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Most engineering students are quite familiar with least squares regression analysis of 
experimental data on Y versus X plots using EXCEL or other similar spreadsheet software 
programs. They use the reported coefficient of determination, R2 , as a measure of the “closeness 
of fit”.  Most chemical engineering students, however, are not well versed enough with the 
concepts of modern day computational techniques for finding the least squares solution or with 
the application of linear algebra for determining the best solution to overdetermined linear 
systems of equations.  

For chemical engineers these systems commonly result from material balance analysis of 
multicomponent flow through processing equipment.  Take the very simple example of a Prism 
membrane system used in the senior lab course at the Ralph E. Martin Department of Chemical 
Engineering at the University of Arkansas shown in Figure 11.  It is used for separating a 
pressurized air stream into an oxygen rich stream and a nitrogen rich stream.  

 

Figure 1  Prism Membrane Separation System 
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Traditional material balance analysis would involve obtaining a unique solution by writing an 
overall balance and an oxygen component balance over the membrane system:   

    (1)*F = (1)*Np + (1)* Nnp      (eq. 1) 

(0.21)*F = (YO2)p* Np + (YO2)np* Nnp     (eq. 2) 

or, alternatively, an overall balance and a  nitrogen component balance,  

   (0.79)*F = (YN2)p* Np + (YN2)np* Nnp     (eq. 3) 

but not all three because the component balances sum to give the overall balance and therefore 
all three equations are not strictly independent.  Furthermore, traditionally the mole fractions, y, 
of each stream are forced to sum to 1.0.  However, when each flow rate is individually 
determined by flow meters and when each mole fraction is determined individually by sensors 
(except for the inlet air), the student is faced with obtaining the “best” solution to the 
overdetermined system of equations that has uncertainty introduced due to the inaccuracy of 
instrumentation.   

Consider the following example data taken during an experiment using the equipment above: 

F- Total molar flow rate of air through the system as measured by the dry gas meter,1.98 
mole/min 

 Inlet air composition certified by the air supplier as 21 mole% O2 and 79 mole% N2 

 Np - Molar flow rate of permeate exit stream as measured by the rotameter, 0.150 
mole/min 

Nnp -Molar flow rate of the non-permeate exit stream as measured by the rotameter,1.86 
mole/min 

(Yxx)p –Component mole fraction of the permeate stream measured by sensors as 42 
mole% O2 and 60 mole% N2 where xx represents either O2 or N2 

(Yxx)np - Component mole fraction of the non-permeate stream measured by sensors  as 
19 mole% O2  and 84  mole % N2 where xx represents either O2 or N2 

 Thus, an overdetermined system of linear equations is formed, having matrix format represented 
by the classical Ax=b system of linear equations (eq. 4).  The symbol A is an m by n matrix 
consisting of the coefficients of the Np and Nnp flow streams in each equation; x is an n-vector 
representing the molar flow rates variables themselves (F, Np, Nnp).  The m-vector b represents 
the total and individual component molar flow rates of material flowing through the system.    
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 1         1          1.980   1.980  
 0.42   0.19           .   (x)   =   0.417 0.416         eq. 4 
 0.60   0.84   1.652 1.564 
 

          A        .    (x)  =            b 
 
Several items need to be noted with respect to the system of equations represented by equation 4.  
First, one notes that matrix A, the mole fractions of the permeate and the non-permeate streams 
do not sum to one due to inaccuracy of the compositional sensors.  Secondly, b presents two 
different column vectors representing two different modeling approaches for determining the 
total amount of each component, oxygen and nitrogen, flowing through the system. The first 
column vector in b denotes the total flow of each component by assuming that both permeate and 
non-permeate stream flow meters are accurate as well as each compositional sensor. The second 
column vector in b represents the total component flows by assuming the feed dry gas flow 
meter is accurate and assuming the composition of atmospheric air to be 79% nitrogen and 21% 
oxygen.  Further, note that in this case the only significant difference between these two 
modeling approaches shows up in the total nitrogen flow. 

The least squares type problem may be formally defined mathematically by Datta2 as finding the 
n-vector x such that the norm of the residual vector,  || Ax-b ||2 , is a minimum.  This is 
synonymous to saying the sum of the squares of the individual residuals is a minimum.  This 
technique was first published by A. M. Legendre in 1806 although Carl Friedrich Gauss actually 
used it in astronomical calculations as early as 17973. 

Solving equations 1 and 2 simultaneously, then equations 1 and 3 simultaneously, followed by 
simultaneously solving equations 2 and 3, results in differ values of  Nn  and  Nnp .  Table 1 
presents the resulting flow rates and each respective residual using the first column vector of b.   

Table 1 Simultaneous Pair-Wise Solutions to Equations 1-3 

          Equations 1 & 2      Equations 1 & 3        Equations 2 & 3   Measured  Values 

Nn  0.177   0.124   0.152   0.150                                        

Nnp    1.802   1.866   1.858   1.860 

∑ Residuals* 0.031   0.018    0.030   0.030 

*|| Ax-b ||2 

The values of the permeate flow rate varies by up to 42%, while the value of the sum of the 
residuals varies by up to 72%.  Therefore, the question arises as to how to determine the “least 
squares” solution to the above overdetermined system of linear equations, i.e. minimize the sum 
of the residuals to determine the best value of Nn  and  Nnp.  Linear algebra offers a variety of 
methods for doing this, each one having their individual advantages and disadvantages 
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depending on such factors as computer time (cost), precision required, conditioning of the 
system of equations, etc.  The method used for the simple example of this paper is known as the 
“normal equations” solution resulting in the unique least squares solution to the original system 
of equations provided the matrix, A , has rank of n, which it does.     

This method involves left multiplying through by AT and then using a fundamental theorem of 
linear algebra which states that  

x  =  (AT A)-1 AT  b                                                     (eq. 5) 

is the unique solution for which we are looking. 

MATLAB is a readily available and a convenient computer language for making such matrix 
algebraic manipulations4.  The MATLAB output for the example discussed above is shown 
below: 

A =  1.0000e+000  1.0000e+000 

4.2000e-001  1.9000e-001 

6.0000e-001  8.4000e-001 

 

b = 1.9800e+000 

4.1700e-001 

1.6520e+000 

Answers returned by MATLAB for values of x are: 

Nn   =  1.2395e-001 

  Nnp =    1.8663e+000 

with the sum of the residuals = 0.01763 

While the least squares solution is nearly the same as solving equations 1 and 3, it does a better 
job of satisfying all three equations than any of the other solutions obtained by simply solving 
any 2 of the 3 equations.  The least squares solution for the second column of b is 

Nn   =  2.7128e-001 

  Nnp =    1.6898e+000 
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with the sum of the residuals = 0.03241.  And finally, the least squares solution for the 5 
different equations is 

Nn   =  1.9458e-001 

  Nnp =    1.7790e+000 

with the sum of the residuals = 0.06288.  One might argue the merits of one model over another, 
for example, the least squares solution for the first column of b satisfies all three equations better 
than solving equations 2 and 3, but the solution to equations 2 and 3 gives a solution which is 
closer to the measured values.  But in the measured values, the overall balance is violated much 
more than with the least squares solution.  Which is “more correct”?  Is there an experimental 
error in the measured values or the measured rotameter solution?  Which right hand side model is 
better?  Since one can compute a best approximate solution to an overdetermined system, one 
can include competing and even inconsistent models as components (sets of equations) of the 
least squares model. 

So, hence the title “linear algebra is your friend”.  Much more complicated problems exist with 
much larger matrices which require careful consideration of the method used for the least squares 
solution. An example of a much larger system of equations would be the modeling of a simple 
flash vessel calculation that separates a compressed liquid stream comprised of more than 100 
components into two lower pressure vapor and liquid streams.  

The least squares problem always has a unique solution as long as the columns of A are linearly 
independent.  If the columns are dependent, then there are infinitely many solutions.  In the case 
that the columns of A are close to being linearly dependent, sensor inaccuracies (or the 
computer’s rounding errors) can make it difficult or even impossible to compute an accurate 
solution.  In this case one can turn to alternatives to the normal equations approach which are 
more robust, but more costly in terms of computer time.  The normal equations approach to 
solving an m by n LS problem requires approximately mn2 +n3/3 floating point operations 
(FLOPS).  The standard alternative to this approach, the Householder QR factorization, requires 
about 2mn2 – 2n3/3 FLOPS, but solves a wider class of problems.  The Modified Gram-Schmidt 
QR factorization requires about 2mn2 FLOPS and is as robust as the Householder approach.  The 
“Rolls-Royce” of LS methods is based on a singular value decomposition (SVD) of A, which 
requires about 2mn2 + 11n3 FLOPS.  These techniques are standard fair in software packages like 
Matlab, SAS, Mathematica, Maple, etc, and do not require any special expertise to use.  If the 
problem is quite large, then memory requirements and/or computer time may allow no choice but 
the normal equations approach, but otherwise the Householder QR is popular as a good balance 
of speed and robustness. 

Every engineer need not be an expert in linear algebra computations but every engineering 
curriculum should include a fundamental course in linear algebra so that the engineer is aware of 
its capabilities. This will allow engineers to take advantage of the expertise available when 
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applicable.  Again, these calculation techniques are currently in use in software and process 
simulators readily available for use by the process engineer. However, the engineer needs to have 
at least a rudimentary knowledge of the principles behind these calculations. 
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