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Linear Model Estimation of Nonlinear Systems  

Using Least-Squares Algorithm 

 

Abstract 

This paper presents utilizes Least-Squares Algorithm to obtain more accurate linear 

models of nonlinear systems using parameter estimation. This approach generates an 

optimal linear model which is valid over a wide range of trajectories and converges to the 

desired steady-state value with no errors unlike the existing techniques. The proposed 

technique is very efficient and does not require storing the data. Therefore, it can easily be 

used and implemented with limited resources for undergraduate curriculum especially in 

underdeveloped countries.  Most available techniques for linearization of nonlinear system 

are only valid about the operating point; furthermore, the knowledge of the operating point 

is required. The advantage of proposed technique is that the linearized model is not 

sensitive to the operating point; the estimation only requires the order of the system not the 

operating point. A physical example will be giving to illustrate the linear model of jet 

engines nonlinear system. 

 

Introduction 

 

It is well known that the standard control design techniques are generally developed for 

linear systems. However, most practical systems are nonlinear in nature. Furthermore, any 

derived technique for a particular nonlinear system may not be applicable to other nonlinear 

systems due to their complicated dynamics. Therefore, in recent years much work has been 

done in developing proper schemes to obtain a good linear representation of these physical 

systems to utilize the well-developed linear theories
1
, especially, in designing controllers 

for multivariable systems and their associated applications. Emphasis on this type of work 

has resulted from a desire to obtain improved system performance over a wider operating 

envelope. 

A particular method used to linearize a nonlinear system about an operating point is the 

“offset derivative”. This technique makes use of the method of finite difference to 

approximate partial derivatives of a Taylor series expansion of the nonlinear state equations 

about a nominal operating point or trajectories
1
. A linearized model obtained via the offset 

derivative technique is valid only for a limited range of operation and often only at the 

operating point for systems with strong linear characteristics. More importantly, another 

source of error due to the linearization process is the inability of the linear model to 

converge to the expected steady-state values. Thus, some modification of the input Jacobian 

matrix
1 

is necessary to eliminate this steady-state error
2
. This leads to the formulation of a 

technique to generate an optimal linear model which is valid over a wider range of the 

trajectories and converges to the expected steady-state value, without modification of the 

input Jacobian matrix. This can be accomplished by estimating the elements of Jacobian 

matrices using a recursive identification technique
3
. In what follows, the Jacobian 

estimation is discussed. 
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Estimation of Jacobians  

 

Let us represent a nonlinear system by the following vector-matrix state equations: 

 ̇ = f[x(t), u(t), t], and y(t) = g[x(t), u(t), t]      (1) 

Where x(t) represents the   1 state vector, u(t) is the   1 input vector, f[x(t), u(t), t] 

denotes an   1 function and the output, y(t), is 1   vector. In general f is a function of 

state vector and the input vector. It should be clear that no single linear model can 

accurately represent the system because of its wide operating range and nonlinear 

characteristics. At an operating point the system is assumed to be time invariant; thus, the 

linear model of equation (1) may be written in vector-matrix form. 

  ̇ =      +   u,  y =   x +   u                  (2)  

Where J, G are the state Jacobians and C , D are input matrices. 

In estimation of Jacobians approach the simulation package uses a recursive 

identification algorithm to directly estimate the Jacobians J and G. The simulation package 

only has access to derivative evaluations at each timestep and provides as an output the 

updated system states. The only information that the simulation package requires is the 

order of the system, the desired timestep and an initial guess of the Jacobians J and G for 

the estimation process. The algorithm then tracks any changes in the Jacobians J and G to 

estimate the best fit parameters of the model. 

In some situations off-line identification may be impractical or impossible; e.g., where 

the properties of the system are time-varying, or where it is impossible to perform separate 

identification (adaptive applications), it is necessary to identify the system in a fairly short 

time. This type of identification with no special input is referred to as “on-line” 

identification and does not require storing of all the data. This is due to a recursive 

algorithm being used for adjusting the estimates of the parameters after each sampling time. 

Clearly, the amount of computation required for updating the parameter that is the model 

adjustment is only a fraction of sampling time. 

The most common form of on-line identification algorithm is where the current parameter 

estimate,  ̃k, is computed in terms of the previous estimate,  ̃k-1, as follows: 

 ̃k =  ̃k-1 + Gk-1 Φk-t ek                                                                                                                                                                                       (3) 

Where  ̃k indicates the parameter estimate at time k, Gk-1 indicates an algorithm gain 

(normally a matrix), Φk-t designates a regression vector containing selected elements 
from     ,      ; t is an integer and ek  is the modeling error created by using the 
estimated   ̃k-1. Depending on the actual meanings of Gk-1, and ek, the algorithm can have 
a variety of different forms4. 

 A wide class of linear and nonlinear systems may be expressed by a model of the 
following form called Deterministic Auto Regression Moving Average (DARMA model)4  

yk =  Φ   
                (4) 

where yk is the system scalar output at time k, Φk-1 is a linear or nonlinear function of 
the output sequence {yk-1, yk-2, …} and the input sequence {uk-1, uk-2, …} in vector forms, 
and    denotes a parameter vector (unknown). 
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A simple example is a first order DARMA model 

Yk = -ayk-1 + buk-1  

Where, Φ   
 = [-yk-1, uk-1], and    

 
 = [a, b] 

With these notations, the Least-Squares identification algorithm is now introduced. 

Least-Squares Algorithm 

The standard Least-Square algorithm4 is given as; 

 ̃k =  ̃k-1 + 
          

       
           

 [yk -     
  ̃k-1],    k ≥ 1  (5) 

Pk-1 = Pk-2 -  
              

      

       
           

  ,     k ≥ 1    (6)  

With initial estimate,   
  , given and P-1 is any positive definite matrix P0 . 

 A potential problem with the normal Least-Squares algorithm is the gain reduces 
drastically when the covariance matrix gets small after a few iterations because of its 
rapid initial convergence rate. This could be overcome by building some simple logic 
in the identification algorithm to reset the P matrix at various times when the 
parameters are experiencing an excessive change. This has the effect of reconstructing 
the algorithm while maintaining the overall convergence rate. This resetting may be 
described as follows:   

 ̃k =  ̃k-1 + 
          

       
           

 [yk -     
  ̃k-1], P-1 = M0I; M0 >0 and I is the identity matrix  (7) 

Let the sequence Zs = {k1, k2, k3, ….} be the times at which resetting is done; then for k 
not belonging to the sequence Zs a normal recursive Least-Squares is used to update 
the parameters: 

That is,  

Pk-1 = Pk-2 -  
              

      

       
           

         (8) 

Otherwise, for k = ki 𝛆 {Zs }. Pk(i-1) is reset as follows: 

Pk(i-1) = Mi I,  where 0 < Mmin ≤ Mi ≤ Mmax < ∞ 

 Even though, the algorithm has been developed for tracking time-varying systems, it 
has been shown that the algorithm can retain its convergence properties when used in 
time-invariant and nonlinear systems as well. 

 The formulation of Jacobians estimation can be performed as follows: 

Assume a nonlinear system of the from; 

 ̇ = f(x, u)          (9) 

The following definition can then be made: 

  ̇k = Jp xk + Gp uk         (10) 

The unknown parameter matrix; 
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   k-1 = [   
       

   ]T         (11) 

the regression vector; 

    
 = [   

       
  ]         (12) 

And the estimated model is then 

  
 ̃̇ =     

   ̃k-1           (13) 

Where; x is an n-dimensional state vector, Jp and Gp are     and     (the “best-fit” 

state space model) matrices,   is (      , and Φ is an (n+m)-dimensional vector. 
The least squares algorithm with covariance resetting can now be used to estimate the 
Jacobians, Jp and Gp (the unknown parameters) in the following manner  

 ̃k =  ̃k-1 + 
          

       
           

 [  
 ̇-   

 ̇̃  ]        (14) 

Where  

   
 ̇̃  =     

  ̃k-1  and  Pk-1 = Pk-2 -  
              

      

       
           

          (15) 

with initial estimate  ̃0 and P0 given. In the parameter identification scheme, the following 

assumption is made. 1) The parameters of the system are slowly time-varying but the 

variation speed is lower that identification speed. 2) Measurement noise is negligible. 3) 

The state variables xk and  ̇k of equation (10) are measurable.  

The formulation of this technique is easily achieved by the block diagram of Figure-1.  

 

 

  Figure-1 Jacobian Estimation 
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Simulation using physical example 

As an illustrated example of the linear-model generation procedure, a nonlinear model is 

studied to show how the proposed method may deal with large negative eigenvalues of 

varying magnitude combined with complex eigenvalues. 

Third Order Turbojet 

 The nonlinear system used in this study is the third order stiff nonlinear model of 

Brennan and Leake turbojet engine model described by the following nonlinear differential 

equations
5
. This third order model is obtained by reducing the complexity of a larger system 

using proper linearization and approximation.  

 

T3 = 0.64212 + 0.35788N
2        

(16)  

  
̇ = 1.3009N – 0.13982[  

  – √(    .        .        ]   (17) 

   

  
 = (0.93586 

  

  
 + 31.486)  

̇  + 21.435  
̇ T3 – 53.86 

  
 

  
                                             (18) 

   

  
 = 37.78   

̇  - 38.448P4 + 0.66849   
̇         (19) 

  

  
 = (

 .   

 
 (

  
 

  
 -  

̇    )                                            (20) 

 

where P4 is Combustor Pressure, ρB is Combustor Density, N is Rotor Speed,    
̇  is 

Compressor Discharge Mass Flow, T3 is Compressor Discharge Temperature,   
̇  is the fuel 

input mass rate. The system is normalized about   
̇  =1.0 with initial conditions: 

P4 = 0.53831, ρB = 1.77504, N=0.54589 and states; x1 = P4, x2 =  ρB, x3 = N. 

  

In on-line estimation, the least squares algorithm with covariance resetting (12, 13) is used 

as the recursive identification algorithm to readjust the Jacobians with P0 = 0.3*I, Mi=0.3, 
and Zs = {5 10 15}. Clearly, the initial estimate of the Jacobians and P0 (a measure of 
confidence in startup) play an important role in the identification of Jacobians. This 
algorithm seems to work reasonably well in nonlinear applications.  

The converged Jacobians are: 

 

 J =  [
   .    
   .    

  .      .    
  .      .    

 .      .      .    
]         and        G = [

 .    
 .    
 .    

]   (21) 

 

Simulation of both estimated linear model compared to the nonlinear model using Adams-

Bashforth two-step method
6
 with stepsize of 0.00002 seconds is shown in Figure (2). 
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Figure 2   Simulation of linearized third order Brennan and Leak Engine model with     

  h=0.0002 sec. 

 

Conclusion  

 A linearization technique using Jacobian estimation was developed for nonlinear systems. 

This technique utilizes an adaptive algorithm to track any changes in Jacobians JP and GP 

and readjust accordingly the parameters to maintain the model as accurate as possible. More 

importantly, no modification of input Jacobain, GP, is necessary to compensate for steady-

state error. The only information that the algorithm requires is the order of the system, the 

desired timestep and an initial guess of the Jacobians with no knowledge of the operating 

point. The algorithm then tracks any changes in the Jacobians JP and GP to estimate the best 

fit model. 

 A linear model for a third order nonlinear jet engine using the proposed method was 

derived. The simulation of this linear model indicates that the proposed method 

significantly copes with the spatially varying parameters of a given system. Such adaptive 

characteristics allow its use for time-invariant, time-varying, and nonlinear systems. 

Furthermore, the developed method results in more accurate simulation that the linearized 

version about the operating point with the same sampling time. In fact, this linearized model 

can be viewed as the optimal linear model for the system which is valid over a wider range 

of the trajectory. Additionally, the variation of the eigenvalues can be detected as the 

system evolves. 

 Clearly, linear models derived about the operating point have unsatisfactory transient 

response (large startup transient) due to inaccurate eigenvalues. Furthermore, experience 

has shown that a large startup transient can completely overshadow the effects of small 

input. 
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