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INTRODUCTION 

 

Regression models are widely used in engineering practice, especially in 

mechanical and chemical engineering and in related fields. They are used to represent 

data and to calibrate instruments among other applications. Standard textbooks address 

linear regression models well, and some also address the associated statistical 

uncertainties of linear models. This uncertainty of a model is the range of uncertainty 

about the systematic dependence of the dependent variable on the independent 

variable(s). 

 

 Unfortunately, none of the popular texts reviewed for this paper adequately 

address polynomial models and their uncertainties, probably because polynomial models 

seem to be common mostly in engineering applications. In contrast, polynomial models 

are not so common in fields such as medicine and social sciences that seem to attract 

more interest from professional statisticians. Nevertheless, it has been shown elsewhere 

(Jeter, 2003) that Error Propagation Analysis (EPA), which is already familiar to most 

experimental engineers, can be used to find the uncertainty of both linear and polynomial 

models.  

 

While the underlying philosophy and mathematics concerning the uncertainty of 

polynomial regression models is not especially complicated, the practical implementation 

requires multiple executions of auxiliary regressions. These extra steps are quite time 

consuming when each step must be defined manually, and the extra manual steps are 

likely to induce procedural errors. To make the calculation and plotting of the results 

simple and easy, a special Excel utility routine called a User Form that is described in this 

paper was programmed.  

 

In the balance of this paper, the statistical and mathematical background for this 

technique will be reviewed, the algorithm for the implementing the technique will be 

outlined, and a couple of representative practical examples from mechanical engineering 

will be presented. 
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BACKGROUND 

 

A typical polynomial model is this general quadratic formulation, which relates 

the dependent variable y to a polynomial in terms of the independent variable x, 
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It is relatively well known that the result of least residual squared error regression 

analysis can always be written in a more convenient form by using centered variables. 

The alternative formulation for the quadratic model above is actually 
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This centered formulation is much more convenient for uncertainty analysis. Note that 

the specified model had a constant term. Otherwise the data could not be centered. 

 

The exact relationship between the independent and dependent variables will 

always elude experimentation because the data is always contaminated by random error.   

The experimental engineer and the user of experimental data need not only the 

experimental model but also some reasonable estimate of the range of uncertainty in the 

model. As reviewed below and as has been shown elsewhere, Error Propagation Analysis 

(EPA) can be used to find the statistical uncertainty of the model, which is the uncertainty 

about the systematic dependence of y on x.  

 

In general EPA is based on the following familiar formula for calculating the 

combined uncertainty when multiple independent sources of uncertainty exist. In this 

case the sources of uncertainty are the set of experimental parameters, which are 

identified as the pi set in the equation 
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The contributing uncertainties are the set of Ui values that correspond to each 

experimental parameter pi. 

 

This uncertainty calculation is unusually complicated in polynomial models 

because the coefficients are strongly correlated when a polynomial relationship applies. 

For example, consider a quadratic relationship in which y tends to increase monotonically 

with x.  In this case, a relatively small value of the linear coefficient, b1, is likely to be 

correlated with a relatively large value of the quadratic coefficient, b2, and conversely. In 

consequence, the familiar formula for combining sources of error must be modified to 

adjust for this correlation. Specifically, the correct uncertainty of the polynomial model 

must be expressed using conditional uncertainties. The resulting formula for the so-called 

Standard Uncertainty, which is analogous to the standard deviation, is as follows 
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Here n is the number of data points. The symbol ( )01 pbu  stands for the conditional 

Standard Uncertainty of the i-th coefficient with all the other parameters, represented by 

p0, held fixed. Note that the preceding equation begins with the well-known formula for 

the uncertainty of an average, which is itself easily obtained by EPA. 

  

Evaluation of the preceding formula requires values of the conditional 

uncertainties. This slightly complicated auxiliary calculation requires extra regression 

steps. Specifically, the influence of any one coefficient must be isolated.  The first step is 

executing a full regression analysis that computes all of the parameters - the constant and 

all the coefficients.  

 

The next step is to sequentially evaluate the conditional uncertainty of each of the 

coefficients. This evaluation is done by conventional regression analysis after first 

correcting the dependent variable data for the influence of the other coefficients. 

Specifically, the correction is done by subtracting all the terms involving the other 

coefficients. The corrected independent variable corresponding to the coefficient bi has 

the following general formulation, 
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Here the summation is over all indices and powers not equal to the specific i. The 

corrected y data are now regressed on the corresponding x
i
 data only. Of course, within 

numerical accuracy, the original constant and coefficient will be returned. In addition, all 

standard regression packages, including the Excel data analysis tool package, will return 

the Standard Error of the Coefficient. Typically, this statistic is only used for significance 

testing, but it is also the best available estimate of the needed conditional uncertainty of 

this coefficient. This process is repeated until all of the needed conditional uncertainties 

have been computed. 

   

The extra steps are time-consuming and complicated; consequently, most students 

and practitioners avoid finding the uncertainties of such models. In the next section, a 

very handy Excel User Form that completely automates this task will be presented.  

 

 Occasionally regression models with the constant arbitrarily set to zero are 

desired. There is little readily available published guidance about the proprietary of such 

models, but there are valid practical reasons for adopting them. For example, many 

secondary instrumentation transducers can be adjusted or programmed to virtually ensure 

a zero output with a zero input. In such cases, a homogeneous calibration formula seems 

essentially mandatory. The User Form also has an option to calculate the uncertainty of 

such homogeneous models. When the constant term is excluded, the data cannot be 
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centered. Then the formula for combining uncertainties gives, in the quadratic case for 

example, 

 

 ( ) ( ) ( )202

222

01

22

model-hom 0 pbuxpbuxu ++=  (6)  

 

As before, p0 stands for the other parameter(s). The zero term is included here just to 

emphasize that the uncertainty of the constant must be zero if it has been set to the 

arbitrary exact value of zero; consequently, the uncertainty of the model itself must be 

exactly zero at the origin. This feature emphasizes the severity of this restriction.  

 

 Hopefully this section has now adequately addressed the formulation of the 

Standard Uncertainty of general and homogeneous polynomial models. In practice, the 95 

% uncertainty limit or Expanded Uncertainty is needed. This statistic is calculated as  

 

 modelcA ukU =  (7) 

 

In the preceding formula, the multiplier kc is the appropriate coverage factor. Assuming 

with good confidence that small sample statistics apply, the coverage factor for the 95 % 

range is computed with the classical t-distribution. Note that the number of statistical 

degrees of freedom will be the number of data minus the number of parameters. This 

Expanded Uncertainty is identified as the Uncertainty A of the model because, in 

compliance with modern usage (Taylor and Mohr, 1999), it is the uncertainty calculated 

by statistical analysis of repeated measurements. Uncertainty A was formerly and 

conventionally known as imprecision. Ultimately this Uncertainty A will be combined 

with a user supplied value for the Uncertainty B or range of possible bias according to the 

general formula for combining uncertainties, 
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To complete the uncertainty analysis, the form will also compute and plot the Uncertainty 

A of the data by the familiar formula, 

 

 SEEkU cMODEL A, =  (9) 

 

Here the SEE is the usual Standard Error of Estimate, which is essentially the square root 

of averaged squared deviation of the data from the model. The SEE is obviously 

analogous to the Sample Standard Deviation (SSD) for a simple sample. Recall that the 

SSD is essentially the square root of the averaged squared deviation from the mean. This 

uncertainty limit is useful for comparing the data with the model to inspect. For example, 

it can be used to scan for possible spurious outliers. 

 

The User Form presented in this paper computes and plots the Uncertainty A for 

the model defined above and the simpler Uncertainty A of the data in Equation (9). P
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Obviously this User Form can be very useful to experimentalists and beneficial to users 

of data, and it will be described and outlined in the next section. 

 

 

DESCRIPTION OF IMPLEMENTATION  

 

The algorithm for this uncertainty analysis has been implemented in an Excel 

utility called a User Form. The dialog box for the form is shown in Figure 1. Note that the 

dialog box includes inputs called ComboBoxes that allow the user to identify the ranges 

for the dependent “Y Data” and the independent “X Data”. Recall that the block of X-

Data must be contiguous columns.  

 

 

 
 

 

Figure 1. The Dialog Box for the User Form Called Poly_Regress 

 

 

The form also has a text box to identify a cell containing a constant value for the 

Uncertainty B of the data. Recall that the Uncertainty B or inaccuracy is the range of 

possible built in bias in the data. The Uncertainty B cannot be evaluated from statistical 
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analysis. Instead, it requires physical analysis that usually involves Error Propagation 

Analysis. Ultimately an estimate of the Uncertainty B should be evaluated, but it is not 

required for the form to execute. Indeed, the output sheet of the form has been designed 

so that Uncertainty B data can be added and graphed even after the form has executed. 

The Uncertainty B will be combined with the statistical Uncertainty A to form the 

Combined Uncertainty of the model. 

 

The form also includes another purely optional cell for a factor to arbitrarily 

inflate the coverage factor so that the error limits can be made large enough to be visible. 

This inflation is only desirable for illustration, but in the fortunate cases when the 

uncertainties are relatively small, it is a very desirable feature. This multiplier can also be 

adjusted in the output sheet after the form has executed. 

 

The next box was added to resolve an apparent problem encountered in Excel 

2003, but not in earlier versions. In some applications when the polynomials differ by 

several orders of magnitude, such as with absolute temperatures, numerical difficulties 

probably related to ill-conditioned matrices were encountered. This problem disappeared 

when the higher order variables (i.e., x
2
, x

3
) were renormalized to make them roughly the 

same order of magnitude as the linear terms. The User Form would not need to be aware 

of the scaling except for its plotting functions; however, if the user scales the independent 

variables, the scaling factors must be identified for the output plots to be meaningful. 

Most conveniently the factors should be in a row just above the block of independent 

variables. It is mandatory that the scale factor for x be explicitly unity, and the other scale 

factors are constants used as follows, 

 

 jj xkx SScaled =  (10) 

 

This problem appeared only in Excel 2003 and not in earlier versions. In any event, 

scaling to normalize the independent variables is probably always desirable in critical 

applications to minimize numerical errors. 

 

 The last box is a check box used to select a homogeneous model with the constant 

set equal to zero. 

  

The Visual Basic for Applications (VBA) code for this User Form is very 

cluttered with bookkeeping and plotting functions, so it is not included in this paper. The 

form is readily available on the author’s academic web site (Jeter, 2004). In outline, the 

subprogram is organized as follows:  

 

(1) Input data and parameters are identified, a new output page is created, 

and some information and preliminary data are posted on the output page. 

 

(2) The basic full regression, which identifies the regression parameters, 

the constant and coefficients, is performed, some summary output data are 

posted, and the regression model is calculated and posted on the output 

sheet. 
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(3) The corrected dependent variables, according to Equation (5) are 

calculated, the corresponding conditional uncertainties are computed, and 

the results are posted on the output sheet. 

 

(4) Preparations are made to plot the data points and the smooth curve 

representing the model, the roughly parallel curves representing 

Uncertainty A of the data, and the roughly hour-glass shaped curves 

representing the Combined Uncertainty of the model. The model and the 

error limits are tabulated in 41 rows to ensure that smooth plots result. 

Actual Excel formulas, not fixed values, are tabulated for the Uncertainty 

A cells and the Combined Uncertainty cells so that the user can later 

update the coverage factor inflator and the Uncertainty B data at will. 

 

(5) Some summary data including the trivial average Uncertainty A of the 

data and the important average Combined Uncertainty of the model are 

computed. These data are posted in cells P2 and P3 on the output sheet. 

 

(6) Finally the smooth versions of the model, the Uncertainty A error 

limits for the data, the Combined Uncertainty error limits of the model, 

and the experimental data are plotted on a separate chart. 

 

Note that the code uses the regression utility from the Excel Data Analysis Tool Package. 

This usage absolutely mandates that the VBA version of that Tool Package be installed 

and be identified as a so-called Excel Add-in.  In addition, the form assumed that a 

particular and convenient default chart has been defined by the user. This chart called 

Typ-XY is incorporated in the Excel workbook called Default.xls that is available from 

the author’s web site (Jeter, 2002). 

 

 

EXAMPLE APPLICATIONS  

 

The first example is processing of vapor pressure data in a typical undergraduate 

laboratory exercise. In this experiment, vapor pressures of the modern refrigerant R-134A 

are measured over a range of temperatures. The data are processed and then regressed 

and plotted according to the classical Clausius-Clapeyron model. In this model, the log of 

the vapor pressure normalized by unit pressure is regressed on a polynomial of the 

inverse temperature. Such models are almost universally used to represent vapor pressure 

data. The two models considered are the linear formulation, 
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and the quadratic formulation, which is represented by the following equation, 
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An example output plotted by the User Form called Poly_Regress is shown in Figure 2. 

In the figure, note that the model has some slight curvature, which tends to justify the use 

of the quadratic model for this data. Also note the roughly parallel curves representing 

the Uncertainty A of the data and the roughly hour-glass shaped curves representing the 

Combined Uncertainty of the model. This uncertainty analysis would be very tedious if 

done manually, but the User Form makes this fairly challenging example very easy to 

execute. 
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Figure 2. Plots of Vapor Pressure Data, Model, and Uncertainty Limits. 

 

 

 

 

The next example involves calibration. Figure 3 shows the results of regression 

analysis of calibration data for a research quality constant temperature thermal 

anemometer. 

 

The thermal anemometer data is processed in the form of a normalized wind 

speed versus a homogeneous fourth degree polynomial of a normalized bridge voltage. 

The calibration function recommended for this instrument is shown in the following 

equation, 
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In Equation (13) the normalized velocity, Y, is 10 times the ratio of the current velocity to 

the maximum used in the calibration 
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and the normalized voltage, X, is calculated using the current voltage, the still air voltage 

e0, and emax the voltage at maximum wind speed, or 
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Note that the normalization makes the use of a homogeneous function at least reasonable 

if not mandatory. 
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Figure 2. Plots of Thermal Anemometer Calibration 

  

In this example the Uncertainty B of the calibration was arbitrarily set to zero to 

emphasize that the Uncertainty A of the model was required to be zero at the origin by 

the choice of a homogeneous model. Note also that the influence coefficient multiplier P
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was set to 5 here to exaggerate the error limits, which otherwise would be almost 

invisible. 

 

CONCLUSION 

  

 An Excel User Form especially programmed for polynomial regression analysis 

and the accompanying uncertainty analysis has been described and presented. This form 

makes the extra rather complicated steps of error analysis related to polynomial models 

simple and easy. The underlying theory and two practical examples were also presented. 
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