
AC 2010-1701: LEVERAGING THE POWER OF JAVA IN THE ENTERPRISE

Javad Shakib, DeVry University

Mohammad R Muqri, DeVry University

© American Society for Engineering Education, 2010

P
age 15.842.1

Leveraging the Power of Java in the Enterprise

The ability to acquire, manage and utilize information has never been more instrumental.

Without doubt, technology has been the most influential force behind the growth in economy.

The Business is placing greater emphasis on information technology. Traces of information

technology can be found from sales, to marketing, to inventory, to R&D. An integral component

of technology is that it is highly dynamic. Technology changes at a rapid pace and the rate of

change increases as well.

Enterprise applications require much more sophistication, because they have become more

complex and larger than before. Even isolated systems are no longer absolutely isolated.

Java has emerged as the premier language for development of network-ready applications. The

Java language and its extensions, provide a complete and robust environment for creating

mission-critical and enterprise-wide applications. At the premise of network-centric computing,

the web server becomes the focal point for enterprise applications. Java has a number of server-

side capabilities which makes it an ideal fit for this environment.

Introduction

The ability to acquire, manage and utilize information has never been more instrumental.

Without doubt, technology has been the most influential force behind the growth in economy.

The Business is placing greater emphasis in information technology. Traces of information

technology can be found from sales to marketing, to inventory, and to R&D. An integral

component of technology is that it is highly dynamic. Technology changes at a rapid rate and the

rate of change is increasing.

The Java programming language is one such instrumental change that has taken the industry by

storm. Its introduction was followed by a huge growth in the computer industry. It is ironic, that

such a success would be caused by a failure. Java was a descendent of a failed project at Sun

Microsystems in its attempt to get into the interactive TV business. From one perspective, Java

was at the right place and at the right time. The World Wide Web was just emerging as a

technology that may finally allow every computer to communicate with others. The problem was

lack of interactivity. Java did that in the form of shiny and multi-media rich applets.

The Enterprise wasn't very impressed, however. Enterprise applications require much more

sophistication. Partly due to the World Wide Web phenomenon, the network became an integral

part of the enterprise. Corporate LANs turned into WANs. Internet, Intranets, and Extranets

became commonplace. The growth of the networks shifted the strategy for much of the

enterprise. For one thing, the enterprise became more complex and larger than before. Isolated

systems were no longer isolated. This paper begins with programming language comparison and

delves into network centric computing, issues in enterprise development, and leveraging the

power of java in enterprise.

P
age 15.842.2

Programming Language Comparison

There is a plethora of programming languages and new ones are being created on a constant

basis for a number of applications. In order to provide some general guidelines for someone who

wishes to decide which popular object oriented language(s) to learn and make a judicious

selection for a certain application the following table is presented to help make evaluation and

comparison depending upon the application.

Visual

Basic
C++ Java C# Perl

Object-

Orientation

Ample

Support
Yes Yes Yes

Add-On /

Hybrid

Static /

Dynamic

Typing

Static Static Static Static Dynamic

Inheritance None
Yes

Multiple

Yes

Single class,

Multiple

Yes

Single class,

Multiple

Multiple

Method

Overloading
No Yes Yes Yes No

Operator

Overloading
No Yes No Yes Yes

Garbage

Collection

Reference

Counting
No JVM Managed Yes

Reference

Counting

Class

Variables /

Methods

No Yes Yes Yes No

Access

Control

public,

private

public,

protected,

private

public, protected,

private

public,

protected,

private,

internal

None

Multithreadi

ng
No Libraries Yes Yes No

Regular

Expressions
No No Standard Library

Standard

Library
Built-in

Language

Integration
C C, Assembler

C, Assembly,

some C++

All .NET

Languages
C, C++

Built-In

Security
No No Yes Yes Yes

P
age 15.842.3

Network-Centric Computing

A new paradigm had emerged which considered the network as an integral portion of any

computing environment and with that great emphasis was placed on the server. The traditional

client/server architecture was modified. The network-centric paradigm allows the client to be

very thin. The client could be a cellular phone. That is because, the server not only holds the

data, but it also hosts the applications. The client is merely a display device or gadget with some

processing power.

Java is a natural fit for this paradigm. The Java virtual machine could be embedded in small

devices which could then interact with application servers. Such servers can be deployed in a

traditional client/server environment or the network-centric paradigm discussed above.

Issues in Enterprise Development

So far we have used the term enterprise computing in a very generic manner. Characteristics of
enterprise computing can be classified into four distinct categories which are discussed below.

Applications

Applications form the soul of the enterprise. Users interact with the enterprise through the
applications. Applications include legacy, more conventional client/server, and desktop.
Unfortunately all classes of applications are subject to their own problems. For example, it is no
secret that legacy applications are extremely hard to maintain and their integration into the
enterprise is somewhat of a challenge. Many client/server applications suffer from
incompatibility problems. This incompatibility is evident both through the languages and
operating systems on which these applications function. The incompatibility problem is
magnified because of the close interactions among applications made possible by advances in
computer networking. Consider a typical department that has chosen a word processing package
as its standard incompatibility problems would be minimal for documents shared among the
employees in the same department. However, due to the growth in the network that same
department must interact with the rest of the enterprise for everyday business functions. Since
the rest of the enterprise may not be using the same word processing package, incompatibility
does become a problem.

Infrastructure

Infrastructure forms another important aspect of enterprise computing. The complexities of an

enterprise infrastructure are not something everyday users appreciate, but as soon as a glitch is

developed those very same users are handicapped in getting their work done. The same way that

desktop applications may prove to be incompatible, server applications and server configurations

can vary throughout an enterprise. Desktop clients are part of the infrastructure and as the debate

on total cost of ownership has shown, desktop maintenance throughout the enterprise is a costly

endeavor. This is partly due to the complexity all of the applications themselves which in turn

causes the desktops to become more complex.

P
age 15.842.4

Data

By data we refer to the large collection of raw data stored in many databases throughout the
enterprise. There is incompatibility in the format and nature of this data. This in turn causes
incompatibility among the many applications that access such data. While it is comprehensible
that the raw data is stored in different formats, a layer must exist to provide a uniform "business"
view of the data. In other words, the business meaning of the data must be used same throughout
the enterprise. One problem that most enterprise applications face is data access both at the "raw"
level and at the higher "business" levels.

Support

 Finally, any enterprise must be supported in order for it to stay operational. As the complexity of

the applications increase, the support issues become more complicated. Ask any CIO about their

latest "upgrade" effort and they will surely come up with a few good stories. With fat clients

scattered throughout the enterprise, support resources must also be dispersed which effectively

adds to the cost. The complexity of support issues is really a direct function of the complexity of

the enterprise itself. If we can "simplify" the enterprise, then supporting it ought to simplify as

well.

Java in the Enterprise

Let's continue to discuss some more ways Java can aid the enterprise at a higher level. Java shifts
much of the computing burden to servers. It encourages deployment of a variety of servers for
specific tasks. Data continues to be stored in database servers. Applications are mostly stored in
application servers. Such servers can either be used to download all or part of the application to
the client or to run the application themselves. Web servers continue to be a source of interactive
communication. Boot servers are responsible for making sure thin clients have an operations
system ready when they are turned on. File, Mail, Print, and Directory servers continue their
traditional roles in the enterprise. Java computing encourages a cohesive strategy for bringing all
of the above under one umbrella otherwise known as the corporate network. Management and
maintenance of much of enterprise operations are simplified by this massive shift to servers.
Many organizations that have developed and deployed intranets are already experiencing the
rewards for this strategy.

On the client side, Java computing relies on thin clients to achieve its overall objectives. While

fat clients are necessary for certain operations, many times, such clients are used to perform a

single operation. Under these conditions, the cost of a full-blown client is not justifiable. Java

computing encourages design of server-centric applications that are component-based for easy

development and deployment. It also encourages usage of a network-centric paradigm for

applications.

Java provides a very complete and unique server-based approach to computing. From Enterprise
JavaBeans to Java Database Connectivity and Remote Method Invocation, Java has what it take
to be a premier enterprise computing environment. From an architectural point of view, the
server side of Java is perhaps its greatest contribution to enterprise computing. The following is

P
age 15.842.5

an overview of some specific Java technologies that are useful for development of server-based
application.

Java Database Connectivity

Java Database Connectivity (JDBC) is a set of API and a specification for connecting to database

systems through Java. A uniform view of the data and method for accessing the data is essential

in an enterprise environment JDBC delivers on this point. The specification requires a JDBC

driver for each data source (Oracle, Sybase, Informix, etc.) The JDBC API is then built on top of

that driver.

One major benefit of JDBC is that applications written based on the JDBC API are considered

database independent. ODBC brought the same degree of flexibility to the Windows operating

system. The major drawback of JDBC is that it is a least common denominator. Some database

specific operations and syntax is not available through JDBC. There is also a performance

penalty, but optimized drivers and faster processing speeds (especially on the server) seem to

reduce the performance impact.

Java Servlets

Servlets are the equivalent of applets except they reside on the server. While CGI is still the most

popular mean of creating Web applications, its deficiencies are well known. The partial solution

to the CGI dilemma is server-specific APIs such as NSAPI and ISAPI; however, they too have a

deficiency. In the enterprise, we strive to create systems that are compatible. Server-specific

APIs lack in the compatibility and portability category. Java servlets
6
 are a uniform standard API

for creating web-based applications. The technology is extensible, however, and could be used

for development of any kind of server.

Servlets run in the same process space as the Web server. Servlets have access to the name-value

pairs passed from HTML forms. After initialization, the servlet can interact with other systems

and generate appropriate output. From an efficiency point of view, servlets are much more

efficient than CGI. Additionally, servlets can utilize all the aspects of the Java environment many

of which are unavailable to other languages such as Perl.

RMI and Distributed Objects

Data access and Web servers are integral parts of enterprise computing. Right up with them are

distributed objects and all the programming benefits they bring. Distributed objects are built

upon the idea of component-based software. The idea is rather then developing one "large" and

complex application, one should focus on the individual components. A distributed object

environment such as Common Object Request Broker Architecture (CORBA) or Remote

Method Invocation (RMI) can then be used to link these components together.

P
age 15.842.6

Java is object-oriented in nature and that's a major plus compared to procedural methods of

distribution such as RPC. Also, Java has a native object-to-object communication mechanism

called Remote Method Invocation. RMI allows Java objects to invoke methods on other objects

residing on other machines. Such integration heavily depends on the network and is a major

aspect of network-centric computing. Your application object can simply make a call to an object

residing on the database server as if it were a local object. RMI makes this level of interaction

seamless.

Enterprise JavaBeans

JavaBeans is a component model for developing Java clients. While not mandatory, most Beans

are developed and used in visual contexts. For example, buttons, dialog boxes, and menus can be

Beans. Java on the server took a major leap forward with the introduction of Enterprise

JavaBeans (EJB). EJB does for the server what JavaBeans does for the client. EJB
3
 components

are strictly server-based and thus must support server operations such as transactions,

persistence, distributed services, multi-tier operations, and security.

The idea behind EJB is to build a server component that can be used for other applications. EJB

also puts an emphasis on distributed objects since distributed objects are a source of component-

based software.

Enterprise Web Servers

A Web server is important part of a multi-tier application. Internet Information Server
1
 (IIS) is a

group of internet servers (including a Web or Hypertext Transfer Protocol server and a File

Transfer Protocol (FTP) server which comes with additional capabilities for Microsoft’s

Windows 2000, XP, Vista and NT Server operating systems. Microsoft Personal Web Server

(PWS) is a scaled-down version of IIS for a personal computer (PC). The Apache Web Server is

an open source product that runs on Unix, Linux and Windows platforms.

Sun Microsystems recently released GlassFish
4
 Enterprise Server v3 which includes many

contributions from Java and open source community members. It provides customers with an

open source based server solution which endeavors on reducing deployment complexity and will

eventually enable organizations to create and deploy modern Web applications and leverage the

power of the full Java EE6 platform for enterprise applications. The added bonus would be

simplified programming model and enhanced productivity which will trigger the rapid

development and significantly decrease the time-to market.

Java Naming and Directory Interface

The Java Naming and Directory Interface (JNDI) is part of the Java platform, providing

applications based on Java technology with a unified interface. This interface provides a generic

mechanism for Java applications to access multiple naming and directory services in the

enterprise. Several standards are supported including Lightweight Directory Access Protocol

P
age 15.842.7

(LDAP). LDAP can be defined as an internet protocol that email and other programs use to look

up information from a server.

Directory services are important in any enterprise environment. A central directory allows

enterprise managers to effectively address issues such as authentication, bill-outs, and control

application access. Statistical logs can also be used to assess how much different applications are

being used which would help in planning for future growth.

Java Message Services

One of the most prevalent message-based middleware is MQ Series from IBM. Message oriented

middleware is an effective technology for connecting applications where real-time processing is

not always available or not desired. Transaction-oriented systems typically fall into this category.

Banking transactions, hotel and airline reservations systems typically utilize a message oriented

middleware as part of their architecture. For example, the airline reservation systems must

respond in real-time whether a ticket is available or not. It does not necessarily have to print the

ticket or perform the billing in real-time. So as the reservations are confirmed, they are queued

up for the printing and billing systems.

Message-oriented middleware is central to many enterprise applications and Java recognizes this

by providing the Java Message Service (JMS). This service allows Java applications to interface

with a variety of message-based middleware systems including various aspects of push/pull

technologies.

Java Definition Language

In any enterprise environment, typically there are a number of systems that must interact with

each other. These systems and applications operate under different environments and their

hardware and software architecture are different As a result, system integration becomes an

important function of any enterprise architecture. Just as English is known as the standard

language around the world, a common architecture is needed to standardize the way various

systems can communicate and interact with each other. One such standard is CORBA. The

specification has wide industry support. When you make your applications and services

CORBA-compliant, then those services can be used by any other CORBA-compliant application.

New systems can be designed with CORBA in mind and existing legacy applications can be

"wrapped" with CORBA.

CORBA achieves its common interface via OMG IDL (Interface Definition Language). IDL is
not a programming language. It just describes interfaces between distributed components. It
does not depend on any particular programming technology. As such, interfaces are defined in
IDL and implemented in various languages. From IDL interface descriptions an Object Request
Broker (ORB) product automatically generates code in language of your choice to effect the
“glue” that connects the components and manages their intercommunication. Thus Java IDL
allows you to do your implementation in Java. As a result, services written in Java can instantly

P
age 15.842.8

become available to the enterprise via their CORBA interface. In a heterogeneous environment,
such capability is a must.

To avoid becoming too much dependent on a lone vendor, enterprises often prefer solutions that
have broad industry acceptance or are open source solutions. Popular choices today include
Common Gateway Interface (CGI) programs, mod Perl programs, and PHP for page authoring.

CGI programs allow the Web server to get information from other applications before
responding to the browser. The mod Perl plug in for the Apache Web Server integrates Perl code
with the Web server, so programmers can write extensions in Perl. Many developers use mod
Perl as a replacement for the CGI interface because it addresses some of CGI's limitations.
Creating CGI programs, mod Perl scripts, and writing beans or custom tag libraries requires

familiarity with Java programming language. As such we can say that JSP technology essentially

enables a tiered development methodology. The salient differences are summarized in the table

as follows:

JSP

ASP

Perl/CGI

Mod Perl

Scripting

Language
Java

JScript,

VBScript
Perl, C Perl

Memory Leak

Protection
Yes No Yes No

Web Server Multiple

Microsoft IIS

or Personal

Web Server

Any Web

Server

Apache Web

Server

Portability across

servers/platforms
Yes No No No

Reusability/Modul

ar Code
Yes No No No

Concurrent Access

support without

separate processes

Yes Yes No Yes

 Conclusion

The network-centric computing paradigm places great emphasis on the enterprise server. It also

leads to heterogeneous environments where interoperability and communication among various

systems becomes an issue. The Java language is a prime candidate for enterprise development

since it is object-oriented and network-aware. The key to its power is write-once, run anywhere

model. The Java Runtime Environment (JRE) translates java code into machine instructions that

run on virtually all of the platforms. Extensions and enhancements to the Java language provide

a variety of services which are integral to any enterprise language. These services include

P
age 15.842.9

transaction processing, CORBA support, middleware interfaces, and distributed processing

capabilities. Enterprise servers not only provide the foundation to develop and deploy web

services but further enhance value added services for management, monitoring, diagnostics,

clustering, transaction management, and high availability of mission critical services.

BIBLIOGRAPHY

1. Deitel, H., et.al., Internet & World Wide Web How to program, Second Edition, Upper Saddle River, NJ:

 Prentice Hall, 2002.

2. Anderson, R. “The Long and Winding Road to Web-Based Apps.” Network Computing 19 March 2001: 79-84.

3. Haefel, R., Enterprise JavaBeans, Fourth Edition, O’Reilly, June 2004.

4. GlassFish Community, https://glassfish.dev.java.net/ (accessed January 2010).

5. Sun Developer Network, http://java.sun.com/products/jndi/index.jsp (accessed December 2009).

6. Java Server Pages, White Paper, http://java.sun.com/products/jsp/jspguide-wp.html (accessed December 2009).

P
age 15.842.10

