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Leveraging machine learning techniques to analyze persistence in
undergraduate computing programs

Abstract
Although student retention remains a significant concern for all Science, Technology,
Engineering, and Mathematics (STEM) fields, it is particularly problematic in computing, where
enrollment in such programs has not kept pace with the industry demands. Thus, finding
meaningful patterns in historical data can help education researchers to reveal the possible
reasons for students’ withdrawal from a university, and can provide guidelines and mechanisms
that lead to improving retention rates. To achieve this goal, we considered the importance of
different factors in the graduation of computing students, and generated a predictive model for
student graduation using the Multiple-Institution Database for Investigating Engineering
Longitudinal Development (MIDFIELD) dataset. We observed that considering input and
environment educational variables, cumulative GPA, number of terms registered, start year,
institution, and being a transfer student, are the most important features, respectively. Our results
also demonstrate that Random Forest algorithm produced a more accurate result on this dataset
compared to other machine learning algorithms. We anticipate findings from this ongoing work
will give insight to the computing education community and researchers to better understand the
relative success of computing students, and that this will, in turn, enable strategic solutions to
attain higher retention rates.

Introduction
In general, jobs in STEM fields continue to flourish relative to positions in other fields, however,
computing graduates (consisting of students in computer science, computer engineering, and
information sciences) are particularly in demand. It is estimated that within a ten year span,
growth will increase 32% for information security analysts and 26% for software developers [1].
Despite the professional need for more graduates, undergraduate students in computer or
information science have a 59% rate of attrition, which is the highest rate relative to students from
other STEM majors [2]. In part, this is due to retention challenges in computer science, although
many factors may play a role in a students’ decision to drop out. Since pathway patterns for
computing students are different from engineering students, it is crucial to specifically explore the
variables that contribute to positive academic outcomes in computing fields, to find ways to
improve the graduation rate [3].

In order to understand what variables are the most important to student graduation in
undergraduate computing programs, we apply Alexander Astin’s Input-Environment-Output
(I-E-O) model to a filtered version of the Multiple-Institution Database for Investigating
Engineering Longitudinal Development (MIDFIELD). Specifically, our version of MIDFIELD



considers a subset solely composed of computing students. We implement Machine Learning
(ML) algorithms to predict and to explain the reasons behind computing students’ attrition. Then,
we leverage the best predictive model to analyze which factors are most critical for graduation in
a computing field.

ML is a type of algorithmic and statistical modeling technique that can perform tasks based on
pattern recognition and inference, without explicit instructions [4]. We apply several different ML
algorithms to assess the following research questions: 1) Which ML algorithm most accurately
predicts student outcomes in terms of graduation?; 2) What indicators predict computing
students’ graduation?; and 3) Is there a difference, in terms of importance of the rankings, if the
inputs and environment variables are run together, as opposed to when they are run
separately?

The present study is novel in several areas. Although many studies have examined retention and
graduation of engineering and computing students, often these studies only consider a short time
span of one to two years [5]. Moreover, they tend to focus solely on a single university, leading to
results that may not generalize to other students. In this study, we consider approximately 30
years of data for students from 14 universities, to evaluate the influence of individual and
institutional factors on computing students’ graduation. Having a greater range of dates and
institutions from MIDFIELD will provide a more accurate portrayal of the contribution of
individual variables. To the best of our knowledge, this is the first time that ML has been applied
to MIDFIELD. In addition, since previous research shows that computing majors have different
patterns from other STEM majors, the data examined in this paper is exclusive to computing
majors [3].

In this document, we will first review the background work in the Related Research section.
Then, we will discuss framework driving this research in the Theoretical Framework section. In
the Database section, we will cover the dataset that we utilized, as well as what was performed to
pre-process and analyze the data. In the Methods section, we detail the model evaluation and
validation and provide a justification for the final models that we use for our results, as well as
providing the actual outcomes in the Results section. Moreover, in the Discussion and
Conclusions section, we provide a discussion of our findings and finish with suggestions for
future work in the field.

Related Research
Despite the need for additional graduates in computing fields, the popularity of computing as a
major has been declining since the late 1990s [6]. Thus, it is important to understand the factors
that contribute to success in computing enrollment, persistence, graduation, and employment.
Previous research has demonstrated that demographic characteristics (such as gender and
race/ethnicity) [7], and institutional characteristics [8] can affect graduation rates. However, in
addition to a lack of popularity in computing fields and industry, there is also a concerning lack of
diversity. Relative to the general population, there is a disproportionate amount of White and
Asian males in computing [9]. Although numerous studies have begun to examine how to
equalize enrollment and retention, levels still remain low.

One technique leverage to better understand these trends is data mining. Data mining has become
an important tool to aid in the analysis of educational information for decision making purposes.



By uncovering trends and patterns that exist in repositories, researchers are able to uncover what
factors contribute to positive academic outcomes [10–12]. In one study using classification
algorithms to examine the contribution of different factors to the graduation rate, it was observed
that graduation rates were higher for students that were born and inhabiting the same city.
Moreover, they found that transfer students coming from another higher education institution, had
increased graduation as well. However, it should be noted that these results may be limited in that
they only considered the students of a single private institution, which may affect how well these
findings can be generalized [12].

When exploring which factors from high school are most predictive of college graduation,
between standardized test scores (SAT and ACT) and students’ high school GPA, GPA is
consistently considered the winner, in terms of which variable has the greatest impact [13–15].
The hypothesized rationale for this observation is that although standardized tests consider
intellectual abilities in certain domains, the overall GPA considers different intrapersonal qualities
as well that were useful for positive outcomes in college [15]. More specifically, although grades
certainly do reflect skill levels on specific content, it may also include individual factors such as
students’ attitudes, their behaviors, and the effort exerted.

When specifically considering students from STEM fields, results have shown similar outcomes;
however, results vary depending on the measure of academic success and the variables
considered. In the realm of engineering, Zhang et al. utilized data collected over multiple
institutions to apply a multiple logistic regression model to understand the correlation between
individual demographic and academic characteristics and graduation [16]. They observed that the
greatest predictor of graduation for all the universities considered was high school GPA, and the
SAT math scores. Others examining a sample of STEM undergraduates from Georgia Tech,
examined the factors that contributed to academic success in college [17]. In this work, academic
success included not only graduation rates, but also STEM persistence, and gender differences in
grade. Their findings reified that high school GPA is the best predictor of academic success in
college, and they also discovered that the next greatest predictor was average score on Advanced
Placement examinations. Yet another study examining high school variables - grades in math and
science courses, standardized test scores, and high school GPA- for STEM students, found that
only performance in high school math and science courses (among which high school calculus
was the most important) was predictive of performance in STEM courses in college [18].

Theoretical Framework
The Input-Environment-Output model establishes a framework to evaluate students’ effectiveness
by linking together the consideration of students’ qualities/features upon entry to an educational
institution, the impact of their educational environments, and then the students’ qualities/features
upon exit from the institution [19, 20]. According to this model, inputs are considered the
characteristics/qualities of a student that exist at their time of enrollment, and may include either
static attributes, or those which change with time. Contrarily, environment characteristics include
the variables that affect a student throughout the course of their educational program. Astin
further stratifies these measures as those which are reflective of the overall institution, as well as
the specific educational experiences which a student may encounter at the intuition. Outputs, are
considered the intended goal for the educational program [20].



Table 1: I-E-O Model Depiction of Variables Assessed
Inputs Environment Outputs

SAT (Math) Cumulative GPA Graduation Rates
SAT (Verbal) Terms Registered

ACT Transfer Status
Race Start Year

U.S. Citizen Term Entered
Age Institution

Gender CIP2 (Major)
COOP

We apply the I-E-O model as our overarching theoretical framework, and consider the
characteristics described in Table 1 as the specific variables defining our model. Note, GPA stands
for Grade Point Average, CIP stands for the students’ major during this term, which is expressed
as IPEDS (Integrated Post-secondary Education Data System) Classification of Instructional
Programs (CIP) code, and COOP (Co-Operative education program) in which a student
participates in a partnership between their academic institution and an employer to obtain
practical experience through rotations of employment and course study [21]. In addition, the
Scholarship Aptitude Test (SAT) and the American College Testing (ACT) are standardized tests
used for college admissions in the United States. While the objective of both is similar, the test
structure is different, and the SAT includes separate verbal and math scores, whereas the ACT
provides a comprehensive score derived from sections on English, Math, Science Reasoning, and
an optional essay [22]. In addition, it should be mentioned that although several studies have
previously considered High School GPA in addition to, or in lieu of, college GPA- we chose to
exclude this measure since different high schools may use different scales, and therefore, the
values may be unreliable.

Ultimately, we utilize a reduced dataset specific to computing students, to apply ML algorithms to
link learning activities to learning outcomes, which in our context includes retention and
graduation. An overview of this approach is illustrated in figure 1. However, it should be clarified
that in this model, there are two paths that can be taken in Astin’s Model, either: 1) Inputs A−→
Environment B−→ Outputs; or directly via 2) Inputs C−→ Outputs. Since we do not know if there is a
greater impact of A−→ to B−→, or to go directly though C−→, we later assess if there are differences in
terms of rankings when we run the inputs and environment variables alone to predict graduation
rates, or as a combined set.

Database
To assess what variables are most important to ensuring persistence, we utilized empirical data
from the MIDFIELD dataset [21]. MIDFIELD consists of data collected from over 1.5 million
undergraduate, degree-seeking students from 19 different institutions. It is a longitudinal student
record level database, which means it includes everything that appears on students’ transcripts,
and that it contains tracking information on each student during their academic career. It
considers not only demographic student information (such as sex, ethnicity, and age), but also
academic information (such as their major, enrollment status, term and year in which the student



Figure 1: Adapted version of Astin’s I-E-O model applied to computing students to assess persis-
tence/graduation rates. Includes pre-processing of the dataset, and application of several machine
learning algorithms.

graduated, and what type of degree was awarded).

Although MIDFIELD includes students from all engineering disciplines, since we are interested
in computing students, we limited our sample to computing majors. The identified students, at
some point, were enrolled in one of the following computing disciplines: computer engineering,
software engineering, computer science, computer programming, computing and information
sciences, and/or information technology. This reduced dataset includes 53,000 students from 14
institutions. Moreover, although MIDFIELD includes data from 1988-2018, we further restricted
the dataset to students that enrolled before, or during, 2012. The reason for this pre-processing
was that by including students after this timepoint, the data might include students who enrolled,
but that had not yet finished their degree- which might skew the sample and make it appear as
though less had graduated than actually had. However, the timeframe assessed is consistent with
the definition commonly used by the National Center for Educational Statistics, which suggests
six years [23]. The pre-processing changes to ensure a subset solely of computing students,
resulted in a final reduced set with an N = 39,994, where N is the total number of students in this
dataset.

We consider the following variables from the reduced MIDFIELD: SAT math score, SAT verbal
score, comprehensive ACT score, race, U.S. citizenship status, age, gender, cumulative GPA,
terms registered, term entered, transfer status, start year, institution, CIP2, COOP, and graduation
rates. Graduation rate is used as the major outcome measure in our work. However, since it has
been demonstrated that the time it takes for a student to obtain a degree may be variable
depending on individual and environmental factors (e.g., if they had an external job during their
studies, if they studied abroad, etc.) [7, 8], we eliminate any potential bias which may arise from
including time as part of the equation. Instead, we consider graduation rate as for all students that
finished their degree.

Methods
Having missing values can impact a model’s quality when employing machine learning [24]. To
impute the data, multiple options exist, ranging from the use of the mean/median values to
replacing the absent instances with the most frequent values or zero/constant values. Our dataset
was only missing values for SAT and/or ACT scores, since high school students are not required
to complete both for college admission, and they typically take either one standardized test or the



Table 2: Measures Considered to Assess Our Algorithms’ Performance
Measure Description of What is Measured Formula

Accuracy

The performance of the model overall, in terms of how well
the model identifies relationships and patterns between
the variables. It is obtained by taking the ratio of those

observed as predicted correctly out of the total observations

Tp+Tn

Tp+Tn+Fp+Fn

Precision

Demonstrates the ability of a classification model to only
identify the relevant data points. Shows how accurate the

model is for the correct positive predictions out of the total
positively predicted observations

Tp

Tp+Fp

Recall
The proportion of positive observations which are

correct, relative to all the observations in the actual class
Tp

Tp+Fn

F1 score
Used for accuracy, it balances precision and recall

relative to a specific positive class
2(PrecisionxRecall)
Precision+Recall

other [22]. To impute our data, we grouped the data by school and then we used the average for
any students missing scores in that school.

Ultimately our goal was to understand what factors are most important in education outcomes for
computing students. To better understand what variables are critical for predicting graduation, we
utilized ML algorithms. All algorithms run, and their corresponding statistical analyses, were
managed using R version 3.6.1 in RStudio, version 1.1.456.

In order to assess the success of the ML algorithms employed, we considered several evaluation
metrics, described further in Table 2. Note that Tp refers to a true positive, Tn to a true negative,
Fp to a false positive, and Fn to a false negative. Tp is an outcome in which a model predicts the
positive class correctly, and a Tn is an outcome where a model predicts the negative class
correctly [24]. Contrarily, a Fp is an outcome in which a model predicts the positive class
incorrectly, and in a Fn, the model predicts the negative class incorrectly.

F1 score is considered particularly helpful with uneven class distributions, and considers both
false positives and false negatives [25]. Since the cost of our Fp and Fn is similar, F1 score is used
the major determinant of the algorithms’ performance, along with accuracy. However, we do
calculate precision and recall since these provide useful feedback and are required for the
estimate of the F1 score.

In machine learning, data modeling can occur using either supervised or unsupervised methods
[24]. Unsupervised learning is a technique whereby unlabeled data is applied for a model to
discover information on its own. However, supervised learning is a technique using well labeled
data, that operates under the assumption that one already knows what the are looking for. We
applied the following supervised ML algorithms to analyze our dataset:

• Decision Tree (DT): Works for input/output variables that are continuous and for those that
are categorical. However, it is important to note that DTs can be highly sensitive to small
changes in the data, resulting in greater variation in the final tree estimation [26, 27].



• Random Forest (RF): Another type of DT learner, it is called a “forest” because many DTs
are used and aggregated to produce a class prediction, and is considered “random” because
the trees are built differently. In regards to the randomness, each tree uses random samples
and random features, so that among the trees, they neither use all the attributes nor all the
instances [28–30]. Initially, it uses bagging, an ensemble technique, which combines
prediction of individual trees to make overall predictions.

• Support Vector Machine (SVM): Works by finding the ”hyperplane that maximizes the
margin between positive and negative observations for a specified class.” They are
convenient tools for detection of patterns, since non-separable features typically become
linearly separable after mapping to a high dimension feature space [31].

• Naı̈ve Bayes (NB): Assumes that each of the features assessed is conditionally independent
of one another given some class and thus, using different demographics and environmental
variables as independent features makes it computationally efficient, relatively accurate,
and good at supervised learning [27]. It is a probabilistic classifier, and thus outputs the
category with the highest probability. However, this algorithm is sensitive to data values of
zero. To resolve this issue, Laplachian smoothing can be utilized to handle categorical data,
applying a small-correction to each feature count.

• K Nearest Neighbor (KNN): Non-parametric, lazy algorithm that applies the assumption
that similar items will exist in close proximity (measured via the distance) [27].

• Logistic Regression (LR): Applies a logistic function to model a dependent variable which
is binary in nature, although, it is possible to extend with alternative options as well [24].

• eXtreme Gradient Boosting (XGBoost): Utilizes gradient boosted decision-trees working
as an ensemble. However, instead of training the models separately it trains iteratively,
working successively, so that newer models are trained as corrected or ”fixed” versions of
the prior ones [32].

These algorithms were chosen since they seemed to be the best fit (in terms applicable supervised
machine learning algorithms balanced with computational efficiency) for our particular
classification goal, using the variables from MIDFIELD. We tested different parameters for each
algorithm, to find the optimal values for our data. However, we obtained the best accuracy and F1
scores using the parameters indicated below (for the algorithms where it made sense to modify
them), to generate a predictive model for persistence/graduation:

• DT: Minsplit is the minimum number of observations that must exist in a node in order for
a split to be attempted, and we tested 20, 500, and 1000. Minbucket refers to the minimum
number of observations in any terminal node, and we tested 2, 100, and 500. Maxdepth is
the limitation on the constructed tree’s depth, and we tested 5, 6, 10, and 30. The best F1
score and accuracy was obtained using a minsplit of 20, a minbucket of 2, and a maxdepth
of 30.

• RF: Random search (which tries random values within a range), proved more effective than
a grid search. Although RF does not overfit, and the testing performance does not decrease
(due to overfitting) as the number of trees increases we did observe that using 500 trees was
optimal (testing ntree=50, 100, 500, and 1000).



Table 3: Comparison of Algorithms’ Performance
Algorithm Accuracy Precision Recall F1 Score

DT .8678 .8850 .9219 .9031
NB .8225 .8368 .9120 .8728

SVM .8527 .8528 .9420 .8952
Xgboost .7458 .7245 .9996 .8401

KNN .7538 .7587 .9259 .8340
LR .8318 .8415 .9219 .8799
RF .8827 .8870 .9448 .9150

• SVM: We applied SVM using Linear, Sigmoid, and Polynomial different kernels, and C
values of 0.01, 0.1, 1, 10, and 20. The best performance was obtained using a polynomial
kernel with a C of 20.

• NB: We obtained the same performance results with and without Laplacian smoothing.
Therefore, applying the correction to every probability estimate did not impact the success
of the algorithm.

• KNN: We tested K values of 1, 5, 10, 15, and 20 and obtained the best performance with 15.

Results
Using our reduced MIDFIELD for computing students, the sample included 22% females and
78% males. Racial/ethnic group affiliation of the students were: 72.08% White, 12.19% Black,
3.81% were Hispanic/Latinx, 0.50% Native American, and 2.49% reported as ”Other.” When
considering graduation rates for each ethnicity, we observed that the percentage of graduation
from computing fields was highest amongst Hispanic/Latinx students at 50.92%, followed by
Asian students at 50.20%, Other/Unknown students at 48.49%, White students at 47.48%, Native
American students at 37.37%, and then Black students at 33.17%. While we did not look into
why students did not complete their degrees in this particular study, it should be noted that this is
consistent with the work of others, which have previously demonstrated that computing has one
of the highest attrition rates, relative to other STEM fields [2].

First, we sought to determine of which ML algorithm best predicts student outcomes. Using the
optimal run parameters for each algorithm, we compared the accuracy and F1 results of each,
depicted in Table 3. Among the algorithms, we observed the best performance was obtained using
RF, with 88.27% accuracy and the highest F1 Score, at 91.50%. Accordingly, we selected RF, to
compare the variables, so that we could elucidate which were the most important in determining
graduation rates.

Next, we aimed to understand what indicators predict computing students’ graduation rates. To
answer this we wanted to know if there is a difference, in terms of importance of the rankings, if
the inputs and environment variables are run together, as opposed to when they are run separately.
So, using RF, we ran three different ways, using the inputs only, using the environment only, and
using both the input and environment together to predict graduation rates. RF provides the
importance of each random variable, and ranks them, using a measure called the mean decrease in
accuracy. Mean decrease in accuracy is the result of the ”out of the bag” error calculation that



Figure 2: Rankings using Random Forest with Inputs and Environments to Output
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occurs, and the greater the accuracy of the RF decreases due to excluding a particular variable, the
higher the importance of that variable. Accordingly, larger mean decreases in accuracy suggest
that in the data classification, a variable is more important [28, 33].

There were differences in the rankings depending on whether all variables were considered
together, or separately, as determined by their mean decrease in accuracy [34]. The results from
the combined RF (Inputs + Environment)→ Outputs are presented in Figure 2, and illustrate that
of all the variables, cumulative GPA was the most important, followed by terms registered and
start year. Additionally, sex had the least impact on graduation rates.

Once the variables were treated separately, using a subset of the predictor variables to yield the
categorical graduation rate outcome, the mean decrease in accuracy changed. The random forest
rankings for Inputs→ Outputs is illustrated in Figure 3, and reveals that SAT math score has the
highest importance, followed by ACT comprehensive score, and then the SAT verbal score. This
ordering is different from that observed when considering both input and environment together. In
addition, the rankings for Environment→ Outputs is illustrated in Figure 4, and although
cumulative GPA still is considered the most important overall, followed by the number of terms
registered, start year and institution swap in mean decrease in accuracy, and thus
importance.

Discussion and Conclusions
RF outperformed other algorithms, including LR, which is the traditional analytical approach in
the field of education [35–37]. As such, it was the algorithm we applied to identify which
variables are the best predictors of graduation from computing. Using RF, we considered three
different ways of separating the data, and the variables, to identify the most important factors. Not
only did each run lead to different mean decrease in accuracy values, but also, the rankings



Figure 3: Rankings using Random Forest with Inputs Directly to Output
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Figure 4: Rankings using Random Forest with Environment Directly to Output
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themselves were dependent on specific combinations of variables resulting in varying
importance.

Although it has been well proven that typically academic institutions offer students course
performance feedback through grades [38], it is critical to understanding the role that grades may
play in student outcomes. When considering (Inputs + Environment)→ Outputs, cumulative GPA
has the highest mean decrease in accuracy, at 285.98, for students’ graduation in computing
fields. Likewise, cumulative GPA still remains the most important variable in Environment→
Outputs, although the mean decrease in accuracy here is 272.41. Since it appears that this
environment variable plays such a critical role, we further analyzed the data and observed that
students’ above and below a GPA of 2.1 appears to be a major determinant. Considering that
many schools impose a minimum GPA requirement in order to obtain their degree, this
observation is in concordance with the ”C” average necessitated, and makes sense why this is so
crucial in its impact of graduation.

After cumulative GPA, for both (Inputs + Environment)→ Outputs and Environment→ Outputs,
the variable that had the next highest mean decrease in accuracy was the number of terms
registered. Results show that students who register less than five semesters (almost halfway into
their career), are more likely to withdraw from the program, even though they had the required
GPA to graduate. This corresponds with a high dropout rate for students enrolled in computing
programs, during their initial two years. As such, it suggests that to reduce attrition, we need to
better understand why students doing well enough academically do not choose to continue with



their studies in computing. Future work should look into this early time frame to perhaps include
a qualitative assessment of the experiences that contribute to this lack of persistence.

Examining the rankings of Inputs→ Outputs, SAT math score is considered the the primary
determinant. The mean decrease in accuracy at 78.78 for the SAT math score, was the highest of
the variables. This appears consistent with work which emphasizes the importance of a strong
foundation in mathematics for computing interest and success [39, 40]. Interestingly, once
separated out, the rankings for comprehensive ACT score rose in importance over the SAT verbal
score. Unlike the SAT, which solely considers Math and Verbal, the ACT test includes four
different academic skill areas: English, mathematics, reading, and science reasoning [22]. This
lends itself to the explanation that for computer science students, science reasoning skills are also
beneficial for academic outcomes. Considering that programming and computing heavily requires
problem solving through application of specific data types, operations, and functions, so that
students can perform calculations and evaluations to write, test, and then debug their code [39]- it
makes sense that having a strong foundation in reasoning could be beneficial. However, we
should caution that although we present what factors the analysis revealed to be most salient, we
cannot infer direct causality without additional study.

This work raises several questions that future research should consider. For example, are the
rankings of importance different based on personal identification with a particular gender, race or
ethnicity? Likely self-identification with particular groups lends itself to unique importance of
different factors. Moreover, although here we present a new methodology to the field (i.e.,
machine learning), how does this compare to other techniques? It might be beneficial going
forward to also compare the algorithms used to more conventional methods on the same dataset.
Alternatively, we could compare these same machine learning techniques on different datasets to
obtain a measure of what works best overall.

Apart from the potential future directions discussed, there are several other factor-specific
additions that would benefit the MIDFIELD dataset. While MIDFIELD does not include
information about the availability and use of study and support resources (i.e. tutoring, mentoring,
etc.), collecting information on these factors could provide interesting insight. In addition,
information about what advanced placement classes were taken in a subject, or other more
formative events could provide useful data to understand students’ prior experiences. It should
also be noted that a limitation of this work is that ideally we would want to convert all ACT/SAT
scores to use the same scale. However, MIDFIELD does not report the year these standardized
tests were completed. Accordingly, since the scale changed over different years, we are unable to
infer exactly which each student used when completing their exam. Going forward, it would be
valuable to collect this information and also to adjust the method for imputing these.

These research findings have important implications for computing students, and in understanding
what qualities and characteristics before and during students’ academic careers are the most
important. Based on our work, cumulative GPA is critical, and a student’s SAT math score and
comprehensive ACT score may also play a pivotal role in predicting students’ graduation from a
computing field. Therefore, considering these rankings could prove beneficial to academic
administrators, faculty, and other key stakeholders, to help inform and guide discussions regarding
where to focus efforts to help students achieve academic success. In addition, seeing that not all
ethnic/racial groups are equally represented in computing graduation, it draws attention to the



necessity of working to equalize representation in computing programs for all students.

Furthermore, employing machine learning techniques represents a novel means of exploring
computing education data. Going forward, the application of supervised and unsupervised
algorithms can assist researchers in uncovering novel relationships and in creating adaptive and
scalable models. Whether simplifying the task of identifying students with leadership experience
from a larger set of University application documents, or predicting the growth of programs based
on existing information, the possibilities with ML are endless.
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