
AC 2009-1478: LESSONS LEARNED FROM TEACHING DYNAMIC SYSTEMS
AND CONTROL WITH A VIDEO GAME

Brianno Coller, Northern Illinois University

© American Society for Engineering Education, 2009

P
age 14.844.1

Lessons Learned from Teaching Dynamic Systems & Control

with a Video Game

Abstract

Playing digital games on personal computers and game consoles is a massively popular form of
mediated entertainment, which is particularly effective at commanding the fascination and
attention of adolescents, young adults, and some not-so-young adults. There is a growing
number of education scholars who argue that video games (or at least the aspects that make them
so engaging) should migrate into the classroom as well.

Since 2005, we have used a customized race car simulation game to teach a computational
methods course to mechanical engineering undergraduates. The introduction of the game has
been a demonstrable success. However, when we adapted the game-based instructional model to
a different course, a dynamic systems and control course, the improvements, so far, have been
less dramatic. In this paper, we re-think how a video game can be used to teach Dynamic
Systems & Control.

Introduction

In the Spring of 2008, we began teaching a core mechanical engineering course, Dynamic
Systems & Control (DS&C), with a video game. At its heart, the video game is a sophisticated
vehicle simulation that runs in real-time. On the surface, though, it has much of the look and feel
of a commercial video game. A screen shot of the game, EduTorcs, is shown in Figure 1.

Students do not “play” the video game in the usual
way. They interact with the game through a software
interface. Instead of spending countless hours,
joystick in hand, honing one’s eye-hand coordination
and reaction skills, the mechanical engineering
students improve their “driving” skills by applying
engineering analysis to the problem. They write
driving algorithms in C++, and their programs get
linked to the game at run time. Although they drive a
virtual car in a virtual world, students solve authentic
engineering problems. To succeed in the game
students must think and act like engineers.

We originally developed the game for use in a
computational methods course. In that course
students devise algorithms for driving the car as fast as possible around the track. In addition to
steering, the driving programs needed to calculate optimal times to shift gears; to determine the
maximum speed it could navigate corners; to compute the best time to begin braking before
entering a turn; and much more. When the game was first introduced in the computational
methods course in 2005, we saw immediate and dramatic improvements in learning outcomes.

P
age 14.844.2

While teaching the game-based computational methods course, we recognized the Dynamic
Systems & Control (DS&C) course as another potential venue for the educational video game.
In DS&C, students could more deeply explore the input/output behavior of the car, and they
could develop more sophisticated steering algorithms, path-following algorithms, and speed
control algorithms. DS&C is a notoriously difficult class to teach. The mathematics are abstract;
it is difficult and unnatural for mechanical engineering undergraduates to think in the Laplace
domain. By embedding the theory into an engaging context that builds off their prior knowledge,
we hoped, and still hope, to make it more clear.

When we implemented game for the first time in DS&C, however, we did not experience the
dramatic gains in student performance that we saw in the computational methods course. Part of
this may be explained by an unusual traumatic event that profoundly affected everyone on our
campus a year ago. However, we suspect that part may lie in fundamental differences between
the two courses. We suspect that the particular game-based instructional model that worked so
well in the computational methods course might not be appropriate for the game-based DS&C
course. In the current paper, we explore this possibility more deeply and describe changes we
are making in Spring of 2009, when the course is offered the second time.

What Makes the Game-Based Computational Methods Class Work

As described in the previous section, our success in using the EduTorcs video game in our
computational methods course served as motivation for attempting to use the game in the DS&C
course. The computational methods course also served as a template for how we would design
our game-based learning activities in DS&C. In this section we outline a typical assignment in
the computational methods course so that we could later illustrate why the approach might not be
appropriate for DS&C. More detailed examples from the numerical methods course may be
found in Coller1.

A representative game-based learning activity.

A few weeks into the computational methods course, we give students a challenge that resembles
a drag race. Students’ cars are placed at the beginning of a long straight section of track. Their
goal is to cross the finish line, 700 meters away, within a very short amount of time. The
winning strategy sounds simple: just steer straight ahead and go as fast as possible. However, to
complete the race in the allotted time, one’s driving program must shift gears at precisely the
right moments. Otherwise valuable fractions of seconds will be squandered as the car races in a
suboptimal gear.

After considerable thought, students recognize this as a root finding problem. If they could
calculate where acceleration versus speed curves for each gear intersect (see Figure 2), then they
would know precisely when to make the shift. Students had to write generic computer programs
that would calculate the shift points (find roots) for a variety of automobile types, engine types,
and transmission types. Incidentally, they also had to calculate acceleration from discretely
sampled speed data and then fit the data with continuous curves in order (two other topics of the
course) for the root finding to work.

P
age 14.844.3

A Traditional Root Finding Problem

To contrast the game-based exercise with the type of activity that students typically encounter in
a traditional lecture/textbook based course, consider the following root finding problem from
Rao2.

(Problem 2.62) The normal stress induced at the inner fiber of a torsional helical spring is
given by

() I

Mc

CC

CC
i

⎭
⎬
⎫

⎩
⎨
⎧

−
−−

=
14

14 2

σ ,

where I = π d
4/64, c = d/2, C = D/d, M is the bending moment, D is the mean coil

diameter, and d is the wire diameter. Find the value of C that corresponds to a stress of
σ i = 55,000 psi when M = 5 lb-in. and D = 0.1 in.

When publishing companies advertise their numerical methods textbooks, including the book by
Rao2, they frequently highlight the engineering applications covered in the books. The problem
described above is typical of the engineering applications that one finds in numerical methods
text books1. For mechanical engineering students, the problem makes a connection to a prior
mechanics of materials course

A Comparison of the Types of Problems

On the surface, it is clear that both tasks described above are root finding problems embedded in
an engineering context. But that is where the similarities end.

Suppose we ask the question, “Why would a student care about this problem?” The normal
stress induced at the inner fiber of a torsional helical spring is not something that naturally
inspires the imagination of most 20-year-olds, not even the engineers-to-be. Finding the
“correct” answer is not likely to tell them anything that they naturally want to know. Since the
correct answer only serves to give them credit toward their grade, students are likely to ignore
the engineering context and treat it as a generic math problem.
 P

age 14.844.4

By design, the game-based experience is different. Students begin writing driving algorithms in
the first week of the semester. After getting the rudimentary driving code to work, they begin
probing the limits of their capabilities. The question of when is the best moment to shift ges is
one that naturally arises, before we get to the subject of root finding.

With luck, students working on the torsional spring problem will learn a numerical root finding
technique. But, which technique? And what will they learn about it? Chapter 2 of Rao2 presents
eight root finding techniques that can be used in a variety of circumstances. It turns out that any
of the eight can be used to solve the torsional spring problem. The problem does not stipulate
which technique to use. There is no value to choosing a technique that converges quickly,
compared to one with slow convergence. The problem only needs to be solved once so there is
little benefit to choosing a technique whose iterative process starts easily. In fact, there is no need
to use any of the numerical methods covered by the textbook. Students may use a plotting
package to solve it graphically. They may perform a manual search by punching numbers into a
pocket calculator. They may find a canned routine that generates the root(s) without requiring
any thought at all.

In the gear shifting problem, choice of root finding technique is critically important. For
example, any technique that requires a derivative is doomed to fail: differentiation of discretely
sampled data is inherently noisy. Furthermore, students need a technique that has robust
convergence properties. Their shift point calculation methods are supposed to work with any car
and any transmission, information students do not know a priori. In summary, students have to
make value judgments that arise naturally out of the problem. This is what happens in
engineering practice. Students working on the game-based problem learn to think, act, and value
as engineers do. They take on identities of engineers rather than mere engineering students. As
such, the game is used to create a strikingly different type of learning environment compared to
that of the textbook.

Effects of Game-Based Learning in Computational Methods

We found that, in the computational methods course, our game-based approach had a dramatic
impact on student learning and attitude. We summarize the results below, providing references
to articles in which the results are published.

• Finding #1: Students taking the game-based numerical methods course spend more time

on homework than students in other mechanical engineering courses. One of our first
findings came from a series of surveys of students in all undergraduate mechanical
engineering courses at Northern Illinois University (NIU). As part of ABET assessment,
students reported how much time, outside of lecture and lab, they spend on course work. The
results were striking. Students taking the game-based numerical methods course, on average,
spent more time doing homework than students in any other undergraduate mechanical
engineering course, including the capstone senior design course, other core courses, and
technical electives. The differences in hours reported were statistically significant and
dramatic. The average time invested in numerical methods was 35% higher than the next
highest course. It was twice the average of all other courses. Details are published in Coller
& Scott3.

P
age 14.844.5

• Finding #2: Students taking the game-based numerical methods cours appear to learn the

material more deeply than students taking traditional textbook-based numerical methods

courses. Using a concept mapping technique, we3 compared the “computational methods
knowledge” of students taking the game-based course to other students taking a more
traditional computational methods course. Participants taking a “traditional” course were
obtained from six different classes, taught by four instructors at two universities.

Our rubric detailed four different levels of learning. The first two levels simply quantified
how many different concepts and topics they could readily recall from the course. One these
first two levels the game-based students and traditional students scored similarly; there was
no statistically significant difference.

The other two measures quantified deeper levels of learning expressed in the concept maps.
The third measure counted how many “defining features per main topic” that students could
list for their concepts. The fourth counted how may connections students made between
topics. On these latter two measures, game-based students outperformed their counterparts
by nearly 3-to-1, and by more than 10-to-1, respectively.

• Finding #3: Students appear to be more engaged when working on video game-based

homework than other engineering homework. We measured student engagement with a
technique called the Experience Sampling Method (ESM). For three one-week periods during
the semester, students wore wristwatches that were pre-programmed to beep at randomly
chosen times. When the watches beeped, students filled out a brief survey, indicating what
they were doing and their mood and perceptions toward the activity in which they were
involved. The ESM allowed us to obtain a snapshot of student experiences ‘in the moment,’
and therefore did not rely on memory to reconstruct engagement from past experiences.

We conducted a series of Hierarchical Linear Models to compare within-person differences
of the composite engagement variables while working on homework with the video game
compared to homework for other classes (without a game). We found that Intellectual

Intensity, Intrinsic Motivation, and Engagement was significantly higher when working on
the video game. Results are presented in Coller & Shernoff4.

• Finding #4: Long after the course is over, students who have taken the game-based

numerical methods course see more value in the course than students taking a traditional

numerical methods course. Just before graduating from their program, students were given a
list of all required courses in the mechanical engineering curriculum. We asked students to
rank the courses on a scale from 1 (low) to 10 (high) indicating “how important [they] feel
each course was in [their] education toward becoming a mechanical engineer.” Students
were advised to evaluate the importance of the course subject and material rather than the
quality of instruction.

Students who took a traditional numerical methods class, on average, gave it the lowest
ranking of all mechanical engineering courses. Students who took the game-based numerical
methods course ranked that course almost exactly in the middle of all courses. The difference
was statistically significant. This result is published in Coller & Scott3.

P
age 14.844.6

A First Attempt at Game-Based Dynamic Systems & Control

When we originally created our game-based DS&C course, we attempted to adopt the
instructional model provided by the successful game-based numerical methods course. That is,
we sought to embed authentic engineering challenges into the game that would require students
to deeply explore the dynamics of the vehicles and devise creative control strategies.

An Example Challenge

One of the challenges we gave to the students is something called the “Thread the Needle” event.
The game would control the speed of a sports car as it raced toward four other cars parked on the
track. Just before crashing into one of the parked cars, the student’s driving program would
receive a signal to execute and evasive steering maneuver that would avoid the first car and
barely squeeze between two other parked cars slightly farther down the road. The evasive
maneuver would need to work over a range of randomly generated speeds.

The idea was that students would
determine the controller performance
specifications (rise time, maximum,
overshoot, and settling time) from the
speed of their car and the spacing between
the parked cars. Then they would
carefully design controllers to meet the
specifications. If they do not design their
controller correctly they would get
immediate feedback in the form of a
smoldering pile of wreckage. Of course,
they would be able to start fresh by
restarting the game. Students would
persevere until they figured out the details.

Unintended Consequences

The problem with the task described above is that students can satisfy the requirements without
going through the exercise of exploring the fundamentals of how controller parameters affect
performance measures. Instead, students could simply choose parameters through an iterative
process of trial and error. Since there are only two controller gains at this stage, they will
eventually stumble upon a workable solution.

In the computational methods course, there were built-in mechanisms to prevent such ad-hoc
solutions. The mechanisms were not practical in the DS&C course.

Part of the difficulty lies in the nature of feedback control systems. One of the characteristics
that makes feedback so great (in the real world) is its robustness. It can be used to control
systems whose dynamics are not precisely known. In the virtual world of our video game, this

P
age 14.844.7

robustness property made it difficult to create challenges that would, by design, reject lousy
approaches to the problem.

In some later assignments, we required students to solve the tasks using specific prescribed
techniques. We did this reluctantly, because we realized that the new rules were imposed
artificially. The requirements on how one solves the problems did not come naturally or
authentically out of the challenge. It undercut one of the primary mechanisms which can
transform a video game into a powerful learning tool.

Learning Measures & Observations

At the time of this writing, we have performed only a preliminary analysis comparing learning
outcomes and engagement measures, comparing students who took the game-based DS&C
course in Spring 2008 to those who took DS&C in 2007 without the game. There were a couple
categories in which the game-based students appeared to outperform their non-game counterparts
to a statistically significant degree. However the differences were not nearly as dramatic as was
experienced in computational methods study3. In most measures, though, we did not observe
any significant gains. There were no declines either.

Also, it is important to note that, due to highly unusual and traumatic circumstances, we have
doubt as to whether any conclusions can be drawn from comparisons between students taking the
game-based course last year and those taking the traditional course the previous year. In
February of 2008, while we were in class, five of the students’ classmates were murdered and
another few dozen were injured when a gunman came onto campus and shot up a classroom.
Classes resumed a little more than a week later, but the atmosphere on campus was profoundly
impacted for the rest of the semester.

Nonetheless, in surveys, students almost unanimously reported very positive responses to the
game. Almost all believed that the game significantly improved their understanding of the
subject. Also, they were eager to provided feedback on how the user interface can be improved,
and which new features should be added to the game.

A Bright Spot

One of the bright spots of the educational experience was the last series of exercises that students
were asked to complete. Students were given a car-driving, video game version of the classic
inverted pendulum problem. We call it the Pendu-Car. Although it seems unnatural, we placed a
pendulum atop a car, and we asked students to create steering algorithms that keep the pendulum
balanced in its upright state. In addition to keeping the pendulum balanced, the car would need
to steer itself around the track. Furthermore, parts of the track are banked (sloped sideways),
adding one more element of difficulty to the challenge.

P
age 14.844.8

Classical inverted pendulum

(on a slope)

Pendu�Car

Students ranked this challenge as their best experience in the course. Based upon personal
observation, I concur. Student could not get away with simply slapping on a PID controller
somewhere. This challenge required students to think deeper and more creatively. They had to
devise their own control architecture and test it conceptually and implement it. Students had to
do a lot of tinkering, in a good constructive way. As will be described in a forthcoming article,
learning measures related to this exercise were the ones in which we observed most
improvement.

Reflections

“Learning is a cycle of probing the world (doing something); reflecting in and on this
action and, on this basis, forming a hypothesis; reprobing the world to test this
hypothesis; and then accepting or rethinking the hypothesis.”

This is one of several fundamental learning principles, proffered by Gee5, for which the medium
of video games may be particularly well-equipped to address. It is one of the fundamental
principles that guided both the computational methods and DS&C versions of EduTorcs. Rather
than overtly provide information to students through textbook and lecture, we aspired to create a
mediated environment in which students could experiment and make discoveries.

Nonetheless, Gee acknowledges that one must strike proper balance between overt information
and immersion in actual contexts of practice. One cannot, he explains, give novices a set of
ramps and balls, and then expect them to arrive at Galileo’s principles of motion on their own.
This experience of integrating a video game into a DS&C class has illuminated some of the
difficulty in getting the balance right. In particular, an instructor must take care in choosing
which principles should be discovered through the game.

The “Thread the Needle” event described earlier, in which students attempt to finesse the
performance characteristics of a given control system, is not a good exploratory experience for
students. We now recognize that the learning exercise turned one of Gee’s game-related learning
principles on its head. Gee’s “Amplification of Input” principle states that small improvements
in players performance/learning should be amplified by the game5. This provides students

P
age 14.844.9

feedback that confirms good approaches to solving problems. Due to robustness properties of
feedback control systems, “Thread the Needle” created “attenuation of input” instead. Both deep
and shallow attempts to solve the problem could produce similar outcomes in the game.

Moving Forward

The game-based dynamic systems and control course is being offered again in Spring 2009. The
challenges and exercises in the new course are more similar to the Pendu-Car project described
previously. Instead of having students achieve specific performance metrics, we focus more on
qualitative aspects. In devising a control strategy for the Pendu-Car, for example, one needs to
think deeply about how the feedback architecture is constructed. How can one simultaneously
control two strongly coupled dynamic states (pendulum angle and car position)? Our
engineering students can figure this out on their own with minimal assistance from the instructor.
Furthermore, students like doing it. It is the DS&C equivalent of tinkering in the machine shop…
exploring how elemental parts connect together to form a whole.

We have also made significant changes to the user interface. In earlier versions of the game,
designed strictly for the computational methods course, EduTorcs only communicated with
student-written programs that generate driving commands.

Joystick

Simulation / Game

Interface Layer

Simulation / Game

Program

Interface Layer

Student’s

Program

Student’s

Recently we have added a layer to the interface that will allow players to hook up a joystick to
the game. Yes, this allows one to play EduTorcs like a traditional video game, but that is just a
side effect. The game has telemetry mechanisms that allow students to record their joystick
steering commands, along with simulation data. When we examine the data generated during an
aggressive lane change maneuver, for example, we see exactly how the subconscious controller
inside our brains is able to damp out the car’s lateral oscillations. Then, if we write a
mathematical control law which produces the same effect, we see that the advance in phase can
be produced by a derivative term. Thus, rather than introduce derivative action – one of the key
concepts in the course – through transfer functions and block diagram algebra in the Laplace
domain, we broach the subject by building on top of something that students already know: how
to drive a car.

P
age 14.844.10

steer command, brain output

steer

position
car

83 84 85 86 87 88
−0.2

0

0.2

S
te

e
r

C
o
m

m
a
n
d

83 84 85 86 87 88
−3

−2

−1

0

1

2

3

L
a
te

ra
l
D

is
p
la

c
e
m

e
n
t

Controller

(Your brain)

car position, brain input

command

Along the same lines, we the game to study a problem that nearly everyone is intimately familiar
with: riding a bicycle. Yet very few people are able to correctly explain bicycle physics. From a
modeling, analysis and control perspective the motorcycle/bicycle is an incredibly rich problem.
Within the virtual, but physically accurate, world of the video game, one can explore bicycle
dynamics and control quite thoroughly. What happens if we enhance/remove/reverse the
mechanical trail (caster effect) of the steered wheel? What happens if we
enhance/remove/reverse the gyroscopic effects of the two spinning wheels? What if we
reconfigure the bike so that the steered wheel is in the back? How do these changes affect
stability and rideablity? How do we even quantify rideability?

The rear steered bikes like that shown on the right above are known to be “unridable” by
humans7,8,9. The dynamics exhibited by the rear steered bike in the game seem so foreign that we
had to build a real bike so that students can feel how strange it is. With the experience, students
are able to return to the game, understand the difficulty from a physical and mathematical
perspective, and develop drive-by-wire controllers so that novice game players can ride the
virtual rear steered bike with a joystick. Although the bike is virtual, the engineering is real and
authentic.

P
age 14.844.11

Postscript

At the time we are submitting this for final publication, the Spring 2009 is about half complete.
At this stage, we are optimistic about the changes we have made to the Dynamic Systems &
Control Course.

Bibliography

1. B. D. Coller, “Implementing a video game to teach principles of mechanical engineering,” Proceedings of the

2007 American Society for Engineering Education Annual Conference. 2007.
2. S. S. Rao, Applied Numerical Methods for Engineers and Scientists, Prentice Hall, 2002.
3. B. D. Coller & M. J. Scott, “Effectiveness of using a video game to teach a course in mechanical engineering,”

(pre-print) 2008, available at www.ceet.niu.edu/faculty/coller
4. B. D. Coller and D. J. Shernoff, “Video game-based education in mechanical engineering: A look at student

engagement,” International Journal of Engineering Education, (in press)
5. J.P. Gee, What Video Games Have to Teach Us About Learning and Literacy, Palgrave Macmillan, 2003.
6. K. Åström, R. E. Klein, and A. Lennartsson, “Bicycle dynamics and control: Adapted bicycles for education

and research,” IEEE Control Systems Magazine, 15, pp 26 – 47, 2005.
7. K. Åström, “Limitations on control system performance, “European Journal of Control, 6, pp 2 – 20, 2000.
8. R. Schwarz, “Accident avoidance characteristics of unconventional motorcycle configurations,” SAE Paper

790258, 1979.
9. S. Suryanararayanan, M. Tomizuka, and M. Weaver, “System dynamics and control of bicycles at high speeds,”

Proceedings of the American Control Conference, pp 845 – 850, 2002.

P
age 14.844.12

