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Learning a Second Language and Learning a Programming 

Language: An Exploration 
 

Abstract 

Computing has become a foundational subject across the engineering disciplines with many first-

year engineering curricula either including a course on computing or integrating computing 

within a broader introductory course. However, there is significant evidence that students have 

difficulty both learning and applying the computing concepts traditionally covered. Many 

different theories have been proposed for why students find computing concepts so difficult to 

understand. Some theories ascribe the difficulty in learning computing concepts to the abstract 

nature of the concepts and the lack of prior experience on which to build understanding. Other 

theories relate the difficulty to students incorrectly applying natural language structure to 

computing structures. 

 

It is this latter idea that is of interest in this paper. Learning multiple natural languages has often 

been associated with increased mathematical and scientific aptitude. Research also suggests that 

learning a new computing language may be similar to learning a natural language. However, 

little research has been done exploring the relationship between natural language acquisition and 

computing language acquisition, with even less on whether strategies employed for learning a 

natural language transfer to learning a computing language, particularly in an engineering 

setting. 

 

This full research paper aims to explore the first idea of whether a relationship exists between 

learning a second natural language and learning a computing language. All first-year students in 

the College of Engineering and Applied Science at the University of Cincinnati are exposed to 

computing concepts through a common first-year engineering curriculum. To explore if a 

relationship exists between learning a second natural language and learning a computing 

language, student performance in the first-year engineering courses was evaluated based on 

previous or concurrent experience with second natural languages acquisition and controlled for 

by prior experience with computing languages. For purposes of this study, experience with a 

second natural language was defined as having successfully taken at least one university-level 

foreign language course (e.g., Spanish, French, German, Italian) either with AP credit (from high 

school) or in the first year of college. Experience with a computing language was defined as 

having taken at least one university-level computing course either in high school or in the first 

year of college. Non-parametric tests were conducted to investigate whether there were 

significant differences between students who had experience with a second natural language and 

those who didn’t. Statistical analysis showed answers to the research question was inconclusive. 

Future work will involve further investigation into the reasons behind inconclusive results.  

 

Background 

Computers have become an essential part of the design process across all fields of engineering.  

They are used to model potential solutions through simulation, collect and analyze data, and 

create new parts through computer aided design packages and rapid/additive manufacturing 

techniques. Additionally, they are also becoming primary components of the products of design 

themselves. Computing devices are being integrated into everything from clothing that can 

monitor vitals to building materials that can report on the stresses and strains they are 



experiencing. Because of this, computational thinking has been identified as one of the key skills 

that future engineers will be required to possess1. As a result, many first-year engineering 

curricula include either a course devoted entirely to computing concepts or incorporate those 

concepts into more general introductory engineering courses. 

 

Despite the need for engineers with strong computational thinking skills, there is little 

opportunity for engineering students to develop those skills. Learning to program is widely 

viewed as one of the more difficult subjects experienced by first-year students2. One reason for 

this is that learning to program requires a student to develop not only an understanding of 

specific concepts, but also a way of thinking not encountered in other disciplines. On top of the 

already difficult concepts and a completely new way of thinking, students are also required to 

learn a new tool in the form of the programming environment utilized in the class3. As a result, 

many students fail to develop a sufficient level of proficiency in programming, even after 

progressing through the traditional two or three course introductory programming sequence 

followed by many computer science programs4, 5. This makes it even more difficult for 

engineering students to gain proficiency when they often only have exposure to this content in a 

single course, or potentially only as part of a course. Thus, an important area of research for 

engineering education is to design ways to help students learn computational thinking skills and 

concepts more efficiently in an effort to better prepare students for the demands of their future 

careers in the limited time allotted in the curriculum. 

 

The primary frameworks used to investigate the ways students learn computational thinking 

concepts is that of information processing and mental model theory. Information process theory 

treats the student as processor of information, similar in structure to that of a traditional computer 

system6. Students receive information through their senses (receptors), process that information 

utilizing either working or long-term memory, and enact changes in their environment through 

effectors.  This model is represented in Figure 1 below. 

 

 
Figure 1: Information Process System Model7 



Mental model theory is then used to describe how information is stored in long-term memory. In 

mental model theory, information is stored as a network of interconnected nodes (concepts) 

which emulates the individual’s understanding of the structure and relationship of the material8. 

The individual can retrieve information about a particular subject by either accessing the node 

associated with that specific information or by accessing nodes connected to it within the 

individual’s mental model structure. As individuals gain expertise within a given area, they 

develop both additional connections between nodes as well as a hierarchy (known as chunking) 

that allows for more efficient retrieval of information9. 

 

Applying this framework results in several different reasons for the discrepancy between the 

learning outcomes desired by instructors and employers and student performance. One is that the 

nature of the material does not match well with the learning styles of most engineering students, 

leading to inefficiencies in the information acquisition process. Numerous studies have looked at 

the learning style preferences of engineering students10-13, and those preferences have been 

shown to be consistent across different populations14. These studies have found that engineering 

students tend to prefer visual and sensing learning styles.  However, since most programming 

languages are text-based, a mismatch arises between the content and the ways students prefer to 

learn. It has been shown that interpretation of the written word is processed in the same way as 

spoken words15, meaning that even though a student may be seeing (visual) a program, the brain 

is processing the information as if it were spoken (verbal). As a result, students who prefer to 

learn in a visual manner may have difficulty assimilating programming. Additionally, 

interpreting written words favors individuals who prefer to learn intuitively rather than from a 

sensing perspective, again putting engineering students at a disadvantage. 

  

Many students lack appropriate mental models on which to build conceptions of the important 

programming concepts required to gain proficiency in computational thinking16. In conjunction 

with this, many text-based languages use syntax that incorporates many English language words 

and phrases, resulting in students resorting to models previously developed in a natural language 

context. However, this poses a significant problem for certain terms because the model for how 

the word is used in a natural language context may differ from how it is used in a programming 

context. 

  

For example, in natural language, the term “while” has a somewhat different meaning than it 

does in programming usage.  In natural language, “while” implies that as soon as the condition 

associated with the statement is no longer satisfied, the activity will cease. In a programming 

context, the conditional statement associated with the “while” is only checked once during each 

iteration of the repetition. This can result in misconceptions among students if they believe that 

as soon as the condition for termination is met, the loop will exit17. 

 

 

 

 

 

 

 



Because of this similarity in the way students understand programming languages and natural 

languages, one avenue to explore to help students better learn programming languages is to 

understand how students learn natural languages. Learning a second natural language in young 

adults is different than learning the first language as an infant. Second language acquisition 

research suggests that learning occurs in three steps18:  

• Comprehensive input: acquiring and understanding something new in the second 

language, by means of listening or reading, 

• Comprehensive output: producing something in the second language, by speaking or 

writing, 

• Review or feedback: identifying errors and making changes to correct responses. 

 

Both natural language learning and learning programming languages require the understanding 

of set of rules that define the language (grammar or syntax) and learning a body of words 

(vocabulary). Natural languages however can be ambiguous and imprecise, while programming 

language are required to be direct and precise in order to accomplish a specific task19,20. 

Significant literature is dedicated to developing new tools to assist novice programmers translate 

natural language into programming language19-21. There is also research on using programming 

languages to assist in learning second natural languages22.  

 

Historically, scholars have posed that learning programming languages can be predicted by one's 

mathematical aptitude23,24. However, recent studies suggest that neurocognitively, individual 

differences in learning programming more closely associated with language learning aptitude 
25,26. This implies that learning a new programming language may be very similar to learning a 

new natural language26,27. In fact, Chomsky’s theory of formal languages that defines valid 

sentence building in natural languages has been a central tool in mathematics theory and 

programming languages28. 

 

Bilingualism and multilingualism have also been associated with brain functions that improve 

mathematical and scientific performance in classes29. However, it is unclear whether the 

neurocognitive effects of bilingualism that originates from bilingual parenting during childhood 

differs from intentional second language acquisition in adults. 

 

If learning a programming language is truly like learning a second natural language, much can be 

drawn from natural language pedagogy to teach programming to young adults. Several studies 

have recommended and used natural language learning paradigms in programming classes27,30,31, 

finding lower mental workload on students and fewer failing grades in student performance.  

 

In this study, we explore the latter part in the context of learning of programming languages. The 

central purpose of the study is to explore whether young adults participating in a first-year 

engineering course focused on developing computational thinking skills perform better if they 

are learning or have learned a second natural language when compared to those who have not. 

More specifically the research question guiding this study is: Was there a significant difference 

in student performance in an introductory programming course between students who are 



learning or have learned a second natural language when compared to those who have not, when 

participation in a second or prior programming course is controlled for? 

 

Methods 

To answer the above research question, performance in a high enrollment first-year engineering 

course offered in the College of Engineering and Applied Science (CEAS) at the University of 

Cincinnati (UC) was considered. Three consecutive offerings of the course (Fall 2014, Fall 2015, 

and Fall 2016) were examined in relation to the students’ prior or parallel participation in 

language courses other than the English courses taken as part of a typical first-year curriculum. 

Students’ participation in other programming courses was also considered during the analysis. 

Detailed description of the methods follows in this section.  

 

Context: 

Engineering Models I was the first in a two-semester sequence of courses that were required for 

all first-year students in the CEAS from fall 2012 through spring 2018. This sequence of courses 

served two purposes: to introduce students to the computer as a tool for solving engineering 

problems and to provide context and applications for the mathematics and science material 

covered in other introductory STEM courses. In the Engineering Models I course, students were 

introduced to the computational package MATLAB® and shown how MATLAB® can be used as 

a tool when solving engineering problems and modeling physical processes.  For example, when 

plotting various functions including exponentials, sinusoids, and damped sinusoidal functions, 

the emphasis is on how these functions can be used to model certain physical processes such as 

the charging or discharging of a capacitor, chemical reaction rates, and damped harmonic 

motion. Several weeks were spent developing the logical thinking and computing knowledge 

required to make full use of MATLAB®.  Even while developing students’ programming skills, 

the labs and homework assignments were closely tied to mathematics, science, and engineering 

applications. For example, students used loops to program iterative algorithms based on the 

Newtown-Raphson algorithm or Taylor Series to determine square roots and cube roots of 

numbers and the sine or cosine of angles, respectively. 

 

Data Collection: 

The data analyzed for this study originated from two primary sources. Data specifically related to 

performance in the Engineering Models I course were collected from the records of individual 

instructors that were submitted to the course coordinator at the end of the fall 2014, 2015, and 

2016 semesters (the assignments were common across all sections each semester). These 

semesters were selected because there were only minor variations to the course structure and 

implementation over this time span. Additionally, the data all originated from the same four 

instructors, who worked closely together, which helps to minimize the impact of instructor 

variation in student performance.  The data includes homework averages, worth 25%, lab 

assignment averages, worth 25%, quizzes, worth 10%, midterm, worth 20%, and final exam, 

worth 20% along with the final course average and course grade. 

 

Demographic data and the data related to performance in natural language and other 

programming language courses were all collected from university records. Performance scores in 

natural and programming language courses were limited to only those courses taken prior to or 

concurrently with the first time a student took the Engineering Models I course. Once all of the 



data was collected, one member of the research team not involved in the analysis consolidated all 

of the data sources into a single set and deidentified the data. 

 

The deidentified data contained information on student letter grades in second language courses 

in Arabic, American Sign Language, Chinese, English as a Second Language, French, German, 

Italian, Japanese, Latin, Russian, Spanish. In addition, information on student letter grades in six 

other programming courses were also available. For the purposes of this study, performances in 

these courses were categorized into participation/non-participation. If a student had AP credits or 

a grade for any of the language courses, they had a participant entry in natural language while 

those who did not were deemed a non-participant. Similar categorizations were made for the 

programming courses. For the dependent variables, performance in the Engineering Models I 

course was considered. Weighted average scores for the entire course were calculated, which 

included scores from homework assignments, quizzes, labs, midterm exams, and final exams. 

The same procedures were applied for all three cohorts. 

 

In order to understand the population investigated in this study, a set of demographic data is 

shown in Tables 1, 2, and 3 below. The three cohorts were broken out by gender, race, and 

major. Additionally, there were student records that showed participation in Engineering Models 

I in two consecutive years. These entries were removed with the notion that scores of students 

who attended the course twice would be skewed because of the multiplicity of participation. In 

total 5 student entries were removed from the analysis.  

 

Table 1: Demographics 

 2014 2015 2016 

Total 551 677 697 

Gender 

Male 460 543 558 

Female 91 134 139 

 

Race 

White 447 545 541 

Black or African American 10 24 26 

Hispanic/Latino 9 19 26 

Asian 20 19 31 

Two or more races 10 17 28 

Non-resident Alien 25 20 37 

Other or Unknown 30 32 8 

 

Table 2 summarizes the enrollment for each of the majors offered in CEAS who took the 

Engineering Models I course along with the DFW rate over the three semesters being considered. 

As can be seen, enrollment among engineering students was fairly stable across the three 

semesters, as was the DFW rate. Note that this data is for the overall enrollment, not just for the 



cohorts investigated in this study. Table 3 shows the distribution of majors for only those 

students included in the three cohorts used in this study. 

 

Table 2: Overall Distribution of Majors 
 

 Fall 2014 Fall 2015 Fall 2016 

Major Enrollment DFW Rate Enrollment DFW Rate Enrollment DFW Rate 

AE 41 7.3% 26 3.8% 43 11.6% 

ASE 95 5.3% 60 6.7% 81 2.5% 

BME 66 0.0% 77 2.6% 62 1.6% 

CE 81 8.6% 74 1.4% 87 8.0% 

CHE 147 4.8% 140 3.6% 125 4.0% 

CM 33 12.1% 32 18.8% 33 15.2% 

CMPE 80 6.3% 79 5.1% 106 7.5% 

CS 76 1.3% 89 3.4% 65 7.7% 

EASE 73 19.2% 60 8.3% 74 18.9% 

EE 74 6.8% 74 8.1% 88 10.2% 

EET 22 13.6% 32 18.8% 39 10.3% 

ENVE 24 4.2% 31 0.0% 42 7.1% 

FEP 101 4.0% 109 4.6% 161 6.2% 

ME 147 4.1% 123 4.1% 152 2.6% 

MET 64 17.2% 91 11.0% 93 16.1% 

Total 1124 6.8% 1097 5.7% 1251 7.8% 

 

Table 3: Cohort Breakdown of Majors 
 

 2014 2015 2016 

AE 8 15 19 

ASE 54 11 28 

BME 17 35 37 

CE 22 28 22 

CHE 28 42 58 

CM 15 22 10 

CMPE 13 31 32 

CS 44 45 63 

EASE 10 7 7 

EE 21 42 45 

EET 8 13 18 

ENVE 5 12 12 

FEP 1 2 5 

ME 123 112 83 

MET 26 47 53 

 



Data Analysis:  

The demographic data (Table 1 above) indicate that the sample has characteristics of a typical 

large midwestern, R-1 institution. To begin the analysis, differences between each cohort were 

investigated to determine whether the cohorts could be combined or needed to be analyzed as 

separate data sets. One-way ANOVA was conducted on the data grouped by each cohort. 

However, the parametric assumptions were violated, so the decision was made on the basis of 

Kruskal-Wallis test. The test showed significant differences between the cohorts using a 

significance level of α = 0.05 (χ2 (2) = 11.534, p = 0.003). Thus, further analysis continued for 

each cohort separately. Descriptive statistics for each cohort are provided in Table 4 and Figure 2 

below.  
 

Table 4: Descriptive Statistics for each cohort 

   Fall 2014  Fall 2015  Fall 2016  

Mean   86.888   86.063   85.879   

Std. Deviation   13.645   14.233   12.520   

Minimum   0.607   0.000   2.500   

Maximum   99.233   99.644   100.000   

 

For each cohort, observations were divided into 4 groups:  

• students who participated in a course to learn a second natural language at the university 

level; 

• students who participated in a course to learn a different programming language at the 

university level; 

• students who participated in courses to learn both a second natural language and a 

different programming language at the university level; and 

• students who did not participate either type of course at the university level.  

One-way ANOVA was conducted to investigate differences in the course average between the 

four groups.  

 

 

 

 

 

Fall 2014 Fall 2015 Fall 2016 

Figure 2: Distribution of course averages 



Results 

2014:  

Since parametric assumptions were violated for the 2014 cohort, Kruskal-Wallis test was 

conducted to identify differences in course averages between each of the 4 groups. Table 5 below 

gives the course averages of the cohort by group of interest. Non-parametric Kruskal-Wallis test 

suggested no significant differences between the four groups (χ2 (3) = 7.212, p = 0.065). 

 

Table 5: Course average for different groups in 2014 

Experience Group  Mean  SD  N  

Natural Language only   89.934   8.773   64   

No Programming or Natural Language   86.558   13.434   451   

Programming & Natural Language   78.461   34.317   5   

Programming only   86.708   20.953   21   

 

2015:  

Similar to the 2014 cohort, assumption violation prohibited a one-way ANOVA test and a 

Kruskal-Wallis test was conducted (see Table 6 below), which suggested significant differences 

between the groups (χ2 (3) = 28.113, p < 0.001). Post hoc Dunn’s test with Bonferroni 

corrections suggested that there were significant differences between the group pairs of 

programming only and natural language only (p = 0.003), and programming only and no 

participation in a second programming or natural language course (p < 0.001). 

 

Table 6: Course average for different groups in 2015 

Experience Group  Mean  SD  N  

Natural Language Only   83.425   19.784   57   

No Programming or Natural Language   85.981   13.615   571   

Programming and Natural Language   92.430   5.468   4   

Programming Only   91.440   12.894   32   

 

2016: 

Lastly, for the 2016 cohort, Kruskal-Wallis test revealed significant differences between the 

groups (χ2 (3) = 31.218, p < 0.001). Post hoc Dunn’s test with Bonferroni correction suggested 

significant differences between three group pairs: programming only and natural language only 

(p=0.023); programming only and no participation (programming or natural language) 

(p<0.001); natural language and no participation (p = 0.039). Table 7 below summarizes these 

results. 

 

 



Table 7: Course average for different groups in 2016 

Experience Groups  Mean  SD  N  

Natural Language Only   87.999   11.605   79   

No Programming or Natural Language   85.131   12.614   555   

Programming & Natural Language  90.938   8.163   8   

Programming Only   90.928   12.106   41   

 

Discussion  

Based on the results presented above, the answer to our original research questions is 

inconclusive. While there are significant differences for the 2015 and 2016 cohorts, they do not 

support a claim that learning a second natural language is linked to better performance in an 

initial programming course. In only one cohort (2016) was there a significant different between 

the natural language only group and the no participation group. While this one cohort does 

indicate that the natural language learners performed better in the Engineering Models I course, 

it is not enough to support a claim that learning a second natural language improves performance 

in learning a programming language. 

 

The results do support a claim that experience learning a prior programming language does 

contribute towards performance in learning a second programming language. This can be seen in 

both the 2015 and 2016 cohorts, where the programming only group significantly outperformed 

the no participation group. Interestingly, the programming only group also outperformed the 

natural language only group in both 2015 and 2016. While learning a second natural language 

may provide some benefit, it appears the best way to develop proficiency with computing 

knowledge and skills is by actually programming. 

 

It is also interesting to consider the reasons for the variation in performance and results among 

the different cohorts. As was stated previously, the semesters were selected specifically because 

they were the most stable across the six years the course sequence was offered. The four 

instructors who taught the sections of the course investigated were also common to all three 

semesters. One potential factor that may have contributed to the differences in the cohorts was 

the variation in the number of sections taught by each instructor. In 2014, instructors 1 and 4 

taught two sections while instructors 2 and 3 taught three sections each. In 2015 and 2016, 

instructors 1 and 2 taught two sections each while instructor 3 taught three sections and 

instructor 4 taught four sections. Given that the 2015 and 2016 cohorts showed some similarity 

in results, this similarity in the number and distribution of sections among instructors may have 

played a role. 

 

The overall performance in the course could also be a contributing factor to why there was little 

variation seen between the different groups across the cohorts. With the exception of the 

programming and natural language group from the Fall 2014 cohort, the averages for all other 

groups across the cohorts only ranged from the mid 80s to the lower 90s. Since these averages 



are fairly close and also relatively high, there may simply not be enough variation in the 

performance based on final grades to distinguish amongst the groups. The high grades could also 

indicate that students did not struggle significantly in the course, regardless of prior experience, 

due to the design and implementation of the course. 

 

Another potential reason for the differences seen between the cohorts is the distribution of 

majors within the cohorts. For instance, in 2016, there were a larger percentage of computer 

science students in the sections of the course included than in 2014 or 2015. There was also a 

larger number of chemical engineering students, which tends to attract some of the higher 

performing students. A similar difference was also seen between the 2014 and 2015 cohorts, with 

increased percentages of biomedical, chemical, computer, and electrical engineers. A potential 

future direction for this study is to look specifically at the differences between the various 

engineering disciplines. 

 

Conclusion 

This study investigated the impact of learning a second natural language on performance in a 

specific programming language course (Engineering Models I). Results of the data analysis were 

inconclusive, with different cohorts potentially suggesting different relationships, or even no 

relationships at all. These differences between cohorts could potentially be a result of differences 

in the distribution of sections among instructors or the distribution of majors among the students 

included in each cohort. 

 

There are several directions future work may take. One pathway is to consider whether 

bilingualism (from childhood) has an impact on performance. Along these same lines, an 

investigation into the type of natural language learned could also be illuminative. Every language 

has a different vocabulary and set of grammar rules. There are also differences in the symbology 

used. While many languages utilize the Latin alphabet common in most wester cultures, other 

languages use alternative alphabets, such as the Greek alphabet or the Cyrillic alphabet. Other 

languages utilize symbols to represent entire words or ideas, such as the cuneiform of many 

Asian countries. These differences may have a significant impact on the way in which someone 

learns a programming language, which typically utilizes a Latin alphabet and English terms, and 

warrants investigation. 

 

While many would equate proficiency in programming with computational or mathematical 

skills, that is only one part of what is needed to be create a functioning program to solve a 

particular problem. Additionally, a programmer must be able to think through the logic necessary 

to carry out the various tasks the program must perform and translate the problem description, 

typically given in a narrative form. Another future avenue to pursue is the link between 

someone’s language abilities and the ability to convert the description of a problem into the logic 

necessary to solve it. 

 

As was mentioned previously, an investigation into the ways that different majors experience 

learning to program could also help to better understand the differences seen in the cohorts for 

this study. Are there differences in performance for students in the same groups (second natural 

language, prior programming language, no prior experience) based on major? Is a computer 

science student typically going to perform better than other disciplines, even without prior 



experience because of a natural inclination to computing or identification with the discipline? 

Does a biomedical engineering student with experience in a second natural language perform 

better than an electrical engineer with similar experience, and what is it about the students 

typically attracted to that major that causes such differences? These questions and others along 

the same lines could help instructors understand their students better and develop more robust 

pedagogies for engaging all students in the act of learning to program. 

 

Finally, only participation in a second programming language course and second natural 

language course was considered for the purposes of this study. Future work may examine 

whether performance in these courses is related to performance in the Engineering Models I 

course. 
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