
Paper ID #34240

Learning a Second Language and Learning a Programming Language: An
Exploration

Ms. Jutshi Agarwal, University of Cincinnati

I am a PhD candidate in Engineering Education with a research focus on professional development for
future faculty. Currently, I am the Lead Graduate Teaching Assistant for the first year engineering design
course with an enrollment of 1300 students across all engineering majors.

Dr. Gregory Warren Bucks, University of Cincinnati

Gregory Bucks joined the Department of Engineering Education at the University of Cincinnati in 2012.
He received his BSEE from the Pennsylvania State University in 2004, his MSECE from Purdue Uni-
versity in 2006, and his PhD in Engineering Education in 2010, also from Purdue University. After
completing his PhD, he taught for two years at Ohio Northern University in the Electrical and Computer
Engineering and Computer Science department, before making the transition to the University of Cincin-
nati. He has taught a variety of classes ranging introductory programming and first-year engineering
design courses to introductory and advanced courses in electronic circuits. He is a member of ASEE and
IEEE.

Dr. Kathleen A. Ossman, University of Cincinnati

Dr. Kathleen A. Ossman is an Associate Professor in the Department of Engineering Education at the
University of Cincinnati. She teaches primarily freshmen with a focus on programming and problem
solving. Dr. Ossman is interested in active learning, flipped classrooms, and other strategies that help
students become self-directed learners.

Prof. Teri J. Murphy, University of Cincinnati

Dr. TJ Murphy is a professor in the Department of Engineering Education at the University of Cincinnati.

Dr. Cijy Elizabeth Sunny, Baylor University

Dr. Cijy Elizabeth Sunny is a PD Research Associate in the Department of Information Systems and
Business Analytics, Hankamer School of Business at Baylor University. She is a research methodologist
and psychometrician who has applied her skills in quantitative and mixed methods research methodology
in the substantive areas of STEM education research, medical education, and more recently in engineering
education. Additionally, she has been an educator and has taught primarily physics and also research
methodology on three different continents. In addition to research, she has also conducted workshops
on using concept mapping methodology for scale development, mixed methods research methodology
for standardized patient educators, and standard-setting for physician educators. Dr. Sunny continues
to invest her skills in engineering education research through her collaborations. As part of her new
undertaking at Baylor University, she is investing her skills as a research methodologist and data analyst
to fight human trafficking through the use of Information Technology working alongside the research team
there in collaboration with a diverse group of stakeholders.

c©American Society for Engineering Education, 2021

Learning a Second Language and Learning a Programming

Language: An Exploration

Abstract

Computing has become a foundational subject across the engineering disciplines with many first-

year engineering curricula either including a course on computing or integrating computing

within a broader introductory course. However, there is significant evidence that students have

difficulty both learning and applying the computing concepts traditionally covered. Many

different theories have been proposed for why students find computing concepts so difficult to

understand. Some theories ascribe the difficulty in learning computing concepts to the abstract

nature of the concepts and the lack of prior experience on which to build understanding. Other

theories relate the difficulty to students incorrectly applying natural language structure to

computing structures.

It is this latter idea that is of interest in this paper. Learning multiple natural languages has often

been associated with increased mathematical and scientific aptitude. Research also suggests that

learning a new computing language may be similar to learning a natural language. However,

little research has been done exploring the relationship between natural language acquisition and

computing language acquisition, with even less on whether strategies employed for learning a

natural language transfer to learning a computing language, particularly in an engineering

setting.

This full research paper aims to explore the first idea of whether a relationship exists between

learning a second natural language and learning a computing language. All first-year students in

the College of Engineering and Applied Science at the University of Cincinnati are exposed to

computing concepts through a common first-year engineering curriculum. To explore if a

relationship exists between learning a second natural language and learning a computing

language, student performance in the first-year engineering courses was evaluated based on

previous or concurrent experience with second natural languages acquisition and controlled for

by prior experience with computing languages. For purposes of this study, experience with a

second natural language was defined as having successfully taken at least one university-level

foreign language course (e.g., Spanish, French, German, Italian) either with AP credit (from high

school) or in the first year of college. Experience with a computing language was defined as

having taken at least one university-level computing course either in high school or in the first

year of college. Non-parametric tests were conducted to investigate whether there were

significant differences between students who had experience with a second natural language and

those who didn’t. Statistical analysis showed answers to the research question was inconclusive.

Future work will involve further investigation into the reasons behind inconclusive results.

Background

Computers have become an essential part of the design process across all fields of engineering.

They are used to model potential solutions through simulation, collect and analyze data, and

create new parts through computer aided design packages and rapid/additive manufacturing

techniques. Additionally, they are also becoming primary components of the products of design

themselves. Computing devices are being integrated into everything from clothing that can

monitor vitals to building materials that can report on the stresses and strains they are

experiencing. Because of this, computational thinking has been identified as one of the key skills

that future engineers will be required to possess1. As a result, many first-year engineering

curricula include either a course devoted entirely to computing concepts or incorporate those

concepts into more general introductory engineering courses.

Despite the need for engineers with strong computational thinking skills, there is little

opportunity for engineering students to develop those skills. Learning to program is widely

viewed as one of the more difficult subjects experienced by first-year students2. One reason for

this is that learning to program requires a student to develop not only an understanding of

specific concepts, but also a way of thinking not encountered in other disciplines. On top of the

already difficult concepts and a completely new way of thinking, students are also required to

learn a new tool in the form of the programming environment utilized in the class3. As a result,

many students fail to develop a sufficient level of proficiency in programming, even after

progressing through the traditional two or three course introductory programming sequence

followed by many computer science programs4, 5. This makes it even more difficult for

engineering students to gain proficiency when they often only have exposure to this content in a

single course, or potentially only as part of a course. Thus, an important area of research for

engineering education is to design ways to help students learn computational thinking skills and

concepts more efficiently in an effort to better prepare students for the demands of their future

careers in the limited time allotted in the curriculum.

The primary frameworks used to investigate the ways students learn computational thinking

concepts is that of information processing and mental model theory. Information process theory

treats the student as processor of information, similar in structure to that of a traditional computer

system6. Students receive information through their senses (receptors), process that information

utilizing either working or long-term memory, and enact changes in their environment through

effectors. This model is represented in Figure 1 below.

Figure 1: Information Process System Model7

Mental model theory is then used to describe how information is stored in long-term memory. In

mental model theory, information is stored as a network of interconnected nodes (concepts)

which emulates the individual’s understanding of the structure and relationship of the material8.

The individual can retrieve information about a particular subject by either accessing the node

associated with that specific information or by accessing nodes connected to it within the

individual’s mental model structure. As individuals gain expertise within a given area, they

develop both additional connections between nodes as well as a hierarchy (known as chunking)

that allows for more efficient retrieval of information9.

Applying this framework results in several different reasons for the discrepancy between the

learning outcomes desired by instructors and employers and student performance. One is that the

nature of the material does not match well with the learning styles of most engineering students,

leading to inefficiencies in the information acquisition process. Numerous studies have looked at

the learning style preferences of engineering students10-13, and those preferences have been

shown to be consistent across different populations14. These studies have found that engineering

students tend to prefer visual and sensing learning styles. However, since most programming

languages are text-based, a mismatch arises between the content and the ways students prefer to

learn. It has been shown that interpretation of the written word is processed in the same way as

spoken words15, meaning that even though a student may be seeing (visual) a program, the brain

is processing the information as if it were spoken (verbal). As a result, students who prefer to

learn in a visual manner may have difficulty assimilating programming. Additionally,

interpreting written words favors individuals who prefer to learn intuitively rather than from a

sensing perspective, again putting engineering students at a disadvantage.

Many students lack appropriate mental models on which to build conceptions of the important

programming concepts required to gain proficiency in computational thinking16. In conjunction

with this, many text-based languages use syntax that incorporates many English language words

and phrases, resulting in students resorting to models previously developed in a natural language

context. However, this poses a significant problem for certain terms because the model for how

the word is used in a natural language context may differ from how it is used in a programming

context.

For example, in natural language, the term “while” has a somewhat different meaning than it

does in programming usage. In natural language, “while” implies that as soon as the condition

associated with the statement is no longer satisfied, the activity will cease. In a programming

context, the conditional statement associated with the “while” is only checked once during each

iteration of the repetition. This can result in misconceptions among students if they believe that

as soon as the condition for termination is met, the loop will exit17.

Because of this similarity in the way students understand programming languages and natural

languages, one avenue to explore to help students better learn programming languages is to

understand how students learn natural languages. Learning a second natural language in young

adults is different than learning the first language as an infant. Second language acquisition

research suggests that learning occurs in three steps18:

• Comprehensive input: acquiring and understanding something new in the second

language, by means of listening or reading,

• Comprehensive output: producing something in the second language, by speaking or

writing,

• Review or feedback: identifying errors and making changes to correct responses.

Both natural language learning and learning programming languages require the understanding

of set of rules that define the language (grammar or syntax) and learning a body of words

(vocabulary). Natural languages however can be ambiguous and imprecise, while programming

language are required to be direct and precise in order to accomplish a specific task19,20.

Significant literature is dedicated to developing new tools to assist novice programmers translate

natural language into programming language19-21. There is also research on using programming

languages to assist in learning second natural languages22.

Historically, scholars have posed that learning programming languages can be predicted by one's

mathematical aptitude23,24. However, recent studies suggest that neurocognitively, individual

differences in learning programming more closely associated with language learning aptitude
25,26. This implies that learning a new programming language may be very similar to learning a

new natural language26,27. In fact, Chomsky’s theory of formal languages that defines valid

sentence building in natural languages has been a central tool in mathematics theory and

programming languages28.

Bilingualism and multilingualism have also been associated with brain functions that improve

mathematical and scientific performance in classes29. However, it is unclear whether the

neurocognitive effects of bilingualism that originates from bilingual parenting during childhood

differs from intentional second language acquisition in adults.

If learning a programming language is truly like learning a second natural language, much can be

drawn from natural language pedagogy to teach programming to young adults. Several studies

have recommended and used natural language learning paradigms in programming classes27,30,31,

finding lower mental workload on students and fewer failing grades in student performance.

In this study, we explore the latter part in the context of learning of programming languages. The

central purpose of the study is to explore whether young adults participating in a first-year

engineering course focused on developing computational thinking skills perform better if they

are learning or have learned a second natural language when compared to those who have not.

More specifically the research question guiding this study is: Was there a significant difference

in student performance in an introductory programming course between students who are

learning or have learned a second natural language when compared to those who have not, when

participation in a second or prior programming course is controlled for?

Methods

To answer the above research question, performance in a high enrollment first-year engineering

course offered in the College of Engineering and Applied Science (CEAS) at the University of

Cincinnati (UC) was considered. Three consecutive offerings of the course (Fall 2014, Fall 2015,

and Fall 2016) were examined in relation to the students’ prior or parallel participation in

language courses other than the English courses taken as part of a typical first-year curriculum.

Students’ participation in other programming courses was also considered during the analysis.

Detailed description of the methods follows in this section.

Context:

Engineering Models I was the first in a two-semester sequence of courses that were required for

all first-year students in the CEAS from fall 2012 through spring 2018. This sequence of courses

served two purposes: to introduce students to the computer as a tool for solving engineering

problems and to provide context and applications for the mathematics and science material

covered in other introductory STEM courses. In the Engineering Models I course, students were

introduced to the computational package MATLAB® and shown how MATLAB® can be used as

a tool when solving engineering problems and modeling physical processes. For example, when

plotting various functions including exponentials, sinusoids, and damped sinusoidal functions,

the emphasis is on how these functions can be used to model certain physical processes such as

the charging or discharging of a capacitor, chemical reaction rates, and damped harmonic

motion. Several weeks were spent developing the logical thinking and computing knowledge

required to make full use of MATLAB®. Even while developing students’ programming skills,

the labs and homework assignments were closely tied to mathematics, science, and engineering

applications. For example, students used loops to program iterative algorithms based on the

Newtown-Raphson algorithm or Taylor Series to determine square roots and cube roots of

numbers and the sine or cosine of angles, respectively.

Data Collection:

The data analyzed for this study originated from two primary sources. Data specifically related to

performance in the Engineering Models I course were collected from the records of individual

instructors that were submitted to the course coordinator at the end of the fall 2014, 2015, and

2016 semesters (the assignments were common across all sections each semester). These

semesters were selected because there were only minor variations to the course structure and

implementation over this time span. Additionally, the data all originated from the same four

instructors, who worked closely together, which helps to minimize the impact of instructor

variation in student performance. The data includes homework averages, worth 25%, lab

assignment averages, worth 25%, quizzes, worth 10%, midterm, worth 20%, and final exam,

worth 20% along with the final course average and course grade.

Demographic data and the data related to performance in natural language and other

programming language courses were all collected from university records. Performance scores in

natural and programming language courses were limited to only those courses taken prior to or

concurrently with the first time a student took the Engineering Models I course. Once all of the

data was collected, one member of the research team not involved in the analysis consolidated all

of the data sources into a single set and deidentified the data.

The deidentified data contained information on student letter grades in second language courses

in Arabic, American Sign Language, Chinese, English as a Second Language, French, German,

Italian, Japanese, Latin, Russian, Spanish. In addition, information on student letter grades in six

other programming courses were also available. For the purposes of this study, performances in

these courses were categorized into participation/non-participation. If a student had AP credits or

a grade for any of the language courses, they had a participant entry in natural language while

those who did not were deemed a non-participant. Similar categorizations were made for the

programming courses. For the dependent variables, performance in the Engineering Models I

course was considered. Weighted average scores for the entire course were calculated, which

included scores from homework assignments, quizzes, labs, midterm exams, and final exams.

The same procedures were applied for all three cohorts.

In order to understand the population investigated in this study, a set of demographic data is

shown in Tables 1, 2, and 3 below. The three cohorts were broken out by gender, race, and

major. Additionally, there were student records that showed participation in Engineering Models

I in two consecutive years. These entries were removed with the notion that scores of students

who attended the course twice would be skewed because of the multiplicity of participation. In

total 5 student entries were removed from the analysis.

Table 1: Demographics

 2014 2015 2016

Total 551 677 697

Gender

Male 460 543 558

Female 91 134 139

Race

White 447 545 541

Black or African American 10 24 26

Hispanic/Latino 9 19 26

Asian 20 19 31

Two or more races 10 17 28

Non-resident Alien 25 20 37

Other or Unknown 30 32 8

Table 2 summarizes the enrollment for each of the majors offered in CEAS who took the

Engineering Models I course along with the DFW rate over the three semesters being considered.

As can be seen, enrollment among engineering students was fairly stable across the three

semesters, as was the DFW rate. Note that this data is for the overall enrollment, not just for the

cohorts investigated in this study. Table 3 shows the distribution of majors for only those

students included in the three cohorts used in this study.

Table 2: Overall Distribution of Majors

 Fall 2014 Fall 2015 Fall 2016

Major Enrollment DFW Rate Enrollment DFW Rate Enrollment DFW Rate

AE 41 7.3% 26 3.8% 43 11.6%

ASE 95 5.3% 60 6.7% 81 2.5%

BME 66 0.0% 77 2.6% 62 1.6%

CE 81 8.6% 74 1.4% 87 8.0%

CHE 147 4.8% 140 3.6% 125 4.0%

CM 33 12.1% 32 18.8% 33 15.2%

CMPE 80 6.3% 79 5.1% 106 7.5%

CS 76 1.3% 89 3.4% 65 7.7%

EASE 73 19.2% 60 8.3% 74 18.9%

EE 74 6.8% 74 8.1% 88 10.2%

EET 22 13.6% 32 18.8% 39 10.3%

ENVE 24 4.2% 31 0.0% 42 7.1%

FEP 101 4.0% 109 4.6% 161 6.2%

ME 147 4.1% 123 4.1% 152 2.6%

MET 64 17.2% 91 11.0% 93 16.1%

Total 1124 6.8% 1097 5.7% 1251 7.8%

Table 3: Cohort Breakdown of Majors

 2014 2015 2016

AE 8 15 19

ASE 54 11 28

BME 17 35 37

CE 22 28 22

CHE 28 42 58

CM 15 22 10

CMPE 13 31 32

CS 44 45 63

EASE 10 7 7

EE 21 42 45

EET 8 13 18

ENVE 5 12 12

FEP 1 2 5

ME 123 112 83

MET 26 47 53

Data Analysis:

The demographic data (Table 1 above) indicate that the sample has characteristics of a typical

large midwestern, R-1 institution. To begin the analysis, differences between each cohort were

investigated to determine whether the cohorts could be combined or needed to be analyzed as

separate data sets. One-way ANOVA was conducted on the data grouped by each cohort.

However, the parametric assumptions were violated, so the decision was made on the basis of

Kruskal-Wallis test. The test showed significant differences between the cohorts using a

significance level of α = 0.05 (χ2 (2) = 11.534, p = 0.003). Thus, further analysis continued for

each cohort separately. Descriptive statistics for each cohort are provided in Table 4 and Figure 2

below.

Table 4: Descriptive Statistics for each cohort

 Fall 2014 Fall 2015 Fall 2016

Mean 86.888 86.063 85.879

Std. Deviation 13.645 14.233 12.520

Minimum 0.607 0.000 2.500

Maximum 99.233 99.644 100.000

For each cohort, observations were divided into 4 groups:

• students who participated in a course to learn a second natural language at the university

level;

• students who participated in a course to learn a different programming language at the

university level;

• students who participated in courses to learn both a second natural language and a

different programming language at the university level; and

• students who did not participate either type of course at the university level.

One-way ANOVA was conducted to investigate differences in the course average between the

four groups.

Fall 2014 Fall 2015 Fall 2016

Figure 2: Distribution of course averages

Results

2014:

Since parametric assumptions were violated for the 2014 cohort, Kruskal-Wallis test was

conducted to identify differences in course averages between each of the 4 groups. Table 5 below

gives the course averages of the cohort by group of interest. Non-parametric Kruskal-Wallis test

suggested no significant differences between the four groups (χ2 (3) = 7.212, p = 0.065).

Table 5: Course average for different groups in 2014

Experience Group Mean SD N

Natural Language only 89.934 8.773 64

No Programming or Natural Language 86.558 13.434 451

Programming & Natural Language 78.461 34.317 5

Programming only 86.708 20.953 21

2015:

Similar to the 2014 cohort, assumption violation prohibited a one-way ANOVA test and a

Kruskal-Wallis test was conducted (see Table 6 below), which suggested significant differences

between the groups (χ2 (3) = 28.113, p < 0.001). Post hoc Dunn’s test with Bonferroni

corrections suggested that there were significant differences between the group pairs of

programming only and natural language only (p = 0.003), and programming only and no

participation in a second programming or natural language course (p < 0.001).

Table 6: Course average for different groups in 2015

Experience Group Mean SD N

Natural Language Only 83.425 19.784 57

No Programming or Natural Language 85.981 13.615 571

Programming and Natural Language 92.430 5.468 4

Programming Only 91.440 12.894 32

2016:

Lastly, for the 2016 cohort, Kruskal-Wallis test revealed significant differences between the

groups (χ2 (3) = 31.218, p < 0.001). Post hoc Dunn’s test with Bonferroni correction suggested

significant differences between three group pairs: programming only and natural language only

(p=0.023); programming only and no participation (programming or natural language)

(p<0.001); natural language and no participation (p = 0.039). Table 7 below summarizes these

results.

Table 7: Course average for different groups in 2016

Experience Groups Mean SD N

Natural Language Only 87.999 11.605 79

No Programming or Natural Language 85.131 12.614 555

Programming & Natural Language 90.938 8.163 8

Programming Only 90.928 12.106 41

Discussion

Based on the results presented above, the answer to our original research questions is

inconclusive. While there are significant differences for the 2015 and 2016 cohorts, they do not

support a claim that learning a second natural language is linked to better performance in an

initial programming course. In only one cohort (2016) was there a significant different between

the natural language only group and the no participation group. While this one cohort does

indicate that the natural language learners performed better in the Engineering Models I course,

it is not enough to support a claim that learning a second natural language improves performance

in learning a programming language.

The results do support a claim that experience learning a prior programming language does

contribute towards performance in learning a second programming language. This can be seen in

both the 2015 and 2016 cohorts, where the programming only group significantly outperformed

the no participation group. Interestingly, the programming only group also outperformed the

natural language only group in both 2015 and 2016. While learning a second natural language

may provide some benefit, it appears the best way to develop proficiency with computing

knowledge and skills is by actually programming.

It is also interesting to consider the reasons for the variation in performance and results among

the different cohorts. As was stated previously, the semesters were selected specifically because

they were the most stable across the six years the course sequence was offered. The four

instructors who taught the sections of the course investigated were also common to all three

semesters. One potential factor that may have contributed to the differences in the cohorts was

the variation in the number of sections taught by each instructor. In 2014, instructors 1 and 4

taught two sections while instructors 2 and 3 taught three sections each. In 2015 and 2016,

instructors 1 and 2 taught two sections each while instructor 3 taught three sections and

instructor 4 taught four sections. Given that the 2015 and 2016 cohorts showed some similarity

in results, this similarity in the number and distribution of sections among instructors may have

played a role.

The overall performance in the course could also be a contributing factor to why there was little

variation seen between the different groups across the cohorts. With the exception of the

programming and natural language group from the Fall 2014 cohort, the averages for all other

groups across the cohorts only ranged from the mid 80s to the lower 90s. Since these averages

are fairly close and also relatively high, there may simply not be enough variation in the

performance based on final grades to distinguish amongst the groups. The high grades could also

indicate that students did not struggle significantly in the course, regardless of prior experience,

due to the design and implementation of the course.

Another potential reason for the differences seen between the cohorts is the distribution of

majors within the cohorts. For instance, in 2016, there were a larger percentage of computer

science students in the sections of the course included than in 2014 or 2015. There was also a

larger number of chemical engineering students, which tends to attract some of the higher

performing students. A similar difference was also seen between the 2014 and 2015 cohorts, with

increased percentages of biomedical, chemical, computer, and electrical engineers. A potential

future direction for this study is to look specifically at the differences between the various

engineering disciplines.

Conclusion

This study investigated the impact of learning a second natural language on performance in a

specific programming language course (Engineering Models I). Results of the data analysis were

inconclusive, with different cohorts potentially suggesting different relationships, or even no

relationships at all. These differences between cohorts could potentially be a result of differences

in the distribution of sections among instructors or the distribution of majors among the students

included in each cohort.

There are several directions future work may take. One pathway is to consider whether

bilingualism (from childhood) has an impact on performance. Along these same lines, an

investigation into the type of natural language learned could also be illuminative. Every language

has a different vocabulary and set of grammar rules. There are also differences in the symbology

used. While many languages utilize the Latin alphabet common in most wester cultures, other

languages use alternative alphabets, such as the Greek alphabet or the Cyrillic alphabet. Other

languages utilize symbols to represent entire words or ideas, such as the cuneiform of many

Asian countries. These differences may have a significant impact on the way in which someone

learns a programming language, which typically utilizes a Latin alphabet and English terms, and

warrants investigation.

While many would equate proficiency in programming with computational or mathematical

skills, that is only one part of what is needed to be create a functioning program to solve a

particular problem. Additionally, a programmer must be able to think through the logic necessary

to carry out the various tasks the program must perform and translate the problem description,

typically given in a narrative form. Another future avenue to pursue is the link between

someone’s language abilities and the ability to convert the description of a problem into the logic

necessary to solve it.

As was mentioned previously, an investigation into the ways that different majors experience

learning to program could also help to better understand the differences seen in the cohorts for

this study. Are there differences in performance for students in the same groups (second natural

language, prior programming language, no prior experience) based on major? Is a computer

science student typically going to perform better than other disciplines, even without prior

experience because of a natural inclination to computing or identification with the discipline?

Does a biomedical engineering student with experience in a second natural language perform

better than an electrical engineer with similar experience, and what is it about the students

typically attracted to that major that causes such differences? These questions and others along

the same lines could help instructors understand their students better and develop more robust

pedagogies for engaging all students in the act of learning to program.

Finally, only participation in a second programming language course and second natural

language course was considered for the purposes of this study. Future work may examine

whether performance in these courses is related to performance in the Engineering Models I

course.

References
1. National Academy of Engineering, The engineer of 2020 : visions of engineering in the new century. 2004,

Washington, DC: National Academies Press. xv, 101 p.
2. Robins, A., J. Rountree, and N. Rountree, Learning and teaching programming: a review and discussion.

Computer Science Education, 2003. 13(2): p. 137-172.
3. Mayer, R.E., Cognitive aspects of learning and using a programming language, in Interfacing Thought,

J.M. Carrol, Editor. 1987, The MIT Press: Cambridge, MA. p. 61-79.
4. McCracken, M., et al., A multi-national, multi-institutional study of assessment of programming skills of

first-year CS students. ACM SIGCSE Bulletin, 2001. 33(4): p. 125-180.
5. Thomas, L., et al., Learning styles and performance in the introductory programming sequence. ACM

SIGCSE Bulletin, 2002. 34(1): p. 33-37.
6. Newell, A. and H. A. Simon, Human problem solving. Englewood Cliffs, NJ, Prentice-Hall, 1972.

7. Bucks, G., A Phenomenographic study of the ways of understanding conditional and repetition structures

in computer programming languages. PhD Dissertation, Purdue University, 2010.

8. Johnson-Laird, P. N., Mental models: towards a cognitive science of language, inference, and

consciousness. Cambridge, MA, Harvard University Press, 1983.

9. Bransford, J. D., A. L. Brown, et al., Eds., How people learn: brain, mind, experience, and school.

Washington, D.C., National Academies Press, 1999.

10. Felder, R.M. and L.K. Silverman, Learning and teaching styles in engineering education. Engineering

Education, 1988. 78(7): p. 674-681.
11. Felder, R.M. and J. Spurlin, Applications, reliability and validity of the index of learning styles.

International Journal of Engineering Education, 2005. 21(1): p. 103-12.
12. Rosati, P.A. The learning preferences of engineering students from two perspectives. in ASEE/IEEE

Frontiers in Education. 1998. Tempe, Arizona.
13. Litzinger, T.A., et al., A psychometric study of the index of learning styles. Journal of Engineering

Education, 2007. 96(4): p. 309-319.
14. Zualkernan, I.A., J. Allert, and G.Z. Qadah, Learning styles of computer programming students: a middle

eastern and American comparison. IEEE Transactions on Education, 2006. 49(4): p. 443-50.
15. Felder, R.M., Learning and teaching styles in foreign and second language education. Foreign Language

Annals, 1995. 28(1): p. 21-31.
16. Ma, L., et al., Investigating the viability of mental models held by novice programmers. ACM SIGCSE

Bulletin, 2007. 39(1): p. 499-503.
17. Bonar, J. and E. Soloway. Uncovering principles of novice programming. in Proceedings of the 10th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages. 1983. Austin, Texas: ACM.

18. Brown, H. D., & Gonzo, S. T. Readings on second language acquisition. Englewood Cliffs, NJ: Prentice

Hall Regents, 1995
19. Barmpoutis, A. Learning programming languages as shortcuts to natural language token replacements. In

Proceedings of the 18th Koli Calling International Conference on Computing Education Research. 2018.

Association for Computing Machinery, New York, NY, USA, Article 1, 1–10.

DOI:https://doi.org/10.1145/3279720.3279721

20. Liu, X., and Wu, D. From Natural Language to Programming Language. In Goschnick, S.

(Ed.), Innovative Methods, User-Friendly Tools, Coding, and Design Approaches in People-Oriented

Programming (pp. 110-130). IGI Global. 2018. http://doi:10.4018/978-1-5225-5969-6.ch004

21. Good, J. and Howland, K. Programming language, natural language? Supporting the diverse

computational activities of novice programmers. Journal of Visual Languages & Computing, 2006. 39: p.

78-92, https://doi.org/10.1016/j.jvlc.2016.10.008.

22. Moreno-León, J. and Robles, G. Computer programming as an educational tool in the English classroom a

preliminary study. In IEEE Global Engineering Education Conference (EDUCON) 2015. p. 961–966.

23. Sauter, V. Predicting computer programming skill. Computers & Education, 1986. 10(2): p. 299-302.

24. Erdogan, Y., Aydin, E., & Kabaca, T. Exploring the psychological predictors of programming

achievement. Journal of Instructional Psychology, 2008. 35(3).

25. Prat, C., Madhyastha, T., Mottarella, M., & Kuo, C.-H. Relating natural language aptitude to individual

differences in learning programming languages. Science Reports, 2020. 10(3817). doi:

https://doi.org/10.1038/s41598-020-60661-8.

26. Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethman, A., Leich, T., . . . Brechmann, A. Understanding

understanding source code with functional magnetic resonance imaging. ICSE 2014: Proceedings of the

36th International Conference on Software Engineering, 2014 (pp. 378-389). Hyderababad, India.

27. Frederick, C., Sun, L., Liron, C., Verleger, M. A., Cunningham, R. M., & Espejo, P. S. Implementation and

evaluation of a second language acquisition–based programming course. Proceedings of the ASEE Annual

Conference & Exposition, 2016.

28. Ragonis, N., & Shilo. G. Drawing analogies between logic programming and natural language

argumentation texts to scaffold learners’ understanding. Journal of Information Technology Education

Research, 2014. 13: p. 73- 89.

29. Stocco, A., & Prat, C. S. Bilingualism trains specific brain circuits involved in flexible rule selection and

application. Brain and Language, 2014. 137: p. 50-61. doi: https://doi.org/10.1016/j.bandl.2014.07.005

30. Sun, L., Frederick, C., Liron, C., Ding, L., Gu, L., II, A. C., . . . Espejo, P. S. Motivating students to learn a

programming language: Applying a second Language acquisition approach in a blended learning

environment. 2018 ASEE Annual Conference & Exposition. Salt Lake City, UT.

31. Van Roy, P., Armstrong, J., Flatt, M., & Magnusson, B. The role of language paradigms in teaching

programming. 34th SIGCSE technical symposium on Computer science education, 2003. p. 269-270.

Reno, Nevada.

https://doi.org/10.1016/j.jvlc.2016.10.008
https://doi.org/10.1016/j.bandl.2014.07.005

