
AC 2007-95: LESSONS AND EXPERIENCES OF TEACHING VHDL

Guoping Wang, Indiana University-Purdue University-Fort Wayne (Eng)
GUOPING WANG is currently Assistant Professor in the Department of Engineering, Indiana
University Purdue University Fort Wayne. He teaches courses in digital system design, VLSI
Design Lab, and computer architecture.

© American Society for Engineering Education, 2007

P
age 12.1015.1

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2007, American Society for Engineering Education

Lessons and Experiences of Teaching VHDL

Guoping Wang

Department of Engineering

Indiana University Purdue University Fort Wayne

Abstract

VHDL has become an industrial standard language in digital system design. This paper discusses

the author’s experience of teaching VHDL to undergraduate engineering students at IPFW.

Logic synthesis is focused in the educational activities instead of the complex features of VHDL.

Projects which involved synthesis, simulation, implementation and verification using FPGA

board were assigned. The pits and falls of teaching and learning of VHDL were discussed. The

author’s teaching methodology of VHDL is presented, which is followed by some of the

problems that students faced when they were trying to design digital systems using VHDL.

1. Introduction

The VHSIC (Very High Speed Integrated Circuits) Hardware Description Language

(VHDL) is a very powerful hardware description language for digital system design. It has

become indispensable in electrical and computer engineering programs.

This paper summarizes the main issues that cause learning problems for the students

when they are learning to use VHDL to design digital systems. The author’s teaching

methodology of VHDL is described in this paper. Instead of introducing the complex features

and various statements of VHDL, the synthesizable VHDL models from simple to complex

systems were introduced to give the students a good understanding of VHDL.

Most VHDL books use models developed for simulation only and they are armed at

practicing engineers. They frequently use language features not supported in synthesized circuit

and they are not easy for beginners to read. They seem to confuse students more than help them

and end up mixing constructs that are only suitable for synthesis with other VHDL features that

should only be used for simulation. Having taught VHDL for several years and used VHDL on

several research projects, the author adopted a teaching methodology which is easy for the

students to follow. The purpose is trying to help students design synthesizable digital systems

instead of some fancy models only for simulation.

2. VHDL Teaching Methodology

 When introducing VHDL to the students, it is very important to point out that VHDL is

NOT a programming language, it is used for describing the required digital systems. During the

teaching activities, the author always drew the relationships between VHDL codes and the P
age 12.1015.2

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2007, American Society for Engineering Education

corresponding synthesized circuits. A clear distinction was also made between the synthesized

statements and simulation-only VHDL statements. While many VHDL textbooks start out with

the description of many VHDL features including adding in time related information, etc, the

author adopted another approach, which only introduced the minimum subset of VHDL suitable

for synthesis, and then accompanied with synthesizable VHDL combinational and sequential

models such as decoder, encoder, multiplexer, tri-state, comparator, D flip-flop, counters, shift

register, and finite state machine. It should be pointed out that the purpose of teaching VHDL is

for the students to design a digital system on FPGA/CPLD or ASIC, instead of designing some

fantastic systems only for simulation purpose.

 After VHDL for synthesis was covered, then the additional keywords, constructs and

VHDL statements were briefly introduced, thus students could refer to them in case they may

need in their future work. The frustrations and confusions of students when they are learning

VHDL will be alleviated. This teaching methodology is further explained in the following.

 In the beginning of the VHDL course, two lecture sessions were spent to review

combinational and sequential circuits. It is very important and essential for the students to

understand the basic principles of digital circuits before VHDL is introduced because even in

VHDL design, the schematic design is still the blueprint for digital systems. Thus the review

sections will help students refresh what they have learned in the past and anticipate what will

happen in the VHDL world.

 After that, the first VHDL example was introduced to the students to let them have a taste

and this example in Fig. 1 is just a simple AND gate VHDL description:

library IEEE;

use IEEE.std_logic_1164.all;

entity and2 is

port (A,B: in std_logic;
C: out std_logic);
end entity and2;

architecture ex1 of and2 is

begin

C<= A and B;
end architecture ex1;

Fig. 1. AND gate VHDL Module

 To teaching the different VHDL styles, the dataflow and structural VHDL descriptions in

Fig. 2 and Fig. 3 to realize a simple logic function F = A’B+AC (where ’ stands for logic

complement) were presented thereafter.

library IEEE;

use IEEE.std_logic_1164.all;

entity comb_function is

 port (A,B,C : in std_logic; Z: out std_logic);
end entity comb_function;
architecture expression of comb_function is

begin

 Z<= (not A and B) or (A and C);

end architecture expression;

Fig. 2. Dataflow VHDL Style Example

architecture netlist of comb_function is P

age 12.1015.3

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2007, American Society for Engineering Education

 component and2 is

 port (X, Y : in std_logic; Z: out std_logic);

 end component and2;
 component or2 is
 port (X, Y : in std_logic; Z: out std_logic);

 end component or2;

 component not1 is

 port (X : in std_logic; Z: out std_logic);
 end component not1;
signal P,Q,R : std_logic;

begin

 G1: not1 port map (A,P);

 G2: and2 port map (P,B,Q);
 G3: and2 port map (A,C,R);
 G4: or2 port map (Q,R,Z);

end architecture netlist;

Fig. 3. Structural VHDL Style Example

 While presenting the students the VHDL structural style, the instructor compared the

VHDL design to a circuit on a breadboard and signals were compared to the physical wires on

the breadboard wire connections. In the end, a simple testbench VHDL code was introduced thus

students could begin their projects from VHDL captures, to synthesize, to simulation right after

the first VHDL lecture.

 After the introduction of the first VHDL example, the author followed the materials of a

regular introductory digital system course instead of the introduction of complex VHDL features.

VHDL modules of basic combinational circuits such as decoder, encoder, multiplexer,

comparator, adder etc were introduced, in the meantime, the synthesized circuits were presented

with different styles VHDL code. For example, Figs. 4, 5 and 6 show three different VHDL

styles of a simple 4 to 1 multiplexer.

library IEEE;
use IEEE.std_logic_1164.all;

entity mux is

port (A,B, C, D: in std_logic;

 S: in std_logic_vector(1 downto 0);

 Y: out std_logic);
end entity mux;

architecture mux1 of mux is

begin

 with S select

 Y <= A when "00",
 B when "01",

 C when "10",

 D when others;

end architecture mux1;

Fig. 4. VHDL Code 1 of 4-to-1 MUX

 …..
architecture mux2 of mux is
begin

 Y <= A when S="00" else
 B when S="01" else

 C when S="10" else

 D; P
age 12.1015.4

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2007, American Society for Engineering Education

end architecture mux2;

Fig. 5. VHDL Code 2 of 4-to-1 MUX

…….
architecture three_state of mux is

begin
 Y <= A when S="00" else 'Z';

 Y <= B when S="01" else 'Z';
 Y <= C when S="10" else 'Z';

 Y <= D when S="11" else 'Z';

end architecture three_state;

Fig. 6. VHDL Code 3 of 4-to-1 MUX

 The synthesized multiplexer circuits from these VHDL codes were also described. VHDL

style code 1 and 2 are synthesized into the circuit as Fig. 7, while VHDL code 3 is synthesized

into a different one with tri-state bus as Fig. 8.

Fig. 7. Synthesized MUX Circuit from Code 1 and 2

Fig. 8. Synthesized MUX Circuits from Code 3

 P
age 12.1015.5

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2007, American Society for Engineering Education

 The similar approach was followed in the sequential circuit design procedures. Here the

instructor introduced the VHDL codes first, and then described the synthesized circuits for basic

sequential circuits such as D latch, D latch with output enable, D flip-flop with Q output, D FF

with Q, QN output, DFF with synchronous RESET/SET, with asynchronous RESET/SET, D FF

with Clock enable, with output enable, etc. In these lecture sessions, the author sometimes made

a little modification of the VHDL codes and then asked the students to tell what kind of the

circuit could be synthesized. For example, Fig. 9 describes the VHDL module of a simple D flip-

flop with Q, Qbar output:

entity DFF_Q_QBAR_2 is

 Port (D,CLK : in std_logic;
 Q,QBAR : out std_logic);

end DFF_Q_QBAR_2;
architecture Behavioral of DFF_Q_QBAR_2 is

begin

 process(D,CLK)
 variable QQ:std_logic;

 begin
 if (CLK'event and CLK='1') then

 QQ:=D;

 end if;
 Q<=QQ;

 QBAR<= not QQ;
 end process;

end behavioral;

Fig. 9. VHDL Module of a Simple D Flip-Flop

The instructor changed this code into to Fig. 10 VHDL module and asked the students to

figure out the synthesized circuit. Through this even simple design example, students could get a

very good understanding of the VHDL statement of clk’event and clk=’1’ statements. They

would also learn that the effects of the synthesized circuit for different locations of a simple

VHDL statement. It also helped them to get a clear picture of the concepts of register outputs and

combinational outputs.

architecture Behavioral of DFF_Q_QBAR_2 is

begin

 process(D,CLK)

 variable QQ:std_logic;
 begin
 if (CLK'event and CLK='1') then

 QQ:=D;

 Q<=QQ;

 QBAR<= not QQ;
 end if;

 end process;
end behavioral;

Fig. 10. Another VHDL Module of a Simple D Flip-Flop

Another difficult concept in VHDL is the differences between signals and variables. The

instructor tried to explain that using design examples from both of simulation steps and

P
age 12.1015.6

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2007, American Society for Engineering Education

synthesized circuits. For example, Fig. 11 shows the parity generator VHDL module using

signals and variables respectively.

library ieee;

use ieee.std_logic_1164.all;

entity parity is
 port (A : in std_logic_vector(7 downto 0);
 Y : out std_logic);

end entity parity;

architecture XOR1 of PARITY is

 signal X:std_logic_vector(5 downto 0);
begin
 process (A,X) is

 begin

 X(0)<=A(0) xor A(1);

 X(1)<=X(0) xor A(2);
 X(2)<=X(1) xor A(3);
 X(3)<=X(2) xor A(4);

 X(4)<=X(3) xor A(5);

 X(5)<=X(4) xor A(6);

 Y <=X(5) xor A(7);
 end process;
end architecture XOR1;

 ……

architecture XOR2 of PARITY is
begin

 process(A)
 variable XX:STD_LOGIC;

 begin

 XX:=A(0) xor A(1);
 XX:=XX xor A(2);

 XX:=XX xor A(3);
 XX:=XX xor A(4);

 XX:=XX xor A(5);

 XX:=XX xor A(6);
 Y <=XX xor A(7);

 end process;
end architecture XOR2;

Fig. 11. Parity Generator VHDL Modules using Signals and Variables

 For the example in Fig. 11, the instructor asked the students to list the simulation steps,

values of signals and variables at different simulation delta times, the synthesized circuits.

Another example in Fig. 12 and Fig. 13 was also used to help to explain the concepts of signals

and variables. Thus through these examples, students could understand the concepts of VHDL

signals and variables very well.

entity xor_sig is

 port (A,B,C: in STD_LOGIC;

 X,Y: out STD_LOGIC);

end xor_sig;

architecture SIG_ARCH of xor_sig is P

age 12.1015.7

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2007, American Society for Engineering Education

 signal D: STD_LOGIC;

begin

 SIG: process(A,B,C)
 begin
 D<=A; -- ignore !!

 X<= C xor D;

 D<= B; -- overrides!!

 Y<= C xor D;
end process;
End SIG_ARCH;

Fig. 12. A Simple VHDL Module and Synthesized Circuit Using Signals

entity xor_var is

 port (A,B,C: in STD_LOGIC;
 X,Y: out STD_LOGIC);

end xor_var;

architecture VAR_ARCH of xor_var is

begin
 VAR: process(A,B,C)

 variable: D: STD_LOGIC;

 begin
 D:=A;

 X<= C xor D;
 D:= B;

 Y<= C xor D;

end process;
End VAR_ARCH;

Fig. 13. A Simple VHDL Module and Synthesized Circuit Using Variables

P
age 12.1015.8

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2007, American Society for Engineering Education

 FPGA boards were used extensively in the early stages of VHDL teaching, thus students

got exposed to the real hardware instead of only simulations on the computers.

3. Main Issues Students’ Encounter in Learning VHDL

 One popular question students would like to ask: My VHDL module provides perfect

output from testbench simulation, but why it doesn’t work on the FPGA board after downloading

the bitstrem.

Many students, having learned other programming languages such as C or Matlab, can

usually modify a program until it performs the required function. With VHDL this may not be a

good option. Students should be kept in mind that VHDL is NOT a programming language, it is

used to describe the behavior and property of the digital hardware, thus while writing VHDL

module, they should always have a clue of what kind of hardware can be generated or what type

of hardware they are designing. Being able to put this statement into practice would require

substantial practices and experiences.

There could be many reasons if students’ design won’t work on FPGA board. For

example, if a syntax error is found in C or Matlab program, the compiler usually points at where

the error is. This is not the case of VHDL design, because one signal output could be inferred

from several VHDL statements concurrently. Thus when a problem is identified, the EDA tool

can only provide a general indication of what or where the problem could be. Students may

spend many hours trying to find a problem with a statement while the error could be somewhere

else. During the teaching and learning process of VHDL, the following suggestions could be

very helpful from the author’s experience.

Ü Always ask the students to study the examples. Students tend to write or design

their own VHDL modules without spending too much time on studying. A very

bad VHDL design code will come from their hands. The design examples are

well-written and most are standard VHDL module codes.

Ü Ask the students to check the synthesized RTL schematic circuit before running

the simulation. This could help them to better understanding the relationships

between VHDL code and the synthesized circuit and no silly mistakes were made.

Ü In order to verify their VHDL module, besides the behavioral simulation, a timing

simulation should also be made. Sometimes the behavioral simulation may give

you the correct results while a correct hardware cannot be synthesized. The

timing simulation would pretty much match the outputs of the hardware.

Ü It should also be pointed out to the students that VHDL does not provide a short-

cut to digital systems design. They should understand the basic principles and

theories of digital logic design and have a good understanding of the type of

digital logic that should be produced.

4. Acknowledgments

The generous supports from Xilinx and Mentor Graphics through their university

programs enabled us to educate our students in this very important area. We gratefully appreciate

their continuous donations of Xilinx ISE and Modelsim simulators.

References

P
age 12.1015.9

Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition

Copyright ©2007, American Society for Engineering Education

[1] A. Etxebarria, I. J. Oleagordia, and M. Sanchez, "An educational environment for VHDL hardware

description language using the WWW and specific workbench," in Proceedings - Frontiers in Education

Conference, 2001, vol. 1, pp. 22-27.

[2] A. I. Hussein, D. M. Gruenbacher, and N. M. Ibrahim, "Design and verification techniques used in a

graduate level VHDL course," Proceedings - Frontiers in Education Conference, vol. 2 pp. 13-14, 1999.

[3] P. L. Jones, "Getting started with VHDL," in Proceedings of the IEEE International Conference on

Microelectronic Systems Education, MSE, 1997, pp. 135-136.

[4] A. Wu, "Interactive learning toolbox for logic synthesis with VHDL," in Proceedings of the IEEE

International Conference on Microelectronic Systems Education, MSE, 1997, pp. 77-78.

[5] M. Chang, "Teaching top-down design using VHDL and CPLD," in Proceedings - Frontiers in Education

Conference, 1996, vol. 2, pp. 514-517.

[6] J. Pedraza-Chavez, D. Baez-Lopez, and J. M. Ramirez, "Use of VHDL as a tool for the teaching of digital

systems," in ASEE Annual Conference Proceedings, 1995, vol. 2, pp. 2800-2802.

[7] V. Pedroni, “Teaching Design-Oriented VHDL”, in Proceedings of the 2003 IEEE International

Conference on Microelectronic Systems Education, MSE’03, pp.

[8] Z. Navabi, VHDL Analysis and Modeling of Digital Systems, McGraw-Hill, 1998.

[9] D. L. Perry, VHDL, New York: McGraw-Hill, 1994.

[10] M. Zwolinski, Digital System Design with VHDL, Prentice Hall, 2000.

P
age 12.1015.10

