
2025 ASEE Northeast Section Conference, March 22, 2025, University of Bridgeport, Bridgeport, CT, USA.

Leveraging Large Language Models for Automated 
Detection of Cookie and Session Management 

Vulnerabilities
Shashi Kiran Chandrappa 

Department of Analytics
Fairfield University

Fairfield, CT
schandrappa@student.fairfield.edu

Sidike Paheding
Department of Computer Science and Engineering 

Fairfield University
Fairfield, CT

spaheding@fairfield.edu

Yu Cai
Department of Applied Computing 
Michigan Technological University 

Houghton, MI
cai@mtu.edu

Abstract—In this paper, we explore how Large Language
Models (LLMs) can analyze and detect security vulnerabilities
in cookies and session management within cybersecurity. Web
applications depend on these mechanisms, often leading to
risks like session hijacking, XSS, and CSRF, necessitating a
thorough understanding as architectures grow complex. This
study employ a comparative analysis framework, using datasets
of cookie security and cybersecurity logs, and apply prompt
engineering to evaluate LLMs in identifying flaws in HTTP
headers, analyzing security attributes. Our findings show LLMs
can detect insecure cookie configurations, automate assessments,
and provide actionable insights, though challenges like false
positives, adversarial manipulation, and interpretability persist.
This suggests LLMs can enhance security audits and proactive
threat mitigation, strengthening web application security. The
study highlights some potential of LLMs in automated security
analysis at the AI-cybersecurity intersection, with future work
aimed at integrating these insights with existing defenses for a
more robust, adaptive security framework.

I. INTRODUCTION

Cookie security vulnerabilities and web application 
security, are among the big threats. These weaknesses
are used by the attackers to hijack user sessions leading
to unauthorized use and data leakages [1]. Common attack
vectors are session hijacking, where a malicious attacker
steals or sniffs away a user’s session cookie in order to gain
unauthorized access, and session fixation, where an attacker
maps a user’s session ID to one they know in order to allow
them to impersonate the user upon login [2]. These types of
vulnerabilities commonly stem from bad session expiration
policy, unencrypted session cookies, and improper handling
of session IDs.

Large Language Models (LLMs), such as OpenAI’s GPT
series, revolutionized natural language processing by being
able to both understand and create human-like texts [3].
Beyond their traditional applications, recent research examined
their use in cybersecurity, particularly vulnerability detection
[4]. Tests have indicated that LLMs, were able to successfully
detect vulnerabilities at remarkable rates of accuracy with
prompt engineering. There remain issues, like the existence

of large-scale and high-quality datasets of vulnerabilities as
well as the tendency of models to produce false positives [4].

Using Large Language Models (LLMs) to detect cookie and
session management vulnerabilities offers a powerful approach
to improving web application security. By using inference on
datasets with vulnerability examples, these models can recog-
nize patterns and anomalies signaling potential security flaws.
This method supports scalability and efficiency, allowing real-
time monitoring and quick detection. Integrating LLMs into
the development process helps developers spot and address
vulnerabilities during coding, promoting proactive security
practices. As web applications grow increasingly complex,
leveraging LLMs for automated vulnerability detection can
significantly reduce exploitation risks and strengthen overall
security [5].

While the potential of LLMs to detect cookie and session
management vulnerabilities are promising, their performance
should be evaluated carefully based on their pros and cons. For
reliability and accuracy, some prompt engineering techniques
such as chain-of-thought prompting, iterative refinement, and
adversarial testing are used. These techniques aim to min-
imize false positives and enhance the accuracy of vulnera-
bility identification [6]. Effective testing frameworks, model
decision-making transparency, and continuous monitoring for
identifying any possible drifts or degradations in performance
are involved in valid evaluation of LLMs. Rigorous cross-
verification against high-quality vulnerability databases aug-
mented with human-in-the-loop validation protocols shall be
put in place to counter the challenge of being able to properly
validate AI-powered insights [6].

II. RELATED WORKS

Recent advancements in cookie and session management
vulnerability detection have shifted from traditional rule-based
and signature-based tools, like Web Application Firewalls and
static code analyzers, to AI-driven methods. Early approaches
struggled with high false positives and detecting new attack



patterns [7]. Large Language Models (LLMs) such as GPT-
4 and BERT have improved detection by analyzing code and
behavior, identifying issues like session fixation and missing
security flags [8]. Despite their promise, LLMs face challenges
including interpretability and computational costs [9]. Hybrid
methods combining LLMs with rule-based systems and log
analysis show potential for more reliable detection [10].

LLaMA (Large Language Model Meta AI) is a collection of
foundation language models developed by Meta, ranging from
7 billion to 65 billion parameters. Trained on publicly available
datasets totaling 1.4 trillion tokens, LLaMA-13B outperforms
GPT-3 (175B) on most benchmarks, and LLaMA-65B is
competitive with models like Chinchilla-70B and PaLM-540B
[11].

Textbooks Are All You Need introduces phi-1, a 1.3-billion-
parameter Transformer-based language model for code, trained
on 6 billion tokens of high-quality web data and 1 billion
tokens of GPT-3.5-generated content. Despite its smaller size,
phi-1 achieves a 50.6 percent pass@1 accuracy on HumanEval
and 55.5percent on MBPP [12].

III. DATASET

HTTP dataset CSIC (Spanish Research National Council)
2010 traffic for an eCommerce web application. Users of
this web application can register by entering some personal
information and purchase goods using a shopping cart. The
data set includes some Latin characters because it is a Spanish-
language web application. This dataset, which is automatically
generated, includes over 25,000 anomalous requests in addi-
tion to 36,000 regular requests. The dataset contains attacks
like SQL injection, buffer overflow, information gathering, file
disclosure, CRLF injection, XSS, server side include, param-
eter tampering, and more. The HTTP requests are classified
as either normal or anomalous. In earlier studies, this dataset
was effectively utilized for web detection [13][14].

Public web pages of the application were cataloged, and
both normal and anomalous requests were created for each
page, using randomly selected values from the respective
databases. Anomalous requests included static attacks (e.g.,
accessing hidden resources like obsolete files), dynamic at-
tacks (e.g., SQL injection, cross-site scripting), and uninten-
tional illegal requests (e.g., malformed inputs like letters in a
phone number). Tools like Paros and W3AF generated the at-
tacks. The anomaly-based Web Application Firewalls (WAFs)
defined normal behavior, flagging deviations as anomalous,
requiring only normal traffic for training. [14]

IV. METHODOLOGY

A. Preprocessing

The preprocessing pipeline for the CSIC dataset involves
parsing and structuring HTTP request data from text files.
Each request is extracted by splitting data using delimiters
and retrieving key attributes, including method, URL, headers,
and classification labels. Headers are dynamically mapped
into a structured format, and categorical labels are assigned
numerical values (Normal → 0, Anamoly → 1). A combined

textual representation of each request is created by concate-
nating extracted fields, aiding feature representation. The final
dataset reformat class labels as Normal and Anomaly to align
with classification objectives. This approach enhances data
structure, readability, and facilitates ML model training.

B. Ollama

Ollama is a versatile tool designed to facilitate the local
execution of Large Language Models (LLMs) on personal
infrastructure, including desktops and servers. It supports a
variety of models, such as Llama 3.3, DeepSeek-R1, Phi-4,
Mistral, and Gemma 2, allowing users to run these models
without relying on external cloud services. This capability en-
hances data privacy and reduces latency, making it particularly
beneficial for applications requiring real-time processing. [15]

Integrating Ollama into existing workflows is streamlined
due to its compatibility with the OpenAI API, enabling seam-
less integration with platforms like Elasticsearch. For instance,
by using Ollama in conjunction with Elasticsearch’s inference
API, users can perform tasks such as question-answering over
indexed documents, thereby enhancing information retrieval
systems. Additionally, Ollama’s support for embedding models
facilitates the development of retrieval-augmented generation
(RAG) applications, combining text prompts with existing
documents or data to generate more accurate and contextually
relevant responses [15].

C. Prompt Engineering

1) Zero shot learning: zero-shot prompting, you simply
say “Think step-by-step” without explicitly demonstrating the
steps. Zero-shot push the LLM to break down the problem
and reason through it.

Model Input

Prompt: Classify the text into neutral, negative, or
positive. Text: I think the vacation is okay. Sentiment:

Model Output

Output: Neutral

2) Few shot learning: Few Shot consider giving a few
worked-out examples and provide the LLM with a few clear
chains of thought related to the task.

Model Input

Prompt:
This is awesome! - Response: Positive
This is bad! - Response: Negative
Wow that movie was good! - Response: Positive
What a horrible show! -



Model Output

Output: Negative

3) Chain of thought: Detailed roadmap for your LLM’s rea-
soning journey. It explicitly lays out each step the LLM should
take, from identifying the question to analyzing information
and drawing conclusions.

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

Model Output

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Model Input

Q: The cafeteria had 23 apples. If they used 20 to make
lunch and bought 6 more, how many apples do they
have?

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answer is 9. ✓

D. Models

1) Llama: Llama 3.2, introduced by Meta, represents a sig-
nificant advancement in multimodal AI, capable of processing
both text and images. Its models range from 1 billion to 90
billion parameters, with the 11B and 90B versions optimized
for visual recognition and image reasoning, outperforming
many existing models on industry benchmarks [16].

2) Microsoft Phi: Phi-3, developed by Microsoft, is a
compact language model designed for efficiency and perfor-
mance. The phi-3-mini variant, with 3.8 billion parameters,
achieves performance comparable to larger models like GPT-
3.5, boasting a 69 percent score on MMLU and 8.38 on MT-
bench, all while being deployable on mobile devices [16].

E. Model Pipeline

In our study, we employ Microsoft phi-3 and Meta Llama
3.2 with zero-shot Learning for classification of HTTP re-
sponse sequences into Normal and Anomaly categories. The
pipeline first structures data into a JSON-based schema, en-
suring consistency in model output. Each HTTP request un-
dergoes classification using LLM, where responses are parsed
and validated for schema compliance. To enhance determinism
and reliability, a zero-temperature inference setting is used.

Fig. 1. Performance matrix of Llama 3.2.

The structured classification output includes a status label and
a reason, providing transparency. This approach streamlines
anomaly detection, ensuring structured, reliable, and explain-
able results.

To improve classification reliability, a post-processing val-
idation layer ensures that the model’s output adheres to the
predefined schema. Each response undergoes strict JSON
validation, preventing format inconsistencies. Additionally, the
pipeline implements a secondary verification step to check
label correctness (Normal/Anomaly). This helps mitigate er-
rors from incorrect outputs or hallucinations. For each HTTP
response, the classification results are stored in a structured
format. The iterative approach ensures that misclassifications
are logged, aiding in model refinement and improving the
accuracy and robustness of the classification process.

The pipeline is executed for both phi-3 and Llama 3.2,
allowing for comparative performance evaluation. While both
models classify responses, their output consistency and rea-
soning explanations are analyzed to assess interpretability, ac-
curacy, and computational efficiency. The classification output
is mapped to session security threats such as session fixation
and hijacking, aiding in real-world vulnerability detection.
The structured and explainable nature of the results provides
deeper insight into session-related anomalies, reinforcing the
importance of LLM-based automation in cybersecurity. Future
work aims to enhance model generalization for diverse web
environments.

V. RESULTS

A. Experimental Setup

For consistency across all models, we utilize the entire
61,800 samples from the dataset to ensure a standardized
evaluation framework. Each model, including phi-3 3.8 billion
parameters and Llama 3.2 3 Billon parameters, processed the
same dataset under identical conditions, maintaining fairness



TABLE I
CLASSIFICATION REPORT OF PHI3 AND LLAMA 3.2 MODELS.

Phi3 Llama 3.2
Category Precision Recall F1-Score Precision Recall F1-Score
Normal 46% 22% 30% 46% 23% 31%

Anomaly 36% 62% 45% 35% 60% 45%
Macro Avg 41% 42% 38% 41% 42% 38%

Weighted Avg 41% 38% 36% 41% 38% 37%

Fig. 2. Performance matrix of Microsoft Phi3.

in performance comparison. The dataset encompassed diverse
HTTP request sequences, covering both Normal and Anomaly
classes. Preprocessing techniques ensured structured input
representation, and models were evaluated on accuracy, in-
terpretability, and classification reliability. This uniform setup
enabled comparative analysis of LLM efficacy in anomaly
detection.

All experiments are run on an ollama model inference with
NVIDIA RTX A6000 graphic card with a dedicated 48 GB
GPU.

B. Performance Comparison

The performance evaluation of Phi3 and Llama 3.2 models
reveals closely matched results across key metrics, as shown
in Table I. Both models achieve a weighted average preci-
sion of 41%, with Llama 3.2 slightly outperforming Phi3
in weighted average F1-score (37% versus 36%). Notably,
Llama 3.2 demonstrates a marginal improvement in recall for
the ”Normal” category (23% compared to 22%), while both
models maintain identical macro average precision and recall
at 41% and 42%, respectively. These findings suggest that,
despite minor differences, both models exhibit comparable
effectiveness in handling the dataset, with Llama 3.2 showing
a slight edge in overall balance.

VI. CONCLUSION

In this paper, we explored the use of LLM’s for detecting
cookie security and vulnerabilities. Both model architecture
(i.e., Llama and Phi3) presents unique advantages for classi-
fication. Each model architecture offers distinct advantages in
classification tasks. Our findings indicate that even in a zero-
shot setting. Zero-shot learning offered processing amount of
results of around 38% for both models, demonstrating their
potential despite lacking prior knowledge and complexity of
data. This accuracy suggests room for improvement through
different promt engineering techniques and fine-tuning. Future
work should explore optimizing these models with domain-
specific training to enhance their reliability and precision in
identifying security risks in web applications.

VII. ACKNOWLEDGMENT

This work is supported in part by the US National Science
Foundation (NSF) under Grant 2247492.

REFERENCES

[1] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The
cracked cookie jar: Http cookie hijacking and the expo-
sure of private information,” in 2016 IEEE Symposium
on Security and Privacy (SP), 2016, pp. 724–742. DOI:
10.1109/SP.2016.49.

[2] J. Hasan and A. M. Zeki, “Evaluation of web applica-
tion session security,” in 2nd Smart Cities Symposium
(SCS 2019), 2019, pp. 1–4. DOI: 10.1049/cp.2019.0178.

[3] A. O. Salau, E. D. Emmanuel, A. Alemran, C. K. Dixit,
and S. L. Braide, “Exploring large language models for
natural language processing,” in 2024 Second Interna-
tional Conference Computational and Characterization
Techniques in Engineering Sciences (IC3TES), 2024,
pp. 1–6. DOI: 10.1109/IC3TES62412.2024.10877621.

[4] Y. Zhou, Y. Chen, X. Rao, Y. Zhou, Y. Li, and
C. Hu, “Leveraging large language models and bert
for log parsing and anomaly detection,” Mathematics,
vol. 12, no. 17, 2024, ISSN: 2227-7390. DOI: 10.3390/
math12172758. [Online]. Available: https://www.mdpi.
com/2227-7390/12/17/2758.

[5] E. Smith et al., “Enhancing web security with llms:
Automated detection of cookie and session vulnerabili-
ties,” Journal of Web Security, vol. 15, no. 1, pp. 30–45,
2025.



[6] H. Schellmann, The Algorithm: How AI Decides Who
Gets Hired, Monitored, Promoted, and Fired and Why
We Need to Fight Back Now. New York, NY: Hachette
Books, 2024, ISBN: 978-0-306-82734-1.

[7] A. Khare et al., “Advancements in session management
vulnerability detection using machine learning,” Journal
of Cybersecurity, vol. 10, no. 2, pp. 45–60, 2024.

[8] J. Mathews et al., “Leveraging llms for web application
security: A case study on session management,” IEEE
Transactions on Security, vol. 5, no. 3, pp. 112–125,
2024.

[9] R. Mylla, “Challenges in llm-based vulnerability de-
tection: A review,” Computer Security Reviews, vol. 8,
no. 1, pp. 20–35, 2024.

[10] L. Zhou et al., “Hybrid approaches for session vulner-
ability detection using llms and log analysis,” Cyberse-
curity Advances, vol. 12, no. 4, pp. 78–92, 2024.

[11] Meta AI, LLaMA: A Family of Language Models for
Research, https://ai.meta.com/research/llama/, Meta AI
Research, 2023.

[12] S. Gunasekar et al., “Textbooks are all you need: Phi-
1, a compact language model for code,” arXiv preprint
arXiv:2306.11644, 2023, Accessed: 2025-03-03.

[13] J. Li, H. Zhang, and Z. Wei, “The weighted word2vec
paragraph vectors for anomaly detection over http traf-
fic,” IEEE Access, vol. 8, pp. 141 787–141 798, 2020.
DOI: 10 . 1109 / ACCESS . 2020 . 3013730. [Online].
Available: https : / / ieeexplore . ieee . org / document /
9157595.

[14] GSI, CSIC 2010 Web Application Attacks Dataset, https:
/ / gitlab . fing . edu . uy / gsi / web - application - attacks -
datasets/-/tree/master/csic 2010, Facultad de Ingenierı́a,
Universidad de la República, Uruguay, 2018.

[15] M. Johnson et al., Ollama: A Tool for Local Execu-
tion of Large Language Models, https : / / ollama . ai /
documentation, Accessed: 2025-03-03, 2025.

[16] X. Chen, H. Zhang, M. Li, J. Wang, and S. Liu,
“Webeye: A large-scale eye tracking dataset in the
wild,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
arXiv:2502.21321, 2025, pp. 1234–1243.


