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Abstract 
 
Statics is a fundamental course in mechanics and is taken by students in most engineering curric-
ula. At University of Arkansas, learning the energy approach using virtual work is given signifi-
cant emphasis soon after learning the traditional approach using force and moment equilibrium 
equations. The transition from the traditional approach to the energy approach requires that stu-
dents learn a number of relevant key concepts and strategies. Such a transition is often a chal-
lenging experience to many students. This paper presents a roundup of relevant basic concepts 
and the rudiments for effective learning of the virtual work method and aims to demystify the 
perception of this method as a magic black box. In a nutshell, there are three major steps for ap-
plying the virtual work method and a guiding strategy in choosing the virtual displacement for 
determining the specified unknown. The proposed steps and strategy for implementing the vir-
tual work method have led to much better understanding and more effective learning for students 
 
 
I.  Introduction 
 
The virtual work method has many applications, and it is often more powerful than the tradi-
tional method in solving problems involving frames or machines. The virtual work method may 
initially come across as a magic black box to students, but it generally kindles great curiosity and 
interest in students of Statics. The drawing of compatible virtual displacements for frames and 
machines involves basic geometry and requires good graphics skills. These aspects provide op-
portunities for students to reinforce their skills in geometry and graphics. Thus, the teaching and 
learning of the virtual work method result in equipping students with an added powerful analyti-
cal method and helping them enhance skills in reading drawings and presenting technical con-
ceptions. 
 
Work is energy in transition to a body due to force or moment acting on the body through a dis-
placement. Work, as well as heat, is dependent on the path of a process. Like heat, work crosses 
the system boundary when the system undergoes a process. Thus, work is a boundary phenome-
non. Unlike kinetic energy and potential energy, work is not a property possessed by a system. A 
virtual displacement of a body is an imaginary first-order differential displacement, which does 
not actually occur. A virtual work is the work done by force or moment during a virtual dis-
placement of the system. By letting the free body of a system undergo a strategically chosen 
compatible virtual displacement in the virtual work method, we can solve for one specified un-
known at a time in many complex as well as simple problems in Statics without having to solve 
coupled simultaneous equations. It is the aim of this paper to: (a) summarize relevant basic con-
cepts needed in learning the virtual work method, (b) utilize just algebra and geometry (rather 
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than differential calculus) as the prerequisite mathematics to compute virtual displacements, (c) 
present three major steps for implementing the virtual work method, and (d ) propose a guiding 
strategy in choosing the virtual displacement for determining the specified unknown. 
 
 
II.  Relevant Basic Concepts 
 
In mechanics, a body receives work from a force or a moment that acts on it if it undergoes a 
displacement in the direction of the force or moment, respectively, during the action. It is the 
force or moment, rather than the body, which does work. In teaching and learning the virtual 
work method, it is well to refresh the following relevant basic concepts: 
 

  Work of a force 
 
If a force F acting on a body is constant and the displacement vector of the body from position 
A1 to position A2 during the action is q, then the work  of the force F on the body is1 2U →

1-4

 
 

                                                               1 2U → Fq= ⋅ =F q  (1) 
 

where F is the magnitude of F, and  is the scalar component of q parallel to F. If the force is 
not constant, then integration may be used to compute the work of the force. 

q

 
  Work of a moment 

 
If a moment M (or a couple of moment M) acting on a body is constant and the angular dis-
placement of the body from angular position θ1 to angular position θ2 in the direction of M dur-
ing the action is θ∆ , then the work  of the moment M on the body is1 2U →

1-4

 
 

                                                                  θ→ ∆=1 2 (U M )  (2) 
 
 

where M is the magnitude of M. If the moment is not constant, then integration may be used to 
compute the work of the moment. 
 

  Rigid-body virtual displacement 
 
In Statics, all bodies considered are rigid bodies or systems of pin-connected rigid bodies that 
can rotate frictionlessly at the pin joints. A displacement of a body is the change of position of 
the body. A rigid-body displacement of a body is the change of position of the body without in-
ducing any strain in the body. A virtual displacement of a body is an imaginary first-order dif-
ferential displacement, which is possible but does not actually take place. Furthermore, virtual 
displacements can be either consistent or inconsistent with constraints of the body.1-5 A rigid-
body virtual displacement of a body is a rigid-body displacement as well as a virtual displace-
ment of the body, where the body undergoes a first-order differential deflection to a neighboring 
position, but the body experiences no axial strain at all. This is illustrated in Fig. 1 for a single 
body AB, and in Fig. 2 for a hinged body ABC, which is composed of two rigid members AB and 
BC that are hinged together at B. (Note that the body ABC is a system of pin-connected rigid 
bodies.) 
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Fig. 1  Body AB  undergoing a rigid-body virtual displacement to position AB″  
 
 
 
 

 
 

Fig. 2  Hinged body  undergoing a rigid-body virtual displacement to position ABC AB C″ ″  
 

 
Using series expansion in terms of the first-order differential angular displacementδθ , which is 
infinitesimal, we find that the distance between ′′B and ′B in Fig. 1 is 
 

                 2 4 65 611
2 24 720sec 1 ( ) ( ) ( ) ( )2

2δθ δθ δθ δθ′′ ′ ⎡ ⎤= − = + + + + ⋅⋅ ⋅ − ≈⎣ ⎦
LB B L L L L δθ  (3) 

 

In a similar manner, we can show that the distance between C″  and C in Fig. 2 is 
 

                        ( )
2 4

2( ) ( )2 1 cos 2 1 1 ( )
2! 4!

C C L L Lδθ δθδθ δ
⎧ ⎫⎡ ⎤

″ = − = − − + − ⋅⋅ ⋅ ≈⎨ ⎢ ⎥
⎣ ⎦⎩ ⎭

θ⎬  (4) 
 

Thus, the length ′′ ′B B and C C″  are of the second order of δθ  and are negligible in the virtual 
work method. 
 

  Compatible virtual displacement 
 
In general, the term “body” may refer to a particle, a rigid body, or a set of pin-connected rigid 
bodies. A compatible virtual displacement of a body is an imaginary first-order differential 
displacement of the body, where the body undergoes a first-order differential deflection to a 
neighboring position, and the body may experience, at most, a second-order infinitesimal axial 
strain. A compatible virtual displacement of a body must conform to the integrity (i.e., no break-
age or rupture) of its free body within the framework of first-order differential change in its posi-
tion. A compatible virtual displacement of a body is compatible with what is required in the vir-
tual work method; it differs from a rigid-body virtual displacement of the body by an amount no 
more than a second-order differential change in geometry. Note that a second-order differential 
change is a great deal smaller than the first-order differential change and is negligible in the 
limit. This is illustrated for a single body AB in Fig. 3 and for a connected body ABC in Fig. 4. 
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Fig. 3  Body AB  undergoing a compatible virtual displacement to position ′AB  
 
 
 
 

 
 

Fig. 4  Hinged body  undergoing a compatible virtual displacement to position ABC ′AB C  
 

 
The compatible virtual displacement of point B in Figs. 1, 3, and 4 is from B to . We find that ′B

 
 

                     3 5 7171 2
3 15 315tan ( ) ( ) ( )δ δθ δθ δθ δθ δθ δθ′ ⎡ ⎤= = = + + + + ⋅⋅ ⋅ ≈⎣ ⎦BBB L L L  (5) 

 
 

In Fig. 1, the lengths of the chord ′BB and the arc ′′BB can be taken as equal in the limit since the 
angle δθ is infinitesimally small. Therefore, the magnitude of the compatible linear virtual dis-
placement of point B, as given by Eq. (5), may indeed be computed using the radian measure 
formula in calculus; i.e., 

 

                                                      θ=s r  (6) 
 

where s is the arc subtending an angle θ in radian included by two radii of length r. In virtual 
work method, all virtual displacements can be compatible virtual displacements, and these two 
terms can be interchangeable. 
 

  Displacement center 
 
Relations among the virtual displacements of certain points or members in a system can be found 
by using differential calculus, or the displacement center,5 or both. The displacement center of 
a body is the point about which the body is perceived to rotate when it undergoes a virtual dis-
placement. There are n displacement centers for a system composed of n pin-connected rigid 
bodies undergoing a set of virtual displacements; i.e., each member in such a system has its own 
displacement center. Generally, the displacement center of a body is located at the point of inter-
section of two straight lines that are drawn from two different points of the body in the initial 
position and are perpendicular to the virtual displacements of these two points, respectively.5 
This is illustrated in Fig. 5, where the body AB is imagined to slide on its supports to undergo a 
virtual displacement to the position ,A B′ ′  and its displacement center C is the point of intersec-
tion of the straight lines AC and BC that are drawn from the initial positions of points A and B 
and are perpendicular to their virtual displacements ′AA  and ′BB , respectively. 
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Fig. 5  Virtual displacement of body AB  to position ′ ′A B with displacement center at C 
 
It is often helpful to perceive the situation illustrated in Fig. 5 as an event where the body AB and 
its displacement center C form a “rigid triangular plate” that undergoes a rotation about C 
through an angle δθ from the initial position ABC to the new position ′ ′A B C . In this event, all 
sides of this “rigid triangular plate” (i.e., the sides AB, BC, and CA), as well as any line that 
might be drawn on it, will and must rotate through the same angle δθ, as indicated. 
 
Sometimes, it is not necessary to use the procedure illustrated in Fig. 5 to locate the displacement 
center of a body. If a body undergoes a virtual displacement by simply rotating about a given 
point, then the displacement center of the body is simply located at the given point of rotation. 
This is illustrated in Figs. 6 and 7. 

 
 
 

 
 

Fig. 6  Virtual displacement of body AB  to position ′AB with displacement center at A 
 
 
 

 
 

Fig. 7  Virtual displacement and the two displacement centers for the hinged body ABC 
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  Principle of virtual work 
 

Bodies considered in Statics are rigid bodies or systems of pin-connected rigid bodies. The term 
“force system” denotes a system of forces and moments, if any. The work done by a force system 
on a body during a virtual displacement of the body is called the virtual work of the force sys-
tem. By Newton’s third law, internal forces in a body, or a system of pin-connected rigid bodies, 
must occur in pairs; they are equal in magnitude and opposite in directions in each pair acting on 
a particle in the rigid body. The forces in each pair act through the same displacement of the par-
ticle as the rigid body moves. Clearly, the total virtual work done by the internal forces during a 
virtual displacement of a body, or a system of pin-connected rigid bodies, must be zero. When a 
body, or a system of pin-connected rigid bodies, is in equilibrium, the resultant force and the re-
sultant moment acting on its free body must both be zero. 
 
The total virtual work done by the force system acting on the free body of a body is, by the dis-
tributive property of dot product of vectors, equal to the total virtual work done by the resultant 
force and the resultant moment acting on the free body, which are both zero if the body is in 
equilibrium. Therefore, we have the principle of virtual work in Statics, which may be stated as 
follows: If a body is in equilibrium, the total virtual work of the external force system acting on 
its free body during any compatible virtual displacement of its free body is equal to zero, and 
conversely. 1-4 Note that the body in this principle may be a particle, a set of connected particles, 
a rigid body, or a system of pin-connected rigid bodies (e.g., a frame or a machine). Using δU to 
denote the total virtual work done, we write the equation for this principle as 

 
 

                                                                       0δ =U  (7) 
 

  Conventional method versus virtual work method 
 
With the conventional method, equilibrium problems are solved by applying two basic equilib-
rium equations: (a) force equilibrium equation, and (b) moment equilibrium equation; i.e., 

 
 

                                                                       Σ =F 0  (8) 
 

                                                                      Σ =PM 0  (9) 
 

With the virtual work method, equilibrium problems are solved by applying the virtual work 
equation, which sets to zero the total virtual work δU done by the force system on the free body 
during a chosen compatible virtual displacement of the free body; i.e., 

 
 

                                                                       0δ =U                        (Repeated) (7) 
 
 
III.  Virtual Work Method in a Nutshell: Examples 
 
In a nutshell, there are three major steps in using the virtual work method. Step 1: Draw the 
free-body diagram (FBD). Step 2: Draw the virtual-displacement diagram (VDD) with a guiding 
strategy. Step 3: Set to zero the total virtual work done. The guiding strategy in step 2 is to give 
the free body a compatible virtual displacement in such a way that the one specified unknown, 
but no other unknowns, will be involved in the total virtual work done. That is it: three major 
steps and one guiding strategy in the virtual work method! The implementation of these steps 
with a guiding strategy in the virtual work method is illustrated in the following four examples. 
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Example 1.  Using virtual work method, determine the vertical reaction force Ay at the roller 
support A of the simple beam loaded as shown in Fig. 8. 

 
 

 
 

Fig. 8  A simple beam carrying an inclined concentrated load 
 
Solution.  For step 1 in the solution, we draw the FBD for the beam as shown in Fig. 9, where 
we have replaced the 300-lb force at C with its rectangular components. 
 
 

 
 

Fig. 9  Free-body diagram for the beam 
 
 
 

For step 2 in the solution, we keep an eye on the FBD in Fig. 9 and draw the VDD for the beam 
with a strategy in Fig. 10, where we rotate the beam through an angular displacement δθ  about 
point B. Thus, the displacement center of the beam is located at point B. The resulting VDD will 
involve the unknown Ay, but exclude all other unknowns (i.e., Bx and By), in the total virtual work 
done. 
 
 

 
 

Fig. 10  Virtual-displacement diagram to involve Ay in δU = 0  
 
 
 

For step 3 in the solution, we refer to Figs. 9 and 10 and apply Eqs. (1) and (7) to write 
 
 

 δU = 0: Ay (12δθ ) + 480 (− 7 δθ ) = 0 ∴   Ay = 280 
 
 
 

280 lb y = ↑A  
 
Remarks.  With the conventional method, we would refer to the FBD in Fig. 9 and write 
 
 

 +4 Σ MB = 0: − 12Ay + 7(480) = 0 ∴   Ay = 280 
 
 
 

280 lb y = ↑A  
 

 

Thus, both the virtual work method and the conventional method yield the same solution. How-
ever, the virtual work method is best used to solve more complex, rather than simple, problems. 
The superiority of the virtual work method is manifested in the next three examples. 

Proceedings of the 2005 Midwest Section Conference of the American Society for Engineering Education 



 8 

Example 2.  Using virtual work method, determine the vertical reaction force Ky at the fixed 
support K of the combined beam (called a Gerber beam) loaded as shown in Fig. 11. 
 
 

 
 

Fig. 11  A combined beam with hinge connections at C, F, and I 
 
Solution.  For step 1 in the solution, we draw the FBD for the beam as shown in Fig. 12. 
 

 
 

Fig. 12  Free-body diagram for the combined beam 
 

 
For step 2 in the solution, we keep an eye on the FBD in Fig. 12 and draw the VDD for the beam 
with a strategy in Fig. 13, where the segments ABC, CDEF, FGHI, and IJK have displacement 
centers located at points A, E, H, and at ∞, respectively. The resulting VDD will involve the un-
known Ky, but exclude all other unknowns (i.e., Ay, Ey, Hy, Kx, and MK), in the total virtual work 
done. 
 
 
 

  
 

Fig. 13  Virtual-displacement diagram for the combined beam to involve Ky in δU = 0 
 
 
 

For step 3 in the solution, we refer to Figs. 12 and 13 and apply Eqs. (1), (2), and (7) to write 
 
 

 δU = 0: ( )4
3300 450( 2 ) 200(2 ) 300( 2 ) (2 ) 0yKδθ δθ δθ δθ δθ+ − + + − + =  

 

                                                                    350yK =  350 lb y = ↑K  
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Remarks.  With the conventional method, we would refer to the FBD in Fig. 12 and write 
 

 At hinge C, MC = 0: 6 300yA 0− + =  (i) 
 At hinge F, MF = 0: 12 300 450 2 0yA yE− + + − =  (ii) 
 At hinge I, MI = 0: 18 300 450 8 4(200) 2 0y yA E yH− + + − + − =  (iii) 
 For the entire beam, +↑ Σ Fy = 0: 200 300 0y y y yA E H K+ + + − − =  (iv) 

 

These four simultaneous equations yield: Ay = 50, Ey = 75, Hy = 25, and Ky = 350. Thus, the con-
ventional method eventually yields the same solution: 350 lb y = ↑K  
 
Example 3.  Using virtual work method, determine the reaction moment MK at the fixed support 
K of the combined beam loaded as shown in Fig. 11 earlier. 
 
Solution.  For step 1 in the solution, we draw the FBD for the beam as shown in Fig. 12 earlier. 
 

 
Fig. 12  Free-body diagram for the combined beam      (Repeated) 

 
For step 2 in the solution, we keep an eye on the FBD in Fig. 12 and draw the VDD for the beam 
with a strategy in Fig. 14, where the segments ABC, CDEF, FGHI, and IJK have displacement 
centers located at points A, E, H, and K, respectively. The resulting VDD will involve the un-
knowns MK, but exclude all other unknowns (i.e., Ay, Ey, Hy, Kx, and Ky), in the total virtual work 
done. 
 

  
 

Fig. 14  Virtual-displacement diagram for the combined beam to involve MK in δU = 0 
 
For step 3 in the solution, we refer to Figs. 12 and 14 and apply Eqs. (1), (2), and (7) to write 
 
 

 δU = 0:  ( )300 4 450( 6 ) 200(6 ) 300( 3 ) ( ) 0KMδθ δθ δθ δθ δθ+ − + + − + =
 

 

                                                                    1200KM =  1200 lb ft  K = ⋅M 3  
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Remarks.  With the conventional method, we would refer to the FBD in Fig. 12 and write 
 

 At hinge C, MC = 0: 6 300yA 0− + =  (i) 
 At hinge F, MF = 0: 12 300 450 2 0yA yE− + + − =  (ii) 
 At hinge I, MI = 0: 18 300 450 8 4(200) 2 0y yA E yH− + + − + − =  (iii) 
 For the entire beam, +4 Σ MK = 0: 

                               (iv) 24 300 450 14 10(200) 8 3(300) 0y y y KA E H− + + − + − + − =M
 

These four simultaneous equations yield: Ay = 50, Ey = 75, Hy = 25, and MK = 1200. Thus, the 
conventional method eventually yields the same solution: 1200 lb ft  K = ⋅M 3  
 

 
Example 4.  Using virtual work method, determine the reaction moment MA at the fixed support 
A of the frame loaded as shown in Fig. 15. 

 
Fig. 15  A frame with hinge support at A and fixed support at D 

 
 
 

Solution.  For step 1 in the solution, we draw the FBD for the frame as shown in Fig. 16. 
 

 
Fig. 16  Free-body diagram for the frame 
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For step 2 in the solution, we keep an eye on the FBD in Fig. 16 and draw the VDD for the frame 
with a strategy in Fig. 17, where we rotate member CD through an angle δθ about point D, and 
members AB, BC, and CD have displacement centers located at points A, E, and D, respectively. 
The resulting VDD will involve the unknown MA, but exclude all other unknowns (i.e., Ax, Ay, Dx, 
and Dy), in the total virtual work done. In Fig. 16, pay special attention to the following: 

 

 The compatible virtual displacement CC′ of point C is such that CC CD′ ⊥  and 10CC δθ′ = . 
 

 Each of the three sides (i.e., BC, CE, and EB) of the “rigid triangular plate” BCE rotates 
clockwise through the same angle of 2δθ , which is determined by applying the radian meas-
ure formula in Eq. (6) as follows: 

 

/ (10 ) /5 2CC CE δθ δ′ = = θ  
 

 
 

Fig. 17  Virtual-displacement diagram to involve MD in δU = 0 
 
For step 3 in the solution, we refer to Figs. 16 and 17 and apply Eqs. (1), (2), and (7) to write 
 

 δU = 0: ( 4 ) 10( 12 ) 25(2 ) 20(8 ) 15(6 ) 36( ) 0AM δθ δθ δθ δθ δθ δθ− + − + + + + =  
 

                                                                       54AM =  54 kN·m  A =M 3  
 
 

Remarks.  With the conventional method, we would refer to the FBD in Fig. 16 and write 
 

 At hinge B, MB = 0: 3 0A xM A− + =  (i) 
 

 At hinge C, MC = 0: 6 4 3(10) 25yA xM A A 0− + − + − =  (ii) 

 For the entire frame, +4 Σ MD = 0: 
 

                                        (iii) 12 3(10) 25 6(15) 8(20) 36 0yAM A− − − − + + + =
 

These three simultaneous equations yield: MA = 54, Ax = 18, and Ay = 14.75. Thus, the conven-
tional method eventually yields the same solution: 54 kN·m  A =M 3  
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IV.  Concluding Remarks 
 
Any equilibrium problem solvable by the conventional method is also solvable by the virtual 
work method, although solutions for simple equilibrium problems by the virtual work method 
may come across as “unconventional” or “overkill” when compared head to head with the rather 
straightforward solutions by the conventional method, as seen in Example 1. Nevertheless, when 
it comes to solutions for more complex problems, as illustrated in Examples 2, 3, and 4, the vir-
tual work method surely emerges as a much more superior and powerful method than the con-
ventional method. The advantages of the virtual work method lie in its conciseness in the princi-
ple, its visual elegance in the formulation of the solution via virtual-displacement diagrams 
drawn with a guiding strategy, and its ability to save algebraic effort by doing away with the 
need to solve large sets of simultaneous equations in complex problems. The virtual work 
method may amaze beginning students, but its superior and powerful features witnessed by stu-
dents are sparks that kindle their interest in learning the virtual work method in particular and the 
subject of Statics in general. Readers interested in more in-depth study of the virtual work 
method may refer to the textbooks, particularly the one by Jong and Rogers,4 in the references. 
 
In a nutshell, there are three major steps and one guiding strategy in the virtual work method, 
as described and illustrated in Section III. Implementation of these steps and strategy has greatly 
helped students understand the method and demystify it as a magic black box. The knowledge of 
the location of displacement center 

5 for each member in a system is what makes possible the use 
of just algebra and geometry (rather than differential calculus) as prerequisite mathematics for 
the teaching and learning of the principle of virtual work in Statics. It is true that the drawing of 
compatible virtual displacements for frames and machines involves basic geometry and requires 
good graphics skills. These aspects do present some degree of challenges to a number of begin-
ning students. Nevertheless, the learning of the virtual work method is an excellent training 
ground for engineering and technology students to develop their visual skills in reading technical 
drawings and presenting technical conceptions. 
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