006-823: LEARNING THE VIRTUAL WORK METHOD IN STATICS: WHAT IS A COMPATIBLE VIRTUAL DISPLACEMENT?

Ing-Chang Jong, University of Arkansas

Ing-Chang Jong serves as Professor of Mechanical Engineering at the University of Arkansas. He received a BSCE in 1961 from the National Taiwan University, an MSCE in 1963 from South Dakota School of Mines and Technology, and a Ph.D. in Theoretical and Applied Mechanics in 1965 from Northwestern University. He was Chair of the Mechanics Division, ASEE, in 1996-97. His research interests are in mechanics and engineering education.
Learning the Virtual Work Method in Statics: What Is a Compatible Virtual Displacement?

Abstract

Statics is a course aimed at developing in students the concepts and skills related to the analysis and prediction of conditions of bodies under the action of balanced force systems. At a number of institutions, learning the traditional approach using force and moment equilibrium equations is followed by learning the energy approach using the virtual work method to enrich the learning of students. The transition from the traditional approach to the energy approach requires learning several related key concepts and strategy. Among others, compatible virtual displacement is a key concept, which is compatible with what is required in the virtual work method but is not commonly recognized and emphasized. The virtual work method is initially not easy to learn for many people. It is surmountable when one understands the following: (a) the proper steps and strategy in the method, (b) the displacement center, (c) some basic geometry, and (d) the radian measure formula to compute virtual displacements. For learning and pedagogical purposes, this paper includes seven examples with various levels of challenge.

I. Introduction

More often than not, it is manifested that the virtual work method is used to treat problems involving mainly machines. This manifestation comes about as a consequence of focusing on the determination of the equilibrium configuration of a series of pin-connected members by restricting virtual displacements to be consistent with constraints at the supports. In general, such a restriction is too strong and is an over restriction. It prevents the virtual work method from being effectively used to treat problems involving beams and frames, and it diminishes the usefulness of the virtual work method in Statics. As a result, some feel that the virtual work method lacks broad appeal in Statics. Nonetheless, the virtual work method is a standing topic contained in most textbooks of Statics. By and large, such a topic is covered in Statics at the discretion of the instructors to enrich the learning of students.

Both the traditional method and the virtual work method equally require and emphasize the drawing of free-body diagrams, although the former involves more algebra and the latter uses more geometry in solving problems. Most students find that learning the virtual work method is challenging, since they are generally better at algebra than geometry. It is not the intent of this paper to urge anyone to teach the virtual work method or to upstage the time-honored traditional method in Statics. Rather, this paper is mainly aimed at being an extension to previous efforts of mechanics educators and textbook authors who included the virtual work method in Statics. In particular, this paper identifies key concepts, steps, and strategy that have been helpful to students in learning the virtual work method. Readers, who are familiar with this method, may skip the refresher on the rudiments included in the early part of this paper.

A displacement of a body is a change of position of the body. A rigid-body displacement of a body is a change of position of the body without inducing any strain in the body. A virtual dis-
placement of a body is an imaginary, first-order differential displacement, which is possible but does not actually take place. A **rigid-body virtual displacement** of a body is a rigid-body displacement as well as a virtual displacement of the body, where the body undergoes an imaginary, first-order differential deflection to a neighboring position **without** experiencing any strain.

Work is energy in transition to a system due to force or moment acting on the system during a displacement of the system. **Heat** is energy in transition to a system due to temperature difference between the system and its surroundings. Work, as well as heat, is dependent on the path of a process. Like heat, work crosses the system boundary when the system undergoes a process. Unlike kinetic energy and potential energy, work is not a property possessed by a system. In mechanics, a body receives work from a force or a moment that acts on it while it undergoes a displacement in the direction of the force or moment, respectively, during the action. It is the force or moment, rather than the body, which does work. A **virtual work** is the work done by force or moment during a virtual displacement of the body.

![Fig. 1 Compatible virtual displacement of body AB to position A'B'](image)

In virtual work method, **compatible virtual displacements** (besides rigid-body virtual displacements) are to be used, where second-order (**not** first-order) straining of members in a system is permitted in drawing **virtual displacement diagrams**. This may initially come across as being against the grain of the usual mentality of **rigid** bodies held for Statics. Notwithstanding, a working definition is in order. As shown in Fig. 1, a **compatible virtual displacement** of a body AB is an imaginary displacement resulting from a **first-order** differential angular displacement Δθ of the body about a certain point D, called its **displacement center**, during which the body deflects from position AB to another position A'B' and the following conditions exist:

\[
\overrightarrow{AA'} \perp \overrightarrow{AD} \quad \overrightarrow{BB'} \perp \overrightarrow{BD} \quad \overrightarrow{A'B'} \geq \overrightarrow{AB}
\]

The displacement vectors \(\overrightarrow{AA'}\) and \(\overrightarrow{BB'}\) in Fig. 1 are called the **compatible virtual displacements** of points A and B, respectively.

The concept of compatible virtual displacement is compatible with what is required in the virtual work method, and it is a critical one in teaching and learning the virtual work method. Note that this concept has a subtle shade of difference from the traditional concept of **rigid-body virtual displacement** defined earlier.
II. Rigid-Body versus Compatible Virtual Displacements

All bodies considered in this paper are rigid bodies or systems of pin-connected rigid bodies, where the pins are taken as frictionless and no resisting moments are developed in the joints. If a body \(AB \) undergoes a rigid-body virtual displacement by rotating about its end \(A \), as its displacement center, through an angular displacement \(\delta \theta \), it will experience no axial strain to reach the position \(AB'' \), not \(AB' \), as illustrated in Fig. 2. However, if the body \(AB \) undergoes a compatible virtual displacement by rotating about its end \(A \), as its displacement center, through an angular displacement \(\delta \theta \), it will experience some axial strain to reach the position \(AB'' \), not \(AB'' \), as illustrated in Fig. 2.

![Fig. 2 Rigid-body versus compatible virtual displacements of body AB](image)

Using series expansion in terms of the first-order differential angular displacement \(\delta \theta \), which is infinitesimal, we find that the difference between \(AB'' \) and \(AB''' \) is given by

\[
B''B' = L \sec \delta \theta - L = L \left[1 + \frac{1}{2} (\delta \theta)^2 + \frac{5}{24} (\delta \theta)^4 + \frac{61}{720} (\delta \theta)^6 + \cdots \right] - L
\]

\[
\therefore \ B''B' \approx \frac{L}{2} (\delta \theta)^2 \text{ + higher order terms of } \delta \theta \tag{1}
\]

Since \(\delta \theta \) is infinitesimally small, the amount of axial strain experienced by body \(AB \) is

\[
\varepsilon = \frac{B''B'}{AB} \approx \frac{\frac{L}{2} (\delta \theta)^2}{L} = \frac{1}{2} (\delta \theta)^2 \tag{2}
\]

Thus, in undergoing compatible virtual displacement from position \(AB \) to position \(AB' \), the body \(AB \) may, at most, experience an axial strain of the second order of \(\delta \theta \). Meanwhile, the compatible virtual displacement of point \(B \) in Fig. 2 is the displacement vector from \(B \) to \(B' \). The magnitude of this displacement vector is

\[
\overrightarrow{BB'} = L \tan \delta \theta = L \left[\delta \theta + \frac{1}{2} (\delta \theta)^3 + \frac{5}{24} (\delta \theta)^5 + \frac{61}{720} (\delta \theta)^7 + \cdots \right] \approx L \delta \theta \tag{3}
\]

In Fig. 2, the lengths of the chord \(BB' \) and the arc \(BB'' \) can be taken as equal as \(\delta \theta \to 0 \) in the limit. Equation (3) shows that the magnitude of the compatible virtual displacement of point \(B \) may indeed be computed by using the radian measure formula in calculus; i.e.,

\[
s = r \theta \tag{4}
\]

where \(s \) is the arc subtending an angle \(\theta \) (in radians) included by two radii of length \(r \). Note that Eq. (4) is extremely useful and important in solving problems by the virtual work method!
III. Relevant Fundamental Concepts

In teaching and learning the virtual work method, it is well to recall the following relevant fundamental concepts:

- **Work of a force**

 If a force \(F \) acting on a body is *constant* and the displacement vector of the body from position \(A_1 \) to position \(A_2 \) during the action is \(q \), then the work \(U_{1\to2} \) of the force \(F \) on the body is \(^2,6,8,9\)

 \[
 U_{1\to2} = F \cdot q = Fq_{\parallel}
 \]

 where \(F \) is the magnitude of \(F \) and \(q_{\parallel} \) is the scalar component of \(q \) parallel to \(F \). If the force is not constant, then integration may be used to compute the work of the force.

- **Work of a moment**

 If a moment \(M \) (or a couple of moment \(M \)) acting on a body is *constant* and the angular displacement of the body from angular position \(\theta_1 \) to angular position \(\theta_2 \) in the direction of \(M \) during the action is \(\Delta \theta \), then the work \(U_{1\to2} \) of the moment \(M \) on the body is \(^2,6,8,9\)

 \[
 U_{1\to2} = M(\Delta \theta)
 \]

 where \(M \) is the magnitude of \(M \). If the moment is not constant, then integration may be used to compute the work of the moment.

- **Principle of virtual work**

 Recall that bodies considered here are rigid bodies or systems of pin-connected rigid bodies. The term “force system” denotes a system of *forces* and *moments*, if any. The work done by a force system on a body during a *virtual displacement* of the body is the virtual work of the force system. By Newton’s third law, internal forces in a body, or a system of pin-connected rigid bodies, must occur in pairs; they are equal in magnitude and opposite in directions in each pair. Clearly, the total virtual work done by the internal forces during a virtual displacement of a body, or a system of pin-connected rigid bodies, must be zero. When a body, or a system of pin-connected rigid bodies, is in equilibrium, the *resultant force* and the *resultant moment* acting on its free body must both be zero.

 The total virtual work done by the force system acting on the free body of a body is, by the distributive property of *dot product of vectors*, equal to the total virtual work done by the resultant force and the resultant moment acting on the free body, which are both zero if the body is in equilibrium. Therefore, we have the principle of virtual work in Statics, which may be stated as follows: *If a body is in equilibrium, the total virtual work of the external force system acting on its free body during any compatible virtual displacement of its free body is equal to zero, and conversely.* \(^2,6,8,9\) Note that the body in this principle may be a particle, a set of connected particles, a rigid body, or a system of pin-connected rigid bodies (e.g., a frame or a machine). Using \(\delta U \) to denote the total virtual work done, we write the equation for this principle as

 \[
 \delta U = 0
 \]

(7)
Conventional method versus virtual work method

With the conventional method, equilibrium problems are solved by applying two basic equilibrium equations: (a) force equilibrium equation, and (b) moment equilibrium equation; i.e.,

\[\sum F = 0 \] \hspace{1cm} (8)
\[\sum M_B = 0 \] \hspace{1cm} (9)

With the virtual work method, equilibrium problems are solved by applying the virtual work equation, which sets to zero the total virtual work \(\delta U \) done by the force system on the free body during a chosen compatible virtual displacement of the free body; i.e.,

\[\delta U = 0 \] \hspace{1cm} (Repeated) (7)

IV. Learning the Virtual Work Method: Examples

There are three major steps and one strategy in using the virtual work method. Step 1: Draw the free-body diagram (FBD). Step 2: Draw the virtual-displacement diagram (VDD) with a strategy. Step 3: Set to zero the total virtual work done. The strategy in step 2 is to give the free body a compatible virtual displacement in such a way that only the unknown to be determined, besides the applied loads that are already known, will be involved in the total virtual work done. This strategy is the key to successful solutions of problems using the virtual work method. It is important to understand and master this strategy before attempting to solve any problem.

In a nutshell, the virtual work method simply consists of three major steps and one strategy! To be more helpful to those who wish to compare the features between the virtual work method and the traditional method, the following seven illustrative examples are chosen for pedagogical purposes and are arranged in increasing level of challenge. In particular, Example 1 presents a parallel comparison between the traditional method and the virtual work method. Naturally, teaching of the virtual work method in Statics is usually aimed at enriching the learning of students as circumstances warrant.

Example 1. Determine the vertical reaction force \(B_y \) at the roller support \(B \) of the simple beam loaded as shown in Fig. 3 by using (a) the traditional method, and (b) the virtual work method.

Solution. Note that color codes are here employed in the solution to enhance head-to-head comparison of (a) the traditional method, and (b) the virtual work method.

(a) Traditional method to solve for \(B_y \): It is a usual procedure in the traditional method to first draw the FBD of the beam as shown in Fig. 4.
Next, we refer to the FBD in Fig. 4 and apply Eq. (9) to write
\[+ \varnothing \sum M_A = 0: \quad -3\left(\frac{4}{5}\right)(600) + 5B_y = 0 \]
\[\therefore \ B_y = 288 \text{ N} \]

(b) Virtual work method to solve for \(B_y \): We shall follow the steps and strategy as outlined.

Step 1: We draw the FBD for the beam as shown in Fig. 4.

Step 2: Keeping an eye on the FBD in Fig. 4, we draw a VDD for the beam with a strategy as shown in Fig. 5, where we let the beam rotate counterclockwise through an imaginary angular displacement \(\delta \theta \) about point \(A \) as the displacement center, and we have applied Eq. (4), the radian measure formula, in labeling the magnitudes of the virtual displacements of points \(C \) and \(B \) as follows:

\[\overline{CC'} = 3 \delta \theta \quad \overline{BB'} = 5 \delta \theta \]

The resulting VDD is well done because it will allow no unknowns except \(B_y \) to be involved in the total virtual work done.

Step 3: We refer to Figs. 4 and 5 and apply Eqs. (5) and (7) to write
\[\delta U = 0: \quad \frac{4}{3}(600)(-3 \delta \theta) + B_y(5 \delta \theta) = 0 \]
\[\therefore \ B_y = 288 \text{ N} \]

Remarks. We see in Example 1 that both the traditional method and the virtual work method can solve the same simple problem and arrive at the same solution. Although using the virtual work method to solve a simple problem may appear “unconventional,” we shall see that this method has more advantage in solving more challenging problems, such as those shown below.
Example 2. A combined beam (a Gerber beam) is loaded as shown in Fig. 6. Using the virtual work method, determine only the reaction moment M_A at the fixed support A.

Solution. We shall follow the outlined steps and strategy in the method to directly solve for M_A.

Step 1: We draw the FBD for the combined beam as shown in Fig. 7.

Step 2: Keeping an eye on the FBD in Fig. 7 and applying Eq. (4), we draw a VDD for the beam with a strategy as shown in Fig. 8. Note that we let member AB rotate about A through an imaginary angle $\delta \theta$ to get a compatible virtual displacement of the beam as shown, where the members $DEFG$ and GHI are unmoved according to the strategy. The resulting VDD is well done because it will allow no unknowns except M_A to be involved in the total virtual work done.

Step 3: We refer to Figs. 7 and 8 and apply Eqs. (5), (6), and (7) to write

$$\delta U = 0: \quad M_A(\delta \theta) + 500(-4\delta \theta) + 600(\delta \theta) = 0 \quad M_A = 1400$$

Remarks. If we are to use the traditional method, we refer to the FBD in Fig. 7 and write

- At hinge B, $M_B = 0$: $M_A - 4A_y = 0$ (i)
- At hinge D, $M_D = 0$: $M_A - 8A_y + 4(500) - 600 = 0$ (ii)

These two simultaneous equations yield: $A_y = 350$ and $M_A = 1400$.

Thus, the traditional method confirms the same solution: $M_A = 1400$ lb·ft
Example 3. A combined beam is loaded as shown in Fig. 6. Using the *virtual work method*, determine *only* the vertical reaction force A_y at the fixed support A.

![Fig. 6 A combined beam with hinge connections at B, D, and G](Repeated)

Solution. We shall follow the outlined steps and strategy in the method to *directly* solve for A_y.

Step 1: We draw the FBD for the combined beam as shown in Fig. 7.

![Fig. 7 FBD for the combined beam](Repeated)

Step 2: Keeping an eye on the FBD in Fig. 7 and applying Eq. (4), we draw a VDD for the beam with a strategy as shown in Fig. 9, where we let member BCD rotate about D through an *imaginary* angle $\delta \theta$ to get a compatible virtual displacement of the beam as shown, where the members $DEFG$ and GHI are unmoved according to the strategy. The resulting VDD is well done because it will allow *no* unknowns *except* A_y to be involved in the total virtual work done.

![Fig. 9 VDD for determining only A_y](Repeated)

Step 3: We refer to Figs. 7 and 9 and apply Eqs. (5), (6), and (7) to write

\[\delta U = 0: \quad A_y (4 \delta \theta) + 500 (-4 \delta \theta) + 600 (\delta \theta) = 0 \quad A_y = 350 \]

Remarks. If we are to use the *traditional method*, we refer to the FBD in Fig. 7 and write

- At hinge B, $M_B = 0:
 \[M_A - 4A_y = 0 \] \quad (i)

- At hinge D, $M_D = 0:
 \[M_A - 8A_y + 4(500) - 600 = 0 \] \quad (ii)

These two simultaneous equations yield: $A_y = 350$ and $M_A = 1400$. Thus, the traditional method confirms the same solution:

\[A_y = 350 \text{ lb} \uparrow \]
Example 4. A combined beam is loaded as shown in Fig. 6. Using the virtual work method, determine only the vertical reaction force \(E_y \) at the roller support \(E \).

Solution. We shall follow the outlined steps and strategy in the method to directly solve for \(E_y \).

Step 1: We draw the FBD for the combined beam as shown in Fig. 7.

Step 2: Keeping an eye on the FBD in Fig. 7 and applying Eq. (4), we draw a VDD for the beam with a strategy as shown in Fig. 10, where we let member \(DEFG \) rotate about \(G \) through an imaginary angle \(\delta \theta \) to get a compatible virtual displacement of the beam as shown. Members \(AB \) and \(GHI \) are unmoved according to the strategy. The resulting VDD is well done because it will allow no unknowns except \(E_y \) to be involved in the total virtual work done.

Step 3: We refer to Figs. 7 and 10 and apply Eqs. (5), (6), and (7) to write

\[
\delta U = 0 : \quad 600(-2.5 \delta \theta) + E_y(6 \delta \theta) + \frac{4}{5}(1500)(-4 \delta \theta) = 0 \quad E_y = 1050 \quad \uparrow
\]

Remarks. If we are to use the traditional method, we refer to the FBD in Fig. 7 and write

- At hinge \(B \), \(M_B = 0 \):
 \[M_A - 4 A_y = 0 \quad (i) \]

- At hinge \(D \), \(M_D = 0 \):
 \[M_A - 8 A_y + 4(500) - 600 = 0 \quad (ii) \]

- At hinge \(G \), \(M_G = 0 \):
 \[M_A - 18 A_y + 14(500) - 600 - 6 E_y + 4\left(\frac{4}{5}\right)(1500) = 0 \quad (iii) \]

These three simultaneous equations yield: \(A_y = 350 \), \(M_A = 1400 \), and \(E_y = 1050 \). Thus, the traditional method confirms the same solution:

\[E_y = 1050 \text{ lb} \uparrow \]
Example 5. A combined beam is loaded as shown in Fig. 6. Using the virtual work method, determine only the vertical reaction force H_y at the roller support H.

![Fig. 6](image)

Solution. We shall follow the outlined steps and strategy in the method to directly solve for H_y.

Step 1: We draw the FBD for the combined beam as shown in Fig. 7.

![Fig. 7](image)

Step 2: Keeping an eye on the FBD in Fig. 7 and applying Eq. (4), we draw a VDD for the beam with a strategy as shown in Fig. 11, where we let member BCD rotate about B through an imaginary angle $\delta\theta$ and unmoved points E and I to get a compatible virtual displacement of the beam as shown. Member AB is, by strategy, unmoved. The resulting VDD is well done because it will allow no unknowns except H_y to be involved in the total virtual work done.

![Fig. 11](image)

Step 3: We refer to Figs. 7 and 11 and apply Eqs. (5), (6), and (7) to write

\[
\delta U = 0: \quad 600(\delta\theta) + \frac{4}{5}(1500)(-2\delta\theta) + 200(-6\delta\theta) + H_y(4\delta\theta) = 0 \quad H_y = 750
\]

Remarks. If we are to use the traditional method, we refer to the FBD in Fig. 7 and write

- At hinge G, $M_G = 0$: $-6I_y + 2H_y = 0$ (i)
- At hinge D, $M_D = 0$: $-16I_y + 12H_y - 10(200) - 6\left(\frac{4}{5}\right)(1500) + 4E_y = 0$ (ii)
- At hinge B, $M_B = 0$: $-20I_y + 16H_y - 14(200) - 10\left(\frac{4}{5}\right)(1500) + 8E_y - 600 = 0$ (iii)

These three simultaneous equations yield: $E_y = 1050$, $H_y = 750$, and $I_y = 250$. Thus, the traditional method confirms the same solution:

$H_y = 750$ lb
Example 6. A frame is loaded as shown in Fig. 12. Using the *virtual work method*, determine only the reaction moment \(M_A \) at the fixed support \(A \).

Fig. 12 A frame with a fixed support at \(A \) and a hinge support at \(D \)

Solution. We shall follow the outlined steps and strategy in the method to directly solve for \(M_A \).

Step 1: We draw the *FBD* for the frame as shown in Fig. 13.

![FBD for the frame](image1)

Step 2: Keeping an eye on the *FBD* in Fig. 13 and applying Eq. (4), we draw a *VDD* for the frame with a strategy as shown in Fig. 14, where we let member \(DEF \) rotate about \(D \) through an imaginary angle \(\delta \theta \) and unmoved points \(A \) and \(D \). The resulting VDD is well done because it will allow no unknowns except \(M_A \) to be involved in the total virtual work done.

Step 3: We refer to Figs. 13 and 14 and apply Eqs. (5), (6), and (7) to write

\[
\delta U = 0: \quad M_A (-2 \delta \theta) + 6(12 \delta \theta) + 2(-4 \delta \theta) + 10 \delta \theta = 0 \quad M_A = 37
\]

Remarks. If we are to use the traditional method, we refer to the FBD in Fig. 13 and write

- At pin \(B \) of member \(ABC \), \(M_B = 0 \):
 \[M_A + 2A_x - 4(6) = 0 \quad \text{(i)} \]
- At pin \(E \) of members \(BGE \) & \(ABC \), \(M_E = 0 \):
 \[M_A + 2A_x - 6A_y - 4(6) + 3(4) = 0 \quad \text{(ii)} \]
- For entire frame, \(+ \sum M_D = 0 \):
 \[M_A + 6A_x - 6A_y + 3(4) + 10 - 4(2) = 0 \quad \text{(iii)} \]

These three simultaneous equations yield: \(A_x = -6.5 \), \(A_y = 2 \), and \(M_A = 37 \).

Thus, the traditional method confirms the same solution:

\[M_A = 37 \text{ kN-m} \]
Example 7. A frame is loaded as shown in Fig. 15. Using the virtual work method, determine only the reaction moment M_A at the fixed support A.

Solution. For beginners, this is a challenging example! To avoid using differential calculus in computing the virtual displacements in the VDD, one may employ the concept of displacement center, which will involve the use of just geometry and algebra (the radian measure formula). Again, we shall follow the outlined steps and strategy in the method to directly solve for M_A.

Step 1: We draw the FBD for the frame as shown in Fig. 16.

Step 2: Keeping an eye on the FBD in Fig. 16, we draw a VDD for the frame with a strategy (for determining only M_A) as shown in Fig. 17, where we let the imaginary angular virtual displacement of member CD be $\theta \mathcal{O}$. Note that members AB, BC, and CD have displacement centers located at points A, E, and D, respectively, and we have used Eq. (4) — the radian measure formula — in computing virtual displacements of the points and members of the frame. Notice that the displacement center E of member BC is simply the point of intersection of two straight
lines \overline{BE} and \overline{CE} drawn perpendicular to the virtual displacement vectors of points B and C (i.e.; $\overline{BE} \perp \overline{BB'}$ and $\overline{CE} \perp \overline{CC'}$). Furthermore, it may be helpful to envisage BC, CE, and BE as the three sides of a “rigid triangular plate BCE,” which is rotated clockwise through the angle of $(10 \delta \theta)/5 = 2 \delta \theta$ about point E to the new position $B'C'E$. This is why each of the three sides of this “rigid triangular plate BCE” also rotates clockwise through the same angle of $2 \delta \theta$!

Fig. 17 VDD for determining only M_A

The resulting VDD in Fig. 17 is well done because it will allow no unknowns except M_A to be involved in the total virtual work done.

Step 3: We refer to Figs. 16 and 17 and apply Eqs. (5), (6), and (7) to write

$$\delta U = 0: \quad M_A (-4 \delta \theta + 10(16 \delta \theta) + 25(2 \delta \theta) + 15(-8 \delta \theta) + 5(6 \delta \theta) + 16(- \delta \theta) = 0$$

$$M_A = 26 \quad \text{ kN-m}$$

Remarks. If we are to use the traditional method, we refer to the FBD in Fig. 16 and write

- At hinge B, $M_B = 0$: $-M_A + 4A_x = 0$ (i)
- At hinge C, $M_C = 0$: $-M_A + 8A_x + 3A_y - 4(10) - 25 = 0$ (ii)
- For the entire frame, $+\sum M_D = 0$: $-M_A + 9A_x + 4(10) - 25 - 8(15) + 6(5) - 16 = 0$ (iii)

These three simultaneous equations yield:

$$A_x = 6.5 \quad A_y = 13 \quad M_A = 26$$

Thus, the traditional method confirms the same solution:

$$M_A = 26 \text{ kN-m}$$
V. Concluding Remarks

Oftentimes, the virtual work method is used to treat problems involving mainly machines, where virtual displacements are restricted to be consistent with constraints at the supports. Such a restriction is generally too strong and is an over restriction in treating other types of problems. In particular, it prevents the virtual work method from being effectively used to treat problems involving beams and frames, and it diminishes the usefulness of the virtual work method in Statics.

The subtle shade of difference between a compatible virtual displacement and a rigid-body virtual displacement is pointed out in the presentation, although it has not been commonly recognized and emphasized in the literature. In using the virtual work method to solve problems involving beams, frames, or machines, we need to remember that all compatible virtual displacements are acceptable virtual displacements. There are three major steps and one strategy in the virtual work method.

Solving a simple equilibrium problem by the virtual work method may come across as “unconventional” or “an act of overkill,” as witnessed in Example 1. Still, the virtual work method is a standing topic in Statics, and it has been shown to have advantages in solving challenging problems as illustrated in Examples 2 through 7. Naturally, teaching of such a topic in Statics is usually at the discretion of the instructors to enrich the learning of students. It may be true that the virtual work method is initially not easy to learn for many people. Nevertheless, it is surmountable when one understands the following: (a) the proper steps and strategy in the method, (b) the displacement center, (c) some basic geometry, and (d) the radian measure formula to compute virtual displacements. George Bernard Shaw once said, “You see things; and you say, ‘Why?’ But I dream things that never were; and I say, ‘Why not?’”

References