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Laying The Foundation For Nanoscience And Nanotechnology 

With An Introductory Module For High School Students 

 
Abstract 

 

In response to the need to create a skilled workforce in nanotechnology and to excite young 

students with the wonders and potentials of science, the National Center for Learning and 

Teaching in Nanoscale Science and Engineering, is developing educational materials for grades 

7 – 16. Learning theory and cutting-edge research are used in the development of modules on 

nanoscience and nanotechnology. This paper describes the rationale for such materials and 

describes an introductory module in which students are lead through a series of inquiry-based 

and hands-on activities, which lead to a design project. Its goal is to teach an underlying 

principle in nanoscience and nanotechnology—the significance of the surface-area-to-volume 

ratio as objects get very small. The first section of the module investigates how the physical form 

of a material can influence the degree to which an object interacts with its environment. Different 

forms of different materials (steel, superabsorbent polymer, and sugar) are investigated as a 

function of dimensionality and size. The second section is centered on math tools needed to 

express very small quantities, viz., powers of 10 and scaling, and we intend that students get a 

feel for how small “nano” is. Shape and size effects on surface areas and volumes are explored in 

the third section. Graphs illustrate how the surface area to volume ratio changes with size. 

Consequences of such a trend are discussed in readings about nature and new technologies. The 

culminating event is an open-ended design project that incorporates the concepts from the 

previous activities and facilitates engineering design skills. Preliminary field testing has yielded 

both qualitative and statistical results. 

 

Introduction To the Science & Technology 

 

A seed was planted in 1959 by Richard Feynman when he postulated that it was possible to write 

“the entire 24 volumes of the Encyclopedia Brittanica on the head of a pin.”
 1
 The idea lay 

dormant until the early 1980s, when technology made it practical to visualize and even 

manipulate individual atoms on surfaces. The result was a new realm of science and 

technology—the nano-realm. The nanoscale is between the microscale and the atomic scale. 

With respect to lengths, the nanoscale ranges between about 1 and 100 nanometers; it may 

extend into the hundreds of nanometers. 

 

Being able to understand and manipulate objects and functions at this scale has extraordinary 

potential for two general reasons. The first may be obvious. Feynman’s proposal is an example. 

Just being small—very small—is sometimes a big advantage, as in information storage, and as in 

interacting with other small things. For example, the building blocks of life are nanoscale 

objects. The medical area is expected to be especially impacted by nanotechnology. 

 

The second reason is not so obvious. It may seem surprising that a scale larger than the atomic 

scale is a new area of science and technology. Nevertheless, it is true that scientists understand 

the atomic scale much better than the nanoscale. This is because the nanoscale does not “play by 

the rules”. The “rules” that are relevant for the microscale (and larger), Newtonian mechanics, 

and those for the atomic scale, quantum mechanics, are well understood. It is somewhere in the 

nanoscale—in the transition from the dominance of one set of rules to the other—where 

surprising behaviors are opening doors to possibilities where we did not know that doors even 

existed, such as a piece of tape 1 cm
2
 that can hold up 20 kg—and then be removed as easily as a 
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sticky note, or particles much smaller than a light wavelength that change their color just by 

changing size, or the power of a supercomputer on your desktop. And this is not even the tip of 

the iceberg. Because nanotechnology holds the promise of building things as nature does, atom 

by atom, “it holds the potential to change everything.”
 2 

 

From Scientific Research To the Classroom 

 

Thus nanoscience and the technology that it motivates may be among the most significant 

science/technology revolutions to date. The National Science Foundation had this in mind when 

it launched a comprehensive effort to enhance nanoscale science and engineering education. The 

effort began in stages over the range of years 2000 – 2005, beginning with graduate education, 

then undergraduate, high school, and K – 8. 

 

There are several reasons that argue for the study of the nanoscale in pre-college education. 

Nanotechnology is an enabling technology; it is not a technology category, but will make 

possible advances in many areas. Thus many policy decisions will arise for which citizens should 

have achieved a level of scientific literacy to make informed decisions. The number of such 

decisions will also grow because with great potential comes great hype. Citizens should have a 

knowledge base to help them separate the bad propaganda from the good. 

 

A second reason for pre-college nanoscale education is the need to stimulate a desire in more 

students to pursue science or engineering in college, and for a subset of them to pursue 

nanoscience and technology. Student enrollment in college courses for science, technology, 

engineering, or math careers has been roughly constant for 10 years, while the need, even 

without the ensuing growth in nano, is not being met. “As nanotechnology moves into the 

mainstream, companies ... will face a serious shortage of talent—far worse than what is already 

occurring.”
 3
 Yet, “[a]t the secondary level, teachers, counselors, and administrators, for the most 

part, do not recognize the coming impact of nanotechnology... .”
 4
 An introduction to 

nanoscience and technology may be especially motivating both because of the extraordinary 

potential of the technology and because students will see here, more than with other areas of 

science, that it is a very unfinished business; science is a very dynamic enterprise. 

 

Yet another reason is the possibility of a synergistic effect upon learning traditional science 

topics, most probably, the structures and functions of atoms and molecules. Misconceptions 

about the atomic scale are common and are due in part to the lack of direct experience at that 

scale. They are greatly compounded when the experiences that scientists tell us about are so 

qualitatively different from our macroscale familiarity. Thus we rely on models, which often are 

macroscale analogs (e.g., the “solar system” model of the atom). If, however, we offer to 

students a continuous journey of learning from the macroscale through the micro- and 

nanoscales to the atomic, students can “see” the manifestation of the electron cloud behavior as 

they “get close” to an atom. The difference in the curriculum is analogous to the following. The 

typical curriculum progression of macroscale—microscale—atomic scale (skipping the 

nanoscale) is like first learning about an airport and its environs, and then taking off in a 

seaplane, flying above the clouds, and landing in an ocean, with no idea of the relationship 

between land and sea. But if the nanoscale is inserted, the analogous journey is traveling on land P
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to the shore and then stepping onto a boat. The traveler has seen everything along the way and 

knows exactly where he/she is. 

 

Finally, nanoscience and technology are inherently interdisciplinary because nanoscale 

phenomena are functions of size, not of some other delineating factor that defines disciplines, 

such as living vs. nonliving. This word interdisciplinary is almost ubiquitous when nanoscale 

research groups are described. Often more than one physical science area is represented (e.g., 

physics, chemistry, materials science), and if a biological system is the research interest, 

molecular biologist will be on board. The collaboration between biologists and chemists, 

especially will increase as biological applications increasingly involve surface chemistry. When 

the science interacts with technology, a corresponding range of engineers will contribute. Such 

collaboration often occurs in other areas of research (although it is generally most germane to 

nanoscale research), and scientists and engineers concerned with high school education have 

long advocated interdisciplinary lessons. 

 

For practical reasons, lessons about the nanoscale usually will be a good fit in a physics or 

chemistry class, but a strong argument can be made for biology. Nanotechnology is expected to 

have a huge impact on biotechnology, and more fundamentally, a biological cell is a highly 

evolved nanomanufacturing facility. 

 

Having justified the task, its difficulty should be acknowledged. The scale of the phenomena 

makes direct observation in a pre-college school difficult to accomplish for most examples. One 

must try to find or invent meaningful macroscale phenomena that have a clear relationship to the 

nanoscale, and that can take place in a classroom; or one must create models that do not mislead. 

Upon examination, this has not been easy for some molecular and atomic content in chemistry 

and physics education. Almost always, cost or hardware requirements preclude promising ideas. 

 

A Module To Introduce the Nanoscale  

 

We are creating a module to introduce the nanoscale to students, targeting high school 

juniors/seniors and their teachers. We mention teachers explicitly because in almost all cases, we 

suspect that these materials must be educative for them. This is the responsibility of any 

materials that introduce new content. 

 

Our primary mission is to engage all students in the classroom with materials consisting of a 

sound selection of content and best-practices. Reflecting the reasons stated above for introducing 

nanoscale learning, we want to motivate interest in science, and we want to contribute to the 

achievement of several learning goals. 

 

The module is designed to take about 2 weeks. This is a significant chunk of curriculum time, 

but the learning goals and tasks are not add-on content; they are standards-based content and 

skills and, as such, can supplant other lessons. The module consists of four major parts:  three 

sections have well-defined learning goals; the fourth is a design project. 

 

The module is delivered in two components:  pdf files and kits. A pdf file is downloaded by the 

teacher, printed, and copied for students. This is the Student Edition. 
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Another file is the Teacher Edition. It contains a page-long statement of the module’s mission. 

For each section, it contains information about materials and materials preparation, purpose, 

summary, objectives, content background information, connections to the curriculum, estimated 

times, suggested items for students to ponder before they open their Student Edition, comments 

on each activity, and answers to prompts that students are to respond to. 

 

A kit of hands-on materials is shipped to the teacher.  

 

The Module Topic 

 

When first considering the content for this introductory module, the question at hand was:  what 

is most fundamental to understanding the nanoscale? The potential nanoscale topics are far 

ranging, as one would expect. The combinations of atoms that can form nanoscale objects are 

huge. Nevertheless, there are categories of properties that are being studied. The three examples 

given above—the super-strong “sticky note” (an example of scientists trying to catch up with 

nature as exhibited by a gecko’s feet), the particles that change color just by growing or 

shrinking, and the personal supercomputer—are examples of surface, light, and electrical 

nanoscale properties, respectively. Others include mechanical (such as strength and plasticity), 

chemical reactivity, magnetic, and thermal. 

 

All of these properties are types of behavior whose description qualitatively changes during 

some range of nanoscale size change. The mention of size change is the key to the choice of the 

major topic of this module, viz., the geometry of getting small. This is the property upon which 

all of the behavior properties depend. More specifically, they all depend on the surface area, the 

volume, or the ratio of surface area to volume. As the linear dimensions of an object decrease, 

this ratio increases—and at the nanoscale, this ratio becomes huge. This is the “big idea” for this 

module; i.e., it is the “coherent foundation for the concepts, theories, principles, and explanatory 

schemes for phenomena” in nanoscience.
5
 A big idea from a scientist’s perspective is a 

foundational explanation that functions both within and across disciplines. From a science 

educator’s viewpoint, a big idea is a “building block for future learning ... [and] is key for future 

development of other concepts and helps lay the foundation for continual learning.”
 6
 Thus this 

module can function as the first in a series of nanoscale learning experiences, or as a unit that 

introduces a new area of science and technology as an interesting context for its learning goals 

(such as the geometry mentioned above). 

 

The Whole Module 

 

With the module’s big idea set, we turned to learning goals. These were chosen with a 

consideration of science and mathematics standards (National Science Education Standards
7
, 

AAAS’s Project 2061
8
, and National Council of Teachers of Mathematics

9
), prerequisite 

knowledge, common curricula currently in schools, and learning performances. Later in this 

document, these factors will be linked to examples. The learning goals are listed here following 

the big idea: 

big idea  
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As object size decreases, the surface area to volume ratio increases—at the nanoscale, this ratio 

is huge. 

 

learning goals 

 

1 - The physical form of a solid influences the degree to which it interacts with its 

environment:  the smaller it is in three, two, or one dimension(s), the more readily it 

interacts. 

2 - The magnitudes involved with the nanoscale can be represented with powers of 10 and 

scaling. 

3 - The surface area to volume ratio changes with the shape or size of an object. This ratio 

changes dramatically in the nanoscale. 

 

There is a section for each learning goal. Each of the three sections begins with an 

introductory article about something familiar, yet describing an aspect that students may not 

have thought about (such as a relationship between environmental temperature and animal 

size and shape). 

 

Then come hands-on activities, which are designed for groups of three or four students. The 

activities range in time from a few minutes to 1 – 2 class periods. These are mentioned below. 

 

Each section ends with text that expounds the concepts in the hands-on activities. 

 

The Sections 

 

In Section 1, an extra effort is made to engage students. There are three hands-on parts—each 

with the same theme but with very different materials: 

o A:  applying a flame to steel in two forms:  a nail and steel wool 

o B:  adding water to a superabsorbent polymer in two forms:  pellets and powder 

o C:  dissolving in the mouth five forms of sugar:  approximately spherical (3-dimensional [3-

D], thin (approaching 2-D), fibrous (approaching 1-D), smaller 3-D, and even smaller 3-D. 

 

Section 2 deals with two mathematical tools that are necessary for relating to nanoscale 

quantities:  powers of 10 and scaling. The section has four hands-on parts: 

o A:  Length and volume scale differently:  These are measured for a “grow animal” made of a 

superabsorbent polymer before and after water absorption.  

o B:  how to represent a wide range of lengths:  Macroscale lengths spanning four powers of 10 

are determined and must be illustrated on a single sheet of paper. The range is too large 

for a simple scaled drawing. We would think of using a logarithmic scale. What might 

students invent? 

o C:  expressing scaled heights:  first at the human scale; then at the nanoscale 

o D:  Bring it all together:  A poster is constructed. Its theme must relate an object at the 

macro-, micro-, and nanoscales, and the representation from Part B is used. 

 

Section 2 features some nature-of-science processes that are practiced too rarely in many 

classrooms. Part A sneaks in a science process message:  scientific investigations do not always 
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fit into one class period. The animal may still be expanding slightly at the end of a week. The 

teacher may also use this as another process lesson by letting students decide when to stop taking 

data. Parts B, C, and D have different types of open-ended prompts. The relative representation 

in Part B is an obvious instance. In Part C1, students infer estimated heights. In Part C2, students 

are asked to imagine what they would see if they were nanometer-sized. 

 

Of the three sections, Section 3 is most directly connected to the big idea. Section 3 is mainly 

about geometry with some qualitative graphing at the end. It begins with the more familiar two-

dimensional geometry and then advances to three dimensions. 

 

o A:  first, two dimensions:  Using a specific number of identical sticks, students create 

polygons that minimize or maximize perimeter / area. Students are asked to mentally take 

two of the ratios beyond what the sticks can show, and reach a conclusion about the 

limiting shape. 

o B:  now three dimensions:  Using a specific number of linking cubes, students create shapes 

that minimize or maximize surface area / volume. Analogies with Part A are considered, 

as is the suitability of using the linking cubes to model a one-dimensional object. 

o C:  For B, volume was constant, and shape was varied. Here, shape is constant (cubic), and 

volume is varied. Students record length (L), volume (V), and surface area (SA). A Flash 

computer file has been created to extend this cube-building exercise. 

 

From these data, students create two graphs, V vs. L and SA vs. L, and analyze them 

qualitatively. 

 

Finally, the ratio SA/V is plotted vs. L. Students consider whether this ratio reaches a 

maximum. 

 

At the end of Section 3, students make connections between Sections 3 and 1 by considering 

how the linking cubes be used as models of the forms of materials in Section 1 and where the 

particle forms in Section 1 would be plotted on the SA/V vs. L graph created in Part C? 

 

co-teaching ? 

The content of Sections 2 and 3 is mainly mathematical—tools for expression, analysis, and 

understanding the nanoscale. Thus the module lends itself well to be co-taught by a science and a 

math teacher. Such collaboration would not only match the more qualified teacher to the 

respective content. It could shake up students’ misguided attitudes about compartmentalized 

learning. Math teachers, especially, often look for ways to give math more meaning to students. 

 

Unfortunately, in our initial testing of the module, we have encountered numerous roadblocks to 

such collaboration, even when teachers appreciate the benefits. All that we can do is encourage 

such teamwork. 

 

Design 

The Sections are guided activities; as such, there are a number of features of inquiry that may not 

occur. They include posing questions, examining information sources, planning investigations, 

identifying assumptions, thinking critically, and considering alternative explanations. 
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Engineering design projects provide opportunities to develop these thinking skills. But don’t tell 

the students. They are often motivated by the goal to produce the product via a process that cedes 

many choices to them. Such motivation, if experienced often enough, could spur a larger subset 

of students to pursue science, engineering, and technology in college. Major manufacturing 

organizations in the U.S. are advocating for such changes in curricula because they predict dire 

consequences if current projections of inadequately skilled workers, including engineers, are 

realized. A projected nanotechnology revolution will make these consequences even more acute. 

 

For all of these reasons, a culminating design project is considered a critical part of the module. 

The Design project starts with an article that describes the problem in need of an engineering 

design solution and gives some background information. It begins thusly: 

 

“You and your design team work for a company that is a leader in high-quality water 

treatment systems. The company has just signed a contract with NASA to create a better 

water treatment system for the International Space Station (ISS).” 

 

The current state-of-the-art and its undesirable features are given. A solution requires a different 

approach. Photocatalytic nanoparticles that degrade the major contaminants are available, as is a 

simple recipe for their adhesion to plastic. Plastic objects of different shapes and sizes are 

available, although students are free to try anything. Students do not simply optimize surface 

area; for the plastic substrates made available, prices are given, and for any other objects that 

students choose, price must be considered. A dye models the contaminated water. The 

photocatalyzed breakdown of the dye molecules is monitored by color strength or pH. 

 

The students are given a generic eight-step Design Process [ based on Dieter
10
 pp 3-11 ]:   

1) Write:  need, shortcomings of other solutions, goals...  2) Brainstorm...  3) Plan... 

4) Make a prototype...  5) Evaluate prototype...  6) Improve the design...  7) Present 

this prototype to your colleagues in other groups...  8) Prepare a final report... 

 

The situation and the process steps outlined for the students satisfy the following characteristics, 

which are intended to increase the effectiveness of a design project. (The characteristics are 

paired with their effects.) real-world connection → motivation; lack of specific constraints → 

student choices; testable product → data for evidence-based reasoning; and iterative → 

evaluation → re-design.
11 

 

The teacher has the following assessment rubric: 

(For brevity’s sake, only the OUTSTANDING column is completed here.) 

 

ASSESSMENT OF DESIGN PROJECTS 

 

CRITERIA OUTSTANDING 

 

10 points each 

GOOD 

 

9 points 

ADEQUATE 

 

8 points 

POOR 

 

7 points 

NOT 

ACCEPTABLE 

0 points 

problem o Students presented 

very convincing 

    P
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evidence of a need. 

o Students crafted a 

strongly convincing 

problem statement. 

prototype o Prototype is completed 

ahead of schedule. 

o Prototype works 

beyond what was 

intended. 

    

feasibility o Prototype is highly 

successful in 

addressing the 

problem. 

o Prototype is 

accompanied by an 

impressive set of test 

data. 

    

presentation 

(oral or 

written) 

o Presentation is very 

well organized. 

o Presentation includes 

very complete remarks 

that are well supported 

by graphics:  data 

displays, drawings, 

pictures, video, etc. 

    

aesthetics o Prototype has strong 

eye appeal. 

o Prototype appears to 

have been very 

carefully crafted. 

    

 

Testing the Module 

 

We have done some preliminary field testing of the module. It has been used in eight classrooms 

located in all parts of the U.S. and in five different NCES locales. For such a small sample, the 

ranges of demographic data are large. All classes have been either chemistry or physics, and 

have ranged in level of difficulty from introductory to advanced. The grade level range was 10 – 

12.  The maximum class size was 28. The teachers were half and half:  male and female. Their 

level of academic preparation ranged through the Ph.D. The one category without a large range 

was years experience teaching high school science. The minimum was 11 years.  

 

statistical analysis 

A Design project rubric (see above) was used to score five criteria. The points are totaled, and a 

class average is obtained:  90%. 
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Identical pre- and post-tests are given. They are analyzed three ways. The simple percent gain 

was 80%. 

 

The mean normalized gain was a moderate 0.38, which may be interpreted as equivalent to the 

class as a whole having progressed 38% beyond the mean pre-test score toward a perfect score of 

100%. Said another way, it is equivalent to 38% of the class having achieved a perfect score of 

100%. This compares favorably with a typical science classroom. Normally when presented with 

new material, only about 2% of the class score 100%. 

 

The standardized mean gain effect size is an impressive 2.33. In other words, students gained 

2.33 standard deviations between their pre- and post-test scores. This effect size was 

considerably greater than the highest effect size of 0.73 reported by Lipsey & Wilson
12
 for 

various types of social-science research including 22 effect sizes for K-12 math and science 

instruction. 

 

qualitative analysis 

The teachers responded to a lengthy on-line survey. With such a small sample, there was little 

clear consensus, but there was some. The consensus for one survey item was negative, viz., the 

clarity of the Student Edition. We recognize that and have also solicited feedback from others 

(both teachers and editors) who simply read the module. (They did not use it with students.) The 

constructive criticism led to the following changes: 

 

Section 1:  In the explanatory article at the end, we tried to describe, using words and 

diagrams, the structure and function of a superabsorbent polymer. More 

diagrams were requested, so we collaborated with learning technology experts 

(Braatz group at the University of Illinois – Urbana), and now students (and 

teachers) will be able to link to a computer-animated explanation. 

 

Section 2:  Half of the activities were simplified. The biggest change was the elimination 

of an activity that directed students to create a semi-log graph. 

 

Section 3:  The beginning and ending articles were overhauled due to a lack of relevance to 

the hands-on parts. 

 

Section 4 and Design:  Because the procedure for Section 4 must be changed, new versions 

will be offered for feedback. 

 

There was a positive consensus for two items. These teachers would encourage others to order 

the module. The second was in the “student outcomes” category. The module helped students 

function better as a team member. 

 

Teachers went beyond the requisite numerical response ratings during the on-line survey to add 

the following comments: 

 

“Every day as they come into class, they ask me what to do next regarding the Nanoscale 

module.” 
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“This [formulate explanations and models] is the best feature of the module.” 

 

Phone interviews with some of the teachers gave us many specific suggestions plus the following 

information about the module’s fit into existing curricula. The module fills a hole that often 

exists in chemistry curricula, viz., the relationship between surface area and reaction amount. In 

physics curricula, the module is a good fit between classical and quantum physics. 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Bibliography 

 

1. Feynman, Richard P., “There's Plenty of Room at the Bottom:  An Invitation to Enter a New Field of Physics” 

www.zyvex.com/nanotech/feynman.html. 

 

2. "So tell me kind sir, if you can, all about the basics of molecular nanotechnology."  http://www.nanotech-

now.com/basics.htm. 

 

3. Roco, Mihail, “Businesses need to plant nano seeds in schools, NNI chief says” 

www.smalltimes.com/print_doc.cfm?doc_id=5133. 

 

4. Fonash, S.J., “Implications of Nanotechnology for the Workforce” in Societal Implications of Nanoscience and 

Nanotechnology NSF, March 2001 http://www.wtec.org/loyola/nano/NSET.Societal.Implications/ 

 

5. Wilson, Mark R. and Bertenthal, Meryl W., Eds., “Systems for State Science Assessment” Executive Summary  

www.map.edu/catalog/11312.html. 

 

6. Krajcik, Joseph, “Learning Goals Driven Design – Identifying and Interpreting Standards”  personal 

communication. 

 

7. National Science Education Standards. National Research Council. 1996. 

8. Benchmarks for Science Literacy. American Association for the Advancement of Science. 1994.  

9. Principles and Standards for School Mathematics. National Council of Teachers of Mathematics. 2000. 

This material is based upon work supported by the National Science Foundation under Grant No. 

ESI-0426328. 

 

Student is amazed, or amused, 

by how fast a superabsorbent 

polymer absorbs water when 

the polymer particles are small. 
 

We gratefully acknowledge the assistance of Barbara J. Pellegrini, Ph.D., Project Evaluator, in the design of 

the evaluation, creation of test bank items, and statistical analyses of field test data. 

P
age 11.864.11



10. Dieter, G.E., Engineering Design: A Materials and Processing Approach (2nd Ed.) McGraw-Hill 1991. 

 

11. Baumgartner, Eric and Reiser, Brian J., “Inquiry through Design: Situating and supporting inquiry through 

design projects in high school science classrooms” paper presented at 1997 annual conf. National association 

for Research in Science Teaching, Oak Brook IL. 

 

12. Lipsey, M.W. and Wilson, D.B. “The efficacy of psychological, educational, and behavioral treatment: 

Confirmation from meta-analysis” American Psychologist, 1993 December, pp. 1181-1209. 

P
age 11.864.12


