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LearnPIV: An Interactive, Web-Based Learning Tool for  

Particle Image Velocimetry Basics 

 
Introduction 

 

This paper introduces LearnPIV.org, a freely available, interactive, web-based simulation tool 

designed to aid students, instructors, and novice engineering professionals in learning the basics 

of Particle Image Velocimetry (PIV) methods. PIV is a state-of-the-art optical flow visualization 

and measurement experimental technique that is well-established in modern research and 

engineering practice. The basic methods for PIV include using synchronized laser sheet optics 

and digital cameras to record the locations of neutrally buoyant, light scattering particles that 

follow a flow of interest. These locations are converted into velocities by computer algorithms, 

and engineers use these velocity vector fields to identify flow characteristics and parameters of 

interest. This flow field visualization and measurement technique is uniquely suited to allow 

engineers and engineering students to interact, observe, and measure real world flows. 

Specifically, PIV is minimally invasive, requiring only optical access to the seeded flow. PIV 

also provides a whole field measurement, allowing users to gather flow velocity measurements at 

all (two-dimensional for the methods described) points in a flow field simultaneously. Further, 

PIV visualizes the flow, allowing experimentalists to qualitatively consider the flow concurrent 

with their quantitative results. 

However, attaining quality PIV results typically depends on experienced users and/or well 

bounded experiments. To allow more users to interact with PIV in educational settings and to 

reduce time to competency for early professional PIV users, we sought to develop an interactive, 

no-cost learning tool for teaching PIV basics. To accomplish this goal, we first identified key 

aspects of PIV data and processing most relevant to PIV output quality, to include image density, 

particle image diameters, and interrogation region size [1, 2]. With these parameters identified, 

we developed a synthetic image generator in the Python coding language for the purpose of 

allowing learners to explore the impacts of each parameter by defining, generating, and 

analyzing synthetic PIV images. To increase the accessibility of this tool, we incorporated the 

synthetic image generator into a Django web framework [3] and hosted the site through the 

Heroku web-hosting platform [4] to create the final tool, accessible at LearnPIV.org. 

LearnPIV.org incorporates the synthetic image generator with a series of learning content 

modules that describe PIV analysis, digital camera operation, and the effects of experimental 

PIV parameters. Together, these modules provide users with an easily accessible and interactive 

resource to support implementation of basic PIV experiments as well as more advanced PIV 

techniques. With this tool, educational and early professional PIV users are equipped to 

understand the how PIV algorithms work and, resultantly, can improve their own data collection 

and analysis. 

 

 

 

 



PIV Background 

 

Since its initial development in the late 20th century [5, 6], PIV has become the state-of-the-art 

flow visualization and measurement technique. Standard PIV experiments consist of a flow field, 

seed particles, laser, laser optics, and digital camera. Specifically, seed particles are discrete, 

neutrally buoyant (to avoid gravitational effects) spheres (near 1-100 𝜇m in diameter) that are 

small enough to follow the flow field and large enough to scatter sufficient light for imaging by a 

digital camera. Seed particles are illuminated by a light sheet generated by a laser source and 

optics (i.e.,  cylindrical lens). The laser provides cohesive, directional, monochromatic light and 

the cylindrical lens spreads this light into a thin sheet. The combination of seed particles and 

light sheet illuminate a 2D plane of the seeded flow field so that the experimenter may observe 

fluid motions and structures as shown in Figure 1. 

  

    Figure 1. Demonstration of planar flow field visualized by laser light sheet  

    and seed particles, then recorded by a digital camera. Note, only the pipe was  

    seeded with particles to allow a single image frame to distinguish the vortex  

    ring flow field of interest. 

 

Beyond flow visualization,  observers become quantitative experimenters by using digital 

cameras to image, and thus record, the locations of discrete seed particles in the flow in time. 

The instantaneous motion of the flow within discrete areas, or interrogation regions, of the 

image pairs are calculated by applying cross-correlation algorithms of digital image pair data 

recorded a known time apart. This calculation of the instantaneous motion of fluid flow within 

interrogations regions is referred to as Particle Image Velocimetry or PIV. Figure 2 provides the 

PIV result of imaging the vortex ring flow depicted in Figure 1. As shown in Figure 2, images 

A1 and A2 are cross-correlated, using 64x64 pixel interrogation regions, to calculate the velocity 

vector field (B). 



     Figure 2. Demonstration of PIV images and results. A) Demonstrates consecutive (A1,  

     dt=1/60s, A2) raw smartphone images of a vortex ring in water seeded with 100𝜇m hollow  

     glass spheres and illuminated by a~5mW laser and glass stir stick lens. B) Demonstrates  

     the resulting vector field from PIV analysis correlating 64x64 pixel interrogation regions. 

 

Professional PIV 

 

In the science and engineering domains, PIV is often used to qualitatively identify and 

quantitively measure the motion of discrete small regions within a larger image. Examples 

include research on flow over aircraft [7], animals [8], and cars [9]. More recent application of 

PIV within novel fluid dynamics contexts includes hemodynamics in the Carotid Artery [10], 

fuel cell design [11], and breath flows relating to COVID-19 transmission [12]. Further, PIV 

based techniques are now used within non-traditional fluid dynamics contexts, to include 

estimating insect traffic [13], identifying soil-pile interactions [14], and tracking the movement 

of geophysical flows such as avalanches [15].  

 

Researchers have also extended use of PIV methods beyond two-dimensional planar flows. An 

example of this extension is three-dimensional stereoscopic PIV, which provides a third velocity 

component inside the light sheet by using two cameras at separate angles [16]. Additionally, 

tomographic PIV commonly uses three or more cameras and a laser volume rather than a sheet to 

provide a larger region with the third velocity component than stereoscopic PIV [17]. Further, 

two- or three-dimensional Particle Tracking Velocimetry (PTV) allows researchers to conduct 

analysis similar to interrogation region-based PIV (tracking regions of particles) with higher 

resolution (tracking individual particles) [18]. These advances have even opened the field to 

estimating pressure field measurements through PIV/PTV data [19]. In addition to the state-of-

the-art in PIV, the flow visualization and measurement in PIV shows promise for actively 

engaging secondary, undergraduate, and graduate students with fluid dynamics concepts. 

 

 

 

 



Educational PIV 

 

Engineering students often encounter fluid mechanics for the first time midway through their 

undergraduate career, in a mathematics-heavy curriculum, with a perceived lack of relevance to 

the real world [20, 21]. Some educators have even observed these difficulties to dissuade 

students from pursuing fluids-specific careers [21]. However, educators have also noted that 

students’ perceptions about fluid mechanics could be shifted in response to flow visualization 

instruction [21, 22]. As a result, fluid mechanics educators capable of implementing PIV in the 

classroom/laboratory are not only provided these benefits of flow visualization, but a concurrent 

flow velocity measurement. This combination allows educators to pair the excitement of flow 

visualization and interaction with real-world flow experimentation and measurement.  

 

Adrian’s 2005 review of PIV developments, near two decades old at the time of this writing, 

includes a final call to design and implement lower cost and potentially limited-use PIV systems: 

“Means should be sought to reduce total system costs by reducing the costs of light sources and 

cameras [6].” Recent developments in technology, including digital imaging, computers, and 

laser technology, have helped to realize this vision. Today, in addition to large and expensive 

PIV systems sold for professional, research, and demonstration use, several solutions to 

implement PIV in educational settings exist. Examples include the commercially available “all-

in-one” systems which gather and process data such as FlowMaster EducationalTM, 

HEMOFLOWTM, and miniPIVTM. For users willing and able to gather data separately, 

MATLAB provides a free (with MATLAB license) PIV application for computing velocity 

fields and fluid flow parameters from PIV data [23]. Beyond MATLAB, open-source PIV 

algorithms in several coding languages are available in the freely available software library 

OpenPIV [24]. With these resources, engineering educators have successfully implemented PIV 

in classroom demonstrations and interactive laboratories as a part of teaching fluid dynamics 

[25-28].  

 

Recent growth in educational PIV and the resulting issues related to equipment cost and required 

software fluency has led other researchers to develop user-friendly mobile PIV systems. Current 

mobile PIV applications, mI-PIV [29] and smartPIV [30], provide low cost, safe, and distributed 

PIV through use of smartphone cameras and the processing power of today’s mobile devices to 

apply PIV algorithms. The advent of new mobile technologies able to provide undergraduate 

learners with interactive, state-of-the-art, real-world flow visualization and measurement 

experiences can enable engineering educators to reduce many of the issues found in traditional 

fluid mechanics education.  

 

Difficulties in Implementing PIV among Educational and Professional Novices  

 

While the advantages of PIV in science and engineering contexts are proven, there are several 

challenges associated with implementing PIV that complicate novice (educational or 

professional) use of PIV. One key issue is PIV’s limited velocity dynamic range (i.e., the 

resolution of and difference in maximum and minimum resolvable velocities). Particle 

displacement magnitudes are traditionally maximized at one-quarter of the interrogation region 

size (in pixels/framerate) with a resolution near 0.1 pixels/framerate. Use of larger interrogation 

regions to increase maximum velocity range results in a loss of spatial resolution; this trade-off is 



the first of several that must be weighed when implementing PIV. A second issue results from 

the use of small, neutrally buoyant seed particles (that more closely follow the flow but scatter 

less light than larger diameter particles) and high camera shutter speeds that capture pairs of 

images that are very close together in time. To compensate for short exposures and small 

quantities of scattered light, increased laser power is required to adequately illuminate the 

particles for imaging. Use of high-power, pulsed lasers substantially increases the cost and safety 

risks of PIV systems. A third issue, which is of particular interest to this work, is the level of 

experience and “know-how” required of PIV experimenters, which includes awareness of the 

trade-offs in PIV imaging and processing, to gather viable data and produce accurate PIV results.  

 

In addition, knowledgeable or expert PIV users are more likely to get useful results from their 

PIV analysis based on their understanding of PIV algorithms and digital imaging parameters. 

Usually, this understanding is gained through several years of education and practice using PIV. 

For example, image background noise (i.e., leaving objects which appear in the image 

background, allowing reflected light into the images, etc.) frequently leads to poor PIV images, 

and potentially inaccurate or even physically meaningless vector fields. An experienced PIV user 

understands this as the fact that substantial image background noise reduces the likelihood of the 

PIV algorithms finding a valid correlation peak. Lacking this knowledge, novice PIV users may 

achieve poor PIV results due to the allowance of background noise and be dissuaded from 

further engagement in the process. Similarly, images that are too dark can reduce the strength of 

the correlation peak and the quality of PIV results. Experienced users understand this issue, and 

how digital aperture, ISO, and shutter speed can be used to take properly illuminate images. 

Novice users, however, are less likely to understand how and why to apply these tools; their lack 

of knowledge about digital imaging often results in poor PIV results and experiences. 

 

Beyond imaging, user selection of PIV processing parameters such as interrogation region size, 

primary peak ratio and background subtraction method are key contributors to the accuracy of 

PIV results [2]. In fact, poor selection of PIV processing parameters can lead to highly erroneous 

vector fields despite having ideal images. Further, PIV processing algorithms are becoming 

increasingly complicated as new and more powerful PIV algorithms are developed. A 

fundamental understanding of the underlying cross correlation techniques is critical to serve as a  

base on which more complicated algorithm understanding may build upon. Modern strategies to 

provide this basic understanding to novice PIV users include direct guidance (e.g., graduate 

students working in a laboratory with a research mentor or attending lecture series on PIV) and 

indirect guidance (e.g., reading  journal publications on error sources and best practices for 

modern PIV [2, 31]). However, all current guidance strategies are limited in some way with 

respect to audience and accessibility. As a result of these observations, we undertook this project 

to provide a tool for teaching early professional and STEM students about PIV imaging and 

processing basics in a broadly accessible manner. 

 

LearnPIV.org Development 

 

The development of LearnPIV.org was conducted concurrently with our research on how to do 

PIV in educational settings. Specifically, we found that inexperienced PIV users often lack the 

prerequisite knowledge to reliably gather and analyze PIV data. To mitigate this issue, we chose 

to design an accessible web-based tool to support undergraduate and early professional PIV users 



who actively engage with PIV data and processing. Our methods in developing this tool followed 

a traditional design-based research process [32], beginning by identifying our final project goals, 

identifying several means to achieve those goals, developing an initial design, refining the initial 

design, and finalizing our solution.  

 

Outlining Requirements 

 

To start our requirements, we recognized that platform compatibility issues (e.g., Windows or 

Apple for PC users) often restrict the user base. Therefore, we chose a web-based platform to 

ensure our final solution could reach a broader number of users. Further, use of a web-based 

platform aligns with our goal to provide educational tools free to all users. Within LearnPIV.org, 

we desired to use the benefits of interactive learning. Therefore, we designed LearnPIV.org to 

provide an experimental module that enables users to select, vary, and see the outcomes of 

common image and processing parameters known to affect PIV output quality. Those parameters 

are: 

 

• Particle Density  

• Particle Image Diameter  

• Out of Plane Motion 

• Image Noise 

• Interrogation Region Size 

• Camera Bit Depth 

• Particle Displacement 

 

We included these parameters based on prior understanding of the variables most important to 

PIV error [1] and our observations of novice PIV users. To accomplish our goal of providing 

users with an interactive means for understanding the effects of these parameters without the 

need for gathering their own PIV data, we developed a synthetic image generator: a script for 

building artificial images similar to real-world PIV images according to a prescribed set of 

variables. To build the synthetic images, we recognized that Particle Density (the number of 

particles per image area), Particle Image Diameter (the size of particle images), Interrogation 

Region Size (the processing correlation matrix size), and Camera Bit Depth (the number of light 

intensity values a pixel may take) left little room for interpretation. However, to allow users to 

explore the varied nature of the remaining variables (i.e., Out of Plane Motion, Image Noise, 

Particle Displacement) we were required to make several assumptions and approximations. 

 

Synthetic Image Generation 

Users generating a synthetic image in our python-based synthetic image generator begins with 

uniformly randomly generated particle center locations (x, y, and z) within a padded interrogation 

region size array until the number of particles in the laser light sheet meets the desired particle 

density. We assumed diffraction limited particles which follow a gaussian light distribution with 

a maximum particle intensity value 𝐼𝑝𝑝 (the camera bit depth). With this assumption, we estimated 

the intensity value contribution I of particle i at a pixel located in the array (x,y,z) through Eq. 1 

from Raffel et al. [33]. 
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After discretely evaluating Eq. 1 for the random particle locations, the synthetic image generator 

defines a particle displacement field according to the shear and displacement inputs. Specifically, 

the user defines the uniform displacement of the particles through the X displacement and Y 

Displacement variables (pixels/framerate). Then, the synthetic image generator adjusts these 

uniform displacements through the user-defined Shear X and Shear Y variables (pixels/framerate). 

To model the potential for particles to be lost/gained from the first and second image in an image 

pair (i.e., out of plane motion) we assumed the two-dimensional flow field is perfectly aligned 

with the calibration plane, and the laser sheet is misaligned from the x-direction of the calibration 

plane by a user-defined variable angle Theta. This misalignment of the laser sheet to the flow field 

results in a z-component of displacement equal to the cosine of the theta variable multiplied by the 

displacement along the angled direction. Equation 2 describes a particle’s z location in frame n+1 

as a function of x displacement. 

𝑧𝑛+1 = 𝑧𝑛 + (𝑥𝑛+1 − 𝑥𝑛) cos(𝜃) (2) 

Empirical observations also show the noise in a digital camera is approximately lognormally 

distributed [1]. To reflect this, the synthetic image generator adds an intensity value to each particle 

according to a lognormal random distribution determined by the user-prescribed variables Noise 

Mean (the mean of the lognormal distribution) and Noise SD (the standard deviation of the 

lognormal distribution). 

Finally, in addition to the standard synthetic image parameters (i.e., flow field, particle density, 

particle diameter, particle peak intensity, and region size), the synthetic image generator also 

allows the user to “streak” their images by prescribing the Blur Count (the number of particle 

images per single frame image), ShutterU/ShutterV (the space between single frame particle 

images), and Frame Rate Ratio (the space between particle images between image one and image 

two, determined through the Frame Rate Ratio*ShutterU/ShutterV to align with the flow physics). 

These variables are motivated by issues common to educational PIV, and for non-streaked particles 

(a streaked particles Boolean), the Blur Count is assigned a value of one. While the space between 

particle images and true particles from frame to frame is a function of the flow velocity, laser pulse 

frequency, and imaging equipment, these synthetic image inputs provide the streaking parameters 

in measurable terms which are easier to understand and visualize by the end-user. With these 

methods developed in Python, we developed a web-based GUI to allow a broad range of users to 

engage with the synthetic image generator. 

Web Implementation  

 

We created LearnPIV.org from a high-level Python web framework called Django. Our reasons 

for selecting Django were motivated by the completed, Python-based, synthetic image generator. 

With Anaconda (a distribution for scientific computing) and Spyder (an IDE bundled from 

Anaconda) we developed and tested the synthetic image generator for implementing with 

Django. The Django framework allowed us to not only run experiments of the same variables in 

a basic utils.py file, but the framework also allows a user to enter in values of their own.  



 

Django provides a Form class which is used to create HTML forms. By creating Django Form 

objects, we prompt users for variable inputs. Certain combinations of variables caused the 

synthetic image generator to malfunction and/or take far too long to compute. For example, a 

high Particle Density increases the synthetic image generator runtime drastically. To resolve this 

issue, we constructed clean() functions in our Form objects to set a boundary condition for all 

our variables to within general limits of PIV data collection and analysis (e.g., region sizes must 

be between 8 and 128 pixels). The Django form and field validation evaluates users’ inputs and 

inserts these inputs into the synthetic image generator to produce a list of graphs and values. 

 

The synthetic image generator creates a Python class object from a utils.py file that contains a 

list of resulting graphs (the correlation plane and images) and PIV analysis values (r, s, signal to 

noise ratio, and error values). A Django Model (a single, definitive source of a SQL that contains 

the essential fields and behaviors of data) stores the list of resulting graphs and values. 

Additionally, our database stores user's inputs and presents them to the webpage after each 

experiment image generation is complete. The remainder of LearnPIV.org includes basic html 

files used for displaying PIV information and content. Isolating dependencies such as matplotlib, 

numpy, opencv, etc. in a virtual environment led us to cleanly deploy our Django application to a 

cloud-based platform called Heroku. Heroku takes the source code, and the list of dependencies 

to build the application and produces an executable website: learnpiv.com or learnpiv.org. 

 

The LearnPIV.org Tool 

 

The results of the synthetic image generator, web-based interface, and instructional .html content 

provide novice PIV users three modules for learning: 1) the Learning PIV module 2) the 

Experiment with a Single Variable module, and 3) the Experiment with Multiple Variables 

module. The Learning PIV module provides PIV learning content which contains text and 

figures describing fundamental concepts in simple terms. The Experiment with a Single Variable 

module provides users an interface to the synthetic image generator with the ability to vary a 

single image/processing parameter while all other variables are fixed. The Experiment with 

Multiple Variables module provides users an interface to the synthetic image generator and 

allows the user to prescribe every image/processing variable. The overall site is organized to 

contextualize the purpose of PIV (Figure 3 demonstrates the home page) and provide navigation 

to each module. 



       Figure 3.  The LearnPIV.org home page. 

 

Within the navigation on the home page (Figure 3), the About page provides a brief overview of 

the website and developers. The Learn PIV tab provides access to the Learning PIV module. The 

Experiment tab guides users to the Experiment with a Single Variable and the Experiment with 

Multiple Variables modules. The User Info provides users a means for each user to save and 

return to prior experiments. Finally, the Feedback tab provides a means for users to provide 

perceptions of and improvements for the current LearnPIV.org. 

 

PIV Learning Module 

 

The purpose of the Learn PIV module is to provide textual and graphic information to explain 

the basics of PIV processing, imaging, and the synthetic image experiments. We identified three 

key areas of understanding necessary for LearnPIV.org. The first key area is the fundamentals of 

PIV algorithms, beginning with dividing images to interrogation regions, then cross correlating 

these regions, and ending by estimating the resulting vector value. The second key area of 

learning is basic digital camera operation, to include a description of pixels, ISO, aperture, etc. 

The final key area of learning is the basics of the synthetic image generator, which includes a 

description of the function of each variable and the influence each variable has on the resulting 

images. Table 1 summarizes the specific content for each section. 

 

 

 

 

 

 

 

 

 

 



 Table 1.  The PIV learning content module categories and sub-topics. 

Category Sub-topic 

How PIV Works PIV Basics 

Cross Correlations 

Fast Fourier Transform Based Cross Correlations 

Sub-Pixel Estimation 

Multi-Pass Algorithms 

Learn About Imaging How Does a Digital Camera Work? 

Bit Depth 

Pixel 

ISO 

Shutter Speed 

Resolution 

Focus 

Frame Rate 

Aperture 

Synthetic Images Synthetic Image Summary 

Particle Image Diameter 

Theta 

Noise Mean and SD 

Region Size 

Camera Bit Depth 

X and Y Displacements 

Particle Density 

X and Y Shear 

 

Each sub-topic contains a brief description and graphic representation with special emphasis 

placed on the topic’s relationship with and importance to PIV measurements.  

 

How PIV Works. The How PIV Works content aims to demonstrate the process of taking 

images of a seeded flow field and analyzing those images to identify a velocity vector field. To 

demonstrate the starting point of this content, Figure 4 depicts the beginning of the How PIV 

Works page. 



 

Figure 4.  The beginning of the How PIV works learning content page. 

 

After the How PIV Works page, a basic description of the Direct Correlation (DC) method (cross 

correlations page) provides users with a graphic walkthrough of how the correlation plane is built 

by shifting one image over the other and finding the sum of the element-wise products. With this 

understanding of the DC, the Fast Fourier Transform (FFT) Based Cross Correlations page 

mathematically shows why the FFT is also an estimate of the particle translations (as the DC) 

and incentivizes this method due to processing speed. To demonstrate how PIV algorithms 

typically mitigate two primary issues: the balance between windows sizes and output resolution, 

we also included a description of multi-pass algorithms and sub-pixel estimation. Figure 5 

demonstrates a section of the Sub-Pixel Estimation page. 

   Figure 5. A section of the Sub-Pixel Estimation informational page. 

 



These sections describing the basics of PIV provide new users with a fundamental understanding 

of the processes behind taking images and creating a vector field through PIV. While modern 

commercial PIV algorithms are much more complicated (even 2D single camera PIV 

algorithms), this foundation provides an understanding necessary to begin exploring the more 

complicated aspects of PIV. With the basic understanding of  PIV algorithms, however, users 

should also understand how to gather useful images for processing.  

 

How Imaging Works. To provide an understanding of how to gather useful images, the How 

Imaging Works section begins with a basic description of digital cameras in the How Does a 

Digital Camera Work? section. Among the imaging module sections in Table 1, several items 

such as ISO, bit depth, resolution, shutter speed, and focus are easily compared across a series of 

images. Figure 6 demonstrates this, in the specific example of ISO. 

 

Figure 6.  An excerpt from the ISO section of Learn About Imaging, demonstrating the effect of 

ISO on the brightness of similarly lit images. 

 

For the remaining imaging parameters, the learning content provides a brief description with 

visual representations. To demonstrate this, Figure 7 provides an excerpt from the Pixel 

description page. 



    Figure 7.  An excerpt from the Pixel learning content in the Learn About Imaging content. 

 

As with the PIV Basics content, the Learn About Imaging material is designed to provide a 

foundation for early PIV users to build upon. The emphasis on imaging parameters for PIV 

results provides PIV users with means to understand the importance of critical necessities for 

achieving accurate PIV results, including providing enough light to image the particles and 

maximizing the output velocity range. 

 

Synthetic Image Generator Methods. To allow users to effectively interact with the 

experiment modules and explore the interrogation region scale impacts of varied image and 

processing parameters, the Synthetic Image Generation learning content provides descriptions of 

the impact each variable on the synthetic images. To demonstrate, Figure 8 shows an excerpt 

from the Camera Bit Depth description page. 

 

Figure 8.  An excerpt from the Camera Bit Depth synthetic image generation learning content. 



 

These descriptions provide a closer look at the impact of the experimental inputs and a visual 

representation of each parameters’ impact on PIV analysis at the scale of the interrogation 

region. As Figure 8 demonstrates, the user may readily see the influence of bit depth on a particle 

image. At the scale of the full image (How Imaging Works content), users are less likely to 

recognize these detailed effects. Thus, the Synthetic Image Content enables PIV users to 

understand parameters’ impacts before (or during) their interactions with the interrogation region 

scale experimental modules. 

 

Single Variable Experiment 

 

In the Single Variable Experiment module, users can select a specific variable to change across 

several values, while holding all other values constant. This option enables users to identify the 

impact of individual variables on the resulting output vector/correlation plane (determined by the 

FFT-based correlation). For example, to identify the impact of different interrogation region 

sizes on the output vector, a user may select Interrogation Region Size: "Run Simulations". The 

synthetic image generator will generate images across Interrogation Region Sizes of 8-128 

pixels, allowing users to observe the influence of Interrogation Region Size on the likelihood of 

the correlation peak being within the correlation plane. An example of this output is 

demonstrated in Figure 9 with fixed particle displacements of x = 10.2 pixels and y = 5.4 pixels. 

 

Figure 9.  The single variable experiment module results page, providing users with .gif 

animations of the synthetic images and the resulting correlation plane. This example 

demonstrates that as the interrogation region size increases, the likelihood of capturing a valid 

output vector increases. 

 

While the correlation plane results are qualitative and the errors anecdotal, each simulation also 

provides the histogram of errors (10,000 observations) for each variable value as depicted in 

Figure 10.  



 

Figure 10.  The single variable experiment module results page, providing learners with a 

histogram of r and s errors for each set of PIV results given each variable value. As 

demonstrated, the number of vectors with a near zero error (valid vectors) increases as the 

interrogation region size increases. 

 

The results demonstrated in Figure 10 provide users the ability to understand the influence of the 

chosen parameter across many observations. For this example, users may see the number of 

spurious vectors (error >> 0) goes down as the interrogation region size goes up. While these 

results allow users to vary a single parameter and identify the impact on the correlation plane 

(and thereby error), experienced PIV users understand that there is a significant coupling 

between each parameter (e.g., the maximum resolvable particle displacement is approximately ¼ 

the interrogation region size). To allow novice or advanced users to explore these possibilities 

and interact in an entirely open manner, we added the Experiment with Multiple Variables 

Module. 

 

Multiple Variable Experiment 

 

The Experiment with Multiple Variables Module allows LearnPIV.org users to select any 

combination of synthetic image variables (within the limits of the image generator). After 

entering these variable values, the LearnPIV.org user selects “Run Simulation”, and the results 

are provided as demonstrated by Figure 11. 

 



 
 Figure 11. The Experiment with Multiple Variables module results page. Inputs are provided 

 in section A, the resulting synthetic image pair is shown in B, with a .gif animating between 

 the two in C, and the resulting correlation plane, vector, and errors in D. 

 

Further, LearnPIV.org users can create an account, and save up to ten of these results at a time. 

This allows users to change multiple variables and compare their results directly. In all, the 

experiment with multiple variables page provides PIV users with a means to explore a very 

broad range of image and processing parameters and consider the results for the correlation plane 

and resulting output vector.  

 

Future Work 

  

Future work with LearnPIV.org will include continued improvement through user feedback, 

sustainability efforts, and developing curricula in conjunction with the “mI-PIV” mobile 

educational PIV app. The current LearnPIV.org tool was vetted through feedback and critique of 

several experienced PIV professionals/researchers. We have not had opportunity to use 

LearnPIV.org with an audience of novice PIV users. To identify and resolve any issues with 

these intended learners, we included a feedback section of the mI-PIV application. This section 

leads users to a Qualtrics based survey identifying their perceptions of various LearnPIV.org 

features. The ongoing collection of user feedback will allow us to continually improve this 

learning tool. Further, we intend to allow users to propose additions and/or edits to the existing 

Learning PIV content by downloading Word versions of the learning pages and requesting to 

push their changes/additions to a public (currently private for security) Github repository. 

Finally, we plan to develop a LearnPIV.org based curricula that will be accessible within the mI-

PIV application and published onTeachEngineering.org. These curricula will guide users through 

several LearnPIV.org experiments as well as assess their achievement of the desired learning 

outcomes. For example, one curriculum could guide an undergraduate learner through the 

combined effects of particle displacement and region size to the extent of the learner minimizing 

region size (to maximize resolution) while retaining valid correlations. These efforts will further 

deploy LearnPIV.org to engage users who desire a more carefully guided approach. 



Conclusions 

 

In summary, LearnPIV.org supports novice (educational and professional) PIV users in learning 

PIV basics through a variety of means, including static content and dynamic interactive 

simulation modules. Static content includes information about PIV basics, digital imaging, and 

synthetic image generation. While this static content provides a basic description of the concepts 

necessary for PIV data collection and analysis, the Experiment with a Single Variable module 

enables users to visualize the impact of changing individual parameters on the correlation plane 

(and uncertainty). To accomplish this interaction, LearnPIV.org provides users with a synthetic 

interrogation region pair, the correlation plane, and the error distribution for each of five 

demonstration values across the chosen parameter. To enable learners a completely open 

experience, the Experiment with Multiple Variables module allows users to generate an 

interrogation region pair and view the correlation plane and resulting error. The combination of 

these modules, LearnPIV.org provides engineering students and early professional engineers a 

means to reduce their time to competency for collecting PIV data and producing useful PIV 

results. 
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