers were not directly involved in designing and testing of the project, Kepler teachers provided teaching professional development to lab teaching fellows. The project is currently being headed by Alphonse Habyarimana, a current Kepler student, in Kigali, Rwanda. While this project is ongoing, the focus of the contents of this paper will be on work done from August 2015 to July 2016.

Methods

Curriculum design
We used an iterative process to design and test the engineering enrichment program curriculum. We considered three related factors: module topics, available lab equipment, and skills learned. The modified curriculum presented here follows from the results of: a 1-month initial field visit, 6 months of experiments testing in the U.S., and 4 months of curriculum testing with Kepler students in Rwanda.

The purpose of the modular curriculum was to expose the students to select broad engineering challenges that are highlighted in the Rwandan government’s Vision 2020 document [8]. The specific experiment topics were then narrowed down based on student interest and cost of experimental materials. Each module was 4 weeks long with 9 hours of instruction each week, totaling 4 modules and 16 weeks for each class. The following modules were taught:

1. Engineering skills: students will be able to estimate uncertainties from raw data, program basic code in Python, use Python to draw quantitative conclusions from data, and visually represent data. Students will be able to make a short oral presentation on a technical topic.
2. Electronics recycling: students will be able to make and measure basic electronics circuits to make an amplitude modulated radio receiver.
3. Solar energy: students will be able to make and analyze basic (inefficient) solar cells.
4. Independent project: students will be able to brainstorm, identify, and research a technical problem in their community, and iteratively prototype and test a solution.

Daily pre-class activities included: reading the lab guide, answering questions about content of readings, or online simulations to review theoretical knowledge needed for experiments. Daily in-class activities included: doing experiments, answering questions from teaching staff, and data analysis. The pre-class and in-class activity materials were developed by teaching fellows, A. Habyarimana, J. Dahl, and Q. Yu by synthesizing multiple online materials. At the end of each module, students delivered a 15-minute public oral technical presentation with the following
components: motivation, data collection methods, data analysis, and results.

Equipment acquisition
We constrained possible experimental topics to those that used materials readily available in Rwandan shops, could be ordered online with <1 month delivery time, or equipment that was easily built. While in the initial designs of the lab model we hoped to entirely use locally-available materials, we found that some local materials were low-quality and 2-5 times more expensive than materials that could be ordered online. Thus, we chose to order some electronic and machine shop materials online at Aliexpress.com. The lab materials totaled $3500, excluding infrastructure costs. A complete list of materials and their sources are available at keplertechlab.wordpress.com/technical/lab-equipment.

Assessment techniques: formative assessments
In response to feedback from local employers that university graduates had few practical skills, and in-line with Kepler’s assessment method, we developed a set of 15 competencies for student formative assessment (see Table 1). The competencies were chosen based on prospective employers’ feedback, ease of evaluation, and student interest.

Table 1: Competencies for student formative assessment
*Kepler general competency

<table>
<thead>
<tr>
<th>Lab Technical</th>
<th>Communication</th>
<th>Professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical problem solving</td>
<td>Data analysis and visualization</td>
<td>*Takes initiative</td>
</tr>
<tr>
<td>Questions results</td>
<td>Documentation</td>
<td>*Works collaboratively</td>
</tr>
<tr>
<td>Systematic scientific thinking</td>
<td>Technical communication</td>
<td>Resourcefulness</td>
</tr>
<tr>
<td>Experimental setup</td>
<td></td>
<td>*Meets deadlines</td>
</tr>
<tr>
<td>Experimental design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building circuits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Students were assessed on a scale of 1-Novice, 2-Emerging, 3-Developing, 4-Proficient, 5-Advanced, to 6-Expert for each competency 1-4 times throughout the 16-week course and received both written and oral feedback after each assessment. All teachers and teaching assistants assessed students and the final score was averaged. Lab technical competencies were evaluated in specific modules by teacher observation, with the exception of programming, which was evaluated using student code. Communication competencies were evaluated during the 15-minute student presentation at the end of each module. Professional competencies were evaluated throughout the course at randomly chosen times by teacher observation, with the exception of the meets deadlines competency, where half-points were deducted from 6 (expert) for each late assignment.

Figure 2 gives an example of a competency rubric and a corresponding assessment of a sample student work by teachers.
Figure 2: Abridged competency rubric for “data analysis and visualization” competency and corresponding feedback of a sample student work by teachers.

Assessment techniques: summative assessments

In order to measure student success independently of the results of the formative assessments, we had students do an independently motivated project to demonstrate the skills they learned in the course. Project deliverables included a project proposal, 3 blog posts, and a 15-minute public oral presentation. Students were evaluated on the following four criteria due to their importance in global development engineering programs:

1. Innovation: Has the project idea been implemented before in this context? Did the student consider working with existing teams or brainstorm new ideas for the project?
2. Feasibility and affordability: Is it possible to develop/research something novel in the four-week independent projects period? If applicable, is it possible for the intended audience to afford the product?
3. Relevance to the community: Does the solution or research relate to important problems for the community? How likely is it for the intended user to use the technology?
4. Relevance to skills learned in class: How much does the project use skills that students learned in the class versus knew before taking the class?

For innovation, teachers guided students in brainstorming and doing background research on the internet and in the field. Each class did a 3-hour brainstorming exercise where the teacher gave 3-4 broad topic ideas (ex. agriculture, transportation, sanitation, etc.); students did internet research for 15 minutes on each topic; the whole class listed as many ideas as possible; students
identified top choices for the above 4 criteria.

For feasibility and affordability, students were required to prototype any models from easily modified materials such as cardboard and paper before using more permanent materials such as wood and plastic. To address relevance to the community, students were given a small stipend to do field visits. For example, after visiting a nearby rice field and interviewing farmers about the current challenges they face, one student team became interested in creating a device to scare birds and other pests from fields.

Teacher support

We developed, tested, and revised open-source lesson plans and teacher troubleshooting guides, and the most current versions are available online at keplertechnlab.wordpress.com/course-material. Each lesson plan contains learning objectives, competencies to be evaluated for that day, student pre-reading, a warm-up activity, in-class activities, experimental set-up, and common student questions and their associated answers.

In order to create a self-sustaining lab team, we also developed a teaching fellow training program to train new teachers. Teaching fellows were selected from Kepler student applicants and the criteria for selection included: basic science, engineering, or programming background; enthusiasm for educational innovation; ability to work in a team; leadership ability. Table 2 details the phases of the teaching fellow training program.

Table 2: Phases of the teaching fellow training program

<table>
<thead>
<tr>
<th>2 weeks training</th>
<th>16 weeks teaching assistant</th>
<th>Lead teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learn basic technical skills, become familiar with lab goals</td>
<td>Review daily lesson plans with main teacher, facilitate small hands-on activities, evaluate students competencies, participate in weekly 1 hour professional development session</td>
<td>Lead a team of 1-2 teaching assistants, modify daily lesson plans based on pace of course and student interest, meet with lab manager on a bi-weekly basis to set and advance professional goals, participate in weekly 1 hour professional development session</td>
</tr>
</tbody>
</table>

Results

The results presented here are of two instantiations of the course from January – May 2016 (course 1) and April – July 2016 (course 2). The lead teacher in course 2 was a teaching assistant in course 1. Students were selected from a pool of local student applicants in 12th grade of secondary school and 1st year of university. Students were selected based on: (1) strong theoretical background, (2) little prior hands-on lab experience, (3) interest in a hands-on engineering or engineering management career, and (4) English proficiency. Course 1 had 39 applicants and course 2 had 70 applicants; 24 students were chosen for each course. While students did not receive credit for the course, they did received a certificate of completion with a list of their proficient competencies at the end of the course. Unfortunately, as the incentives for taking the course were mainly self-driven, we had only a 50% retention rate in both courses. Most students who dropped the course stated that another commitment had come up had taken
priority. The qualitative results presented in this section are from the students who completed the entire course.

Summative assessment of independent projects

Students collaborated in pairs to brainstorm and test a wide range of independent projects in topics of agriculture, recycling, transportation, and energy. Table 3 gives student projects and the associated summative assessment.

Table 3: Sample student independent projects and the summative assessment criteria met: innovation (I), feasibility and affordability (F), relevance to community (Comm), and relevance to skills learned in class (Cla).

<table>
<thead>
<tr>
<th>Student projects</th>
<th>Description</th>
<th>Summative assessment criteria met</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus system simulation</td>
<td>Python model for simulating bus and passenger movement</td>
<td>I, Comm, Cla</td>
</tr>
<tr>
<td>Plastic recycling</td>
<td>Process for making thin plastic fibers from recycled plastic pieces</td>
<td>I, Cla</td>
</tr>
<tr>
<td>Crop data analysis</td>
<td>Analysis of supply and nutrition of different crops in Rwanda</td>
<td>I, Comm, Cla</td>
</tr>
<tr>
<td>Bike-powered generator</td>
<td>Prototype bike-powered cell phone charger</td>
<td>F, Comm, Cla</td>
</tr>
<tr>
<td>Fixing broken electronics</td>
<td>Process for repairing radios in local home solar installation systems</td>
<td>F, Comm, Cla</td>
</tr>
</tbody>
</table>

Student feedback

Students responded to optional feedback surveys at the end of each module and at the end of the course, with about a 50% response rate. Especially in course 1, students noted that some pre-reading material was too difficult, as they presented concepts that were unfamiliar. As a result, we decided to give less pre-reading material and incorporate mini-lectures into class sessions for course 2. Students responded better to more in-class activities and fewer pre-class assignments.

At the end of the course, most students felt that they had learned something they wouldn’t have otherwise learned in their high school science and engineering courses. Below are a few quotes from students:

“*My experience from Kepler Tech Lab helped me to be able to think and understand more of the experiences and the physical use of what I learned in theory from the beginning of my studies.*”

“*Before Kepler Tech Lab started, I thought that hands-on experience requires a person to be an expert in what he is going to do. However, a person [can] learn more throughout entire experiment. It requires taking initiative and [an] optimistic mindset. [Whether] you fail or succeed, all results in experiment help a person to learn new things.*”

“*From Kepler Tech Lab I gain knowledge in working with others, making a study on something to participate in resolution of problems and making research for more study.*”
Challenges and limitations
Challenges with the current lab model include:

- It is not financially sustainable as a standalone lab
- Course is introductory and students need more in-depth follow-up courses to further develop critical thinking skills
- Incentive models for students for the enrichment course need to be further developed

The lab model described in this paper is the result of lessons learned from a first model and the model described in this paper has since evolved to a third iteration, both of which are not described in this paper (see Table 4).

In the third iteration of the course, the current lab manager Alphonse Habyarimana is pursuing his and current student interests in incorporating more workshops on makerspace techniques (using arduinos, programming in SCRATCH), creative capacity building, and social entrepreneurship into the curriculum.

Table 4: Iterations of the lab model

<table>
<thead>
<tr>
<th>Model</th>
<th>Date</th>
<th>Topic focus</th>
<th>Student population</th>
<th>Incentive model</th>
<th>Lead teachers</th>
<th>Main lessons learned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Aug. 2015-Dec. 2015</td>
<td>Science</td>
<td>20 first year university students at Kepler</td>
<td>Kepler credit</td>
<td>2 American university graduates</td>
<td>Engineering more engaging than science, large student population outside of Kepler interested in the course</td>
<td></td>
</tr>
<tr>
<td>Model 1: Jan. 2015-July 2015</td>
<td>Engineering</td>
<td>15 first year university and twelfth grade high school</td>
<td>Certificates</td>
<td>3 advanced Kepler students who were teaching fellows in previous iteration</td>
<td>Large student interest in makerspace technology</td>
<td></td>
</tr>
<tr>
<td>Model 3: Sept. 2015-</td>
<td>Engineering and makerspace</td>
<td>Middle school and high school</td>
<td>Certificates</td>
<td>Kepler student A. Habyarimana</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions and Future Work
In collaboration with students at Kepler in Rwanda, we developed and tested a low-cost engineering teaching lab model and implemented it with 12th grade and 1st year university students in Rwanda. While the course contains novel curriculum that is specifically relevant for the Rwandan context, many topics are also relevant for East Africa and other developing communities around the world.

There are two possibilities to address the low student retention rate. The first is to keep the course as an enrichment course and incorporate more external incentives into future iterations of
the course. Ideas that we have considered include: higher registration fees, opportunities to apply for internship upon completion of course. The second, more long-term, option is to incorporate the lab course into a high school or university science program. While this presents some logistical and administrative challenges, we see this as being the most financially sustainable option for this type of low-cost lab model.

We have done initial tests of the model in a refugee camp setting in rural Rwanda and have found that the model attracts interest from refugee students. In addition, we have implemented some of the hands-on activities described in the curriculum as a part of a one-day engineering outreach day for local high school and university students in Kigali, Rwanda and received enthusiasm from participants. Thus, we see that components of this course model can be applicable in situations where cost, teacher training, and strict curricula are challenges, including: schools unable to afford a laboratory, refugee camps, or afterschool enrichment programs.

Acknowledgements

The authors thank Kepler (kepler.org), our partner university program in Kigali, Rwanda, and the Priscilla King Gray Public Service Center at Massachusetts Institute University (MIT), both of whom provided financial support and invaluable professional development throughout the duration of this project. We wish to thank D-Lab at MIT for providing a space and Pedro Reynolds-Cuellar for providing mentorship for initial testing of experiments. Thank you to the following funding sources: MIT IDEAS Global Challenge, Tau Beta Pi fellowship at MIT, MISTI, and supporters of Indiegogo crowdfunding campaign: *Create a Science Lab Revolution in Rwanda!* We wish to thank past team members who played a critical role in the development of the project: Athanase Nzayisenga (Kepler ’15), June Park (MIT ‘16), Alex Yu (UIUC ‘15). Thank you to Ben Wood for providing professional development workshops. We also thank Keely Swan (MIT IDEAS Global Challenge), Anne Marshall (MIT Teaching and Learning Labs), and Rachel Dzombak (UC Berkeley) for providing feedback on drafts of this paper.

References