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Linkage between Students’ Study Habits and their grades 
analyzed through Bayesian statistics 

 
Abstract: It is well documented that particular study habits and strategies, among other factors, 
can influence students’ grades and contribute to college success, independent learning, and 
retention. To further explore such connections, we studied and analyzed distinctions between two 
groups, those reporting use of “good” study habits vs. “not so good” study habits.  Results 
establish a link between the two groups and Exam 1 grades, coded as Pass/Fail. Logistic 
regression, Bayesian statistics, and Matlab programming language were utilized for analysis, 
indicating that study habits depicted in the group reporting use of study habits research indicates 
as more powerful are indeed more likely to obtain a passing grade compared with those who did 
not report employing the better study strategies. because Bayesian statistics are not commonly 
employed to analyze these effects, a brief is provided on Bayesian statistics to facilitate 
researchers in this field who might also wish to use Bayesian statistics in their work.  
 
Introduction  
 
Students’ performance in a majority of STEM courses is recognized in terms of their grades. 
There is a growing body of literature suggesting positive correlation between students’ study 
habits, their grades, independent learning, and retention in STEM courses (Walck-Shannon et al, 
2021 [1], Kaur and Singh, 2020 [2], Veenstra et al, 2009, [3], Scalise et al, 2000 [4], Besterfield 
et al, 1997 [5], Shuman et al, (2003) [6], Blumner and Richards, (197) [7], Dey, (2014) [8]). 
Moreover, Blumner and Richards [7] report that more meaningful study habits could improve 
overall academic performance. Fortunately, as Bandura (Bandura, 1993 [9]) and Dweck (Dweck, 
2006 [10]) indicate, study habits and skills can be developed through practice and positive 
reinforcement, inculcating self-efficacy.  
 
Most students enter college directly from high schools, where many of them were successful, but 
high school study skills tend to prove unrelated to academic success in college (Matt et al, 1991 
[11], Balduf, 2009 [12]). As a result, struggling students in hardcore college STEM courses often 
wonder what they may do differently to earn better grades. Responses from a majority of 
instructors tend to boil down to “spend more time on the subject,” “complete the homework,” 
and so on. Such advice may satisfy some students but many are already spending greater amount 
of time outside the class for reading and doing the assigned homework, without the success they 
desire. 
 
Confronted with the above dilemma, the first author attended a workshop by Dr. McGuire on 
keys to focus on learning, work that is now available in book form (McGuire, 2015 [13]). Table 
11.8 (page 147 [13]) from McGuire’s book, with some modifications, was selected for 
intervention in various engineering classes. The author left the workshop with a goal to suggest 
particular proven, more effective yet simple study strategies for students to monitor and improve 
their own learning.  

 
Motivation 
  



As briefly summarized above, good study habits and strategies, among other factors, 
influence students’ grades and contribute to college success. Since study habits vary across many 
dimensions, what kind of study habits may correspond to better grades? It is of particular interest 
to quantify, if possible, any relationship between students’ grades and their reported study habits. 
The first objective in the study reported on here was to determine “To what extent do students' 
self-reported study practices predict their academic performance, defined in terms of exam 
grades?”  
 
Second, although Bayesian statistics seems a promising candidate for such analysis, a vast 
majority of education research relies on what is termed “frequentists statistics.” The use of 
Bayesian statistics in education research in general and STEM in particular is minimal (Konig 
and Schoot, 2017 [14]). Therefore, a second objective is to explore the use Bayesian statistics to 
answer the first objective and, if seeming effective, providing the field a Bayesian framework for 
such analysis.  
 
Hypothesis 
 
We hypothesize that students’ self-reported study habits can be linked to their exam scores when 
coded as failure (less than 70%) vs. success (equal to or greater than 70%). More specifically, we 
hypothesize that students scoring high on study habits conducive and better suited to learning 
(designated as group 2) vs. those practicing habits not-so conducive to learning (designated as 
group 1) are more likely to pass the exam.  
 
Theoretical Framework 
A. Logistic Regression 
In this study we are interested to examine the linkage between students’ self-reported study 
habits (shown in Table 1) and the probability that they obtain 70% or greater score on Exam 1 
(E). The total of responses to five prompts about individual study habits determine which of the 
two groups students are placed into. We label this student response data as ‘x.’ The outcome 
Exam 1 score is converted into a categorical variable, 0 (E score less than or equal to 69, failure) 
or 1 (E score greater 69, success). Given this outcome, logistic regression is deemed a preferred 
candidate. For logistic regression analyses, the relative log odds corresponding to both outcomes 
can be presented as: 
 

ln �Pr( 𝐸𝐸≤69)
Pr( 𝐸𝐸>69)� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥                (1) 

 
Where, 𝛽𝛽0 and 𝛽𝛽1 are the coefficients to be estimated from the self-reported data ‘x’ in G1 and 
G2. 𝛽𝛽0 is the intercept, and 𝛽𝛽1 called slope indicates the relative risk of failing versus passing the 
course.  
 
We can further show that probabilities, Pr( 𝐸𝐸 ≤ 69) or Pr( 𝐸𝐸 > 69) are given as: 
 

Pr( 𝐸𝐸 ≤ 69) = 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥

1+𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥
                                                              (2) 

 



Pr( 𝐸𝐸 > 69) = 1 − Pr( 𝐸𝐸 ≤ 69) = 1
1+𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥

                                    (3) 
 

The mathematical model in equation (2) and (3) is used during the data analysis process 
explained below.  
 
B. Bayesian Approach 
A Bayesian approach shows promise in updating the prior degree of belief in an event after 
considering new data. This updated belief or probability is termed the posterior probability. In 
our example, we must determine the posterior probability of two parameters 𝛽𝛽0 and 𝛽𝛽1 
(represented in terms of 𝜃𝜃), given the observed data ‘x’: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃|𝑥𝑥). Assuming we have a prior 
belief about the probability distribution of the variable 𝜃𝜃, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃), and the observations ‘x’ 
having a sampling density  𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝(𝑥𝑥|𝜃𝜃), then 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃|𝑥𝑥) is given by the Bayes’ Theorem: 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(θ|𝑥𝑥) = 𝑝𝑝𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎�𝑥𝑥�θ�
𝑝𝑝(𝑥𝑥) × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(θ)                                                    (4) 

 
Where, 𝑝𝑝(𝑥𝑥) is a normalizing constant to make the posterior probability not to exceed 1.  
 
The posterior probability is proportional to the product of likelihood function  ℒ(𝑥𝑥|θ), 
comprising of the sampling density, and the priors:  
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃|𝑥𝑥) ∝  ℒ(𝑥𝑥|𝜃𝜃) × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃)                                                    (5) 
 
The likelihood function ℒ(𝑥𝑥|𝜃𝜃) is estimated from the observed data ‘x’ and the corresponding 
Exam1 score (E, coded either 0 or 1) as a product of densities, 𝑝𝑝𝑝𝑝, for each data point since it is 
independent of each other: 
 

 ℒ(𝑥𝑥|θ) = ∏ pi �𝐸𝐸, 𝑛𝑛, 𝑃𝑃𝑟𝑟(𝑓𝑓𝑠𝑠𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑒𝑒  𝑂𝑂𝑂𝑂  𝑝𝑝𝑓𝑓𝑠𝑠𝑠𝑠𝑒𝑒𝑝𝑝𝑝𝑝)�
N
i=1                                                   (6) 

 
Where N is the total number of participating students, E either 0 or 1, n is the number of trials (n 
= 1 for present example), and 𝑃𝑃𝑝𝑝 is either equation (2) or (3).  
 
Since there are only two outcomes (0 or 1, failure or success) pertaining to each student, the 
density pi for each data point can be estimated using the Binomial distribution: 

pi = n!
(n−E)!E!

𝑃𝑃𝑝𝑝𝐸𝐸(1 − 𝑃𝑃𝑝𝑝)𝑛𝑛−𝐸𝐸                                                        (7) 
 
If we know some prior distribution of the parameter 𝜃𝜃, it can be used to generate values 
for 𝛽𝛽0 and 𝛽𝛽1. In this case since we don’t have any prior knowledge about the distribution of the 
parameters 𝛽𝛽0 and 𝛽𝛽1, we model 𝜃𝜃 as normally distributed with mean 0 and the standard 
deviation σ: 𝜃𝜃~𝑁𝑁(0,σ). On average, these priors will yield Pr( 𝐸𝐸 ≤ 69) = Pr( 𝐸𝐸 > 69) = 0.5, 
i.e., equally likely, indicating self-reported study habits are equally likely to predict both 
outcomes.  
  
Methods 
  



A. Participants 
The participants in this study were students enrolled in one of four classes, Electrical 
Engineering (EE)351, EE310, Engineering Technology (ET)240, and Engineering (ENGR)100, 
spread over 1, 7, 3, or 1 semester(s), respectively, for each class. A total of 281 students 
consented to participate in the study.   
  
B. Data Collection Instrument and Data Preparation 
Modifying information from McGuire [13], we call our survey instrument shown in Table 1 the 
“Self-Evaluation Study Strategy Instrument” (SESSI). This survey was administered to each 
class at the start of the semester just after Exam 1, about 6 weeks into the semester. Each survey 
item (10 in all) was Likert scale coded in accordance with the following statements: 1=Strongly 
disagree with the statement; 2 = Disagree with the statement; 3 = Neither agree nor disagree 
with the statement; 4 = Agree with the statement; 5 = Strongly agree with the statement.  
 

Table 1: Self-Evaluation Study Strategy Instrument (SESSI) Prompts  
Group 1 (G1) Your 

response 
Group 2 (G2) Your 

response 
I did not spend enough time on the material  I did preview-review for every class  

I started the homework too late  I did a little of the homework at a time  

I didn’t memorize the needed information  I made flashcards to prepare for the exam  

I did not use the book  I used the book and did the suggested problems  

I assumed I understood information that I had read and re-read but 
not applied 

 I practiced explaining the information to others  

Total for G1, ranging from 5 to 25 x Total for G2, ranging from 5 to 25 x 

Modified from McGuire [13] Table 11.8, p. 147. 
 
The data matrix ‘x’ consisted of two columns pertaining to total G1 and G2 scores, and N=281 
rows, one for each student. Similarly, the outcome vector consisted of Exam 1 scores, converted 
to either 0 (less than 70) or 1 otherwise. Table 2 exemplifies a few rows of the data to highlight 
the structure and coding of the data in accordance with the procedure explained above.  
 

Table 2: Few rows of data structure and coding 
 
 
 
 
 
 
  
 
C. Data Analysis and Results 
We analyzed the data in Matlab since it is a standard if not default computing language in most 
engineering classes. After uploading the data in Matlab, the ‘x’ data is centered and normalized, 
and the Exam1 data is coded as shown in Table 2 and 3. The Matlab program is modeled in 
accordance with the example shown in Matlab documentation, [15]. In Bayesian data analysis, 
Monte Carlo methods are often used for summarizing various parameters of the posterior 
distribution, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜃𝜃|𝑥𝑥). Since many posterior distributions cannot be computed analytically, 

 
Student # 

Total Score, ‘x’, raw and normalized Exam 1 (E) 

G1 score G2 score 

Raw Normalized Raw Normalized Raw  Coded 

12 9 -1.1108 6 -2.1207 65 0 

13 16 0.7315 11 -0.6958 27 0 

14 11 -0.5844 11 -0.6958 100 1 

15 13 -0.0581 13 -0.1258 83 1 



generating random samples from the underlying distribution can be sufficient to compute various 
posterior statistics, such as mean and median. To this end, Matlab provides a “slicesample” 
command to generate a Markovian sequence having stationary distribution equivalent to the 
target or underlying distribution. In our example, posterior distribution in equation (5) is the 
target distribution. (Various parameters in “slicesample” are explained in Matlab documentation 
[16]). 
 
Tabulated in Table 3 are some simple statistics pertaining to both ‘x’ and ‘E’ data. We see that 
both G1 and G2 means are almost identical, indicating no preference for G1 or G2. 

Table 3: Some statistics pertaining to the data 
 
 
 
 
The Matlab program is executed for 5000 iterations for both G1 and G2. Tabulated in Table 4 
and shown in Figures 1 – 3 are the salient output of the program.  
 

Table 4: Estimated statistics for intercept 𝜷𝜷𝟎𝟎�  and slope 𝜷𝜷1�  
 
 
 
 
 
Figure 1 depicts how the mean values evolved with number of samples for both intercept and the 
slope. These attain steady state values after about 100 iterations. The steady state mean values 
are tabulated in Table 4. 
 

  
Figure 1: Evolution of the mean 𝛽𝛽0 and 𝛽𝛽1for both groups, (a) – G1, (b) – G2, indicating 
transients and the steady states after about 100 iterations. Final values are given in Table 4. 

 
Since both intercept 𝛽𝛽0 and slope 𝛽𝛽1 are statistical parameters, their estimated probability density 
functions (pdf) are shown in Figure 2 for both groups, G1 and G2. These estimated pdfs are 
almost identical to the normal pdf 𝑁𝑁(𝜇𝜇,𝜎𝜎) with parameters 𝜇𝜇 and 𝜎𝜎. These pdfs are also plotted 
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(b): Group G2

Intercept, 
0

Slope, 1

Data Type Mean, 𝛍𝛍 Std, 𝛔𝛔 Min Max Normalizing/ Coding 

G1 13.2206 3.7996 5 24 𝑥𝑥𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠 =
𝑥𝑥 − μ
σ

 
G2 13.4413 3.5088 4 25 

E 73.3676 17.7636 12 100 Either 0 or 1 

Data 
Type 

Estimated Mean Estimated Std 95% Credible Interval - CI95 range 

𝜷𝜷𝟎𝟎� 𝜷𝜷1� 𝜎𝜎𝛽𝛽0 𝜎𝜎𝛽𝛽𝟏𝟏 𝜷𝜷𝟎𝟎 𝜷𝜷𝟏𝟏 

G1 -0.6042 0.7306 0.1269 0.1373 -0.8530 to -0.3554 0.4616 to 0.9997 

G2 -0.5548 -0.3085 0.1223 0.1282 -0.7945 to -0.3152 -0.5597 to -0.0573 



in Figure 1, using the estimated means and the standard deviations shown in table 4 for both 
groups.  
 

  
Figure 2: Estimated probability density functions (pdf) for intercept and slope parameters 
pertaining to both groups (a) – G1 and (b) – G2. Also shown are normal pdfs, 𝑁𝑁�𝛽𝛽0�,𝜎𝜎𝛽𝛽0� and 
𝑁𝑁�𝛽𝛽1�,𝜎𝜎𝛽𝛽1� for both intercept and the slope. Values for the variables are depicted in Table 4. 
 
The SESSI prompts under G1, Table 1 are identified as not conducive to learning vs. the prompts 
in G2. Although there could be many such prompts or variants thereof, the reported prompts in 
Table 1 are simple and a few to consider, and based on results from McGuire’s work [14], the 
power of these simple prompts with regard to students’ success was expected. Our study 
provides statistical analysis pertaining to these prompts linking them with students’ grades 
(pass/fail in this example). 
 

 
Figure 3: Plots of equation (3) showing the percentage likelihood of obtaining greater than 69% 
on Exam 1 vs. self-reported score on G1 and G2.   
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Figure 3 shows the results of equation (3) using the estimated values for both intercept 𝛽𝛽0 and 
the slope 𝛽𝛽1for both groups. It depicts the percentage likelihood of obtaining greater than 69% on 
Exam 1 score vs. the individual’s self-reported study habit scores under G1 and G2. The 
probabilistic distributions underpinning the logistic regression coefficients indicate these values 
being confined to a narrow range. The 95% Credible Interval (CI 95%) provides 95% probability 
that regression parameters will fall within this range. This range points in the direction of varying 
students’ G1 and/or G2 cores, indicating a broader range around 14 points. Further, the program 
converged to the final values rapidly within a few hundred iterations, indicating suitability of 
Bayesian approach for such problems.    
 
The results in Figure 3 indicate that a student is strongly likely on average to have a passing 
grade if he/she has self-reported a score of 14 or better under group G2 and less than 14 under 
group G1, the lower the better. The outcome in Figure 3 is a positive indicator in favor of urging 
students to consider adopting habits outlined under G2 and avoid the ones in G1.    
 
Conclusions and Future Work 
 
The focus of our effort reported here was twofold: identify (i) whether students’ self-reported 
study habits can be linked to their Exam1 scores, and (ii) whether Bayesian analysis can 
productively be used to provide statistical analysis underpinning any links. This paper presents 
findings on both aspects utilizing the data from 4 classes, spread over 12 semesters. Based on the 
data analyses and the discussion above, we conclude that there is statistically significant positive 
correlation and linkage between the students’ study habit scores and their passing or failing the 
Exam1. On average, a student is strongly likely to have a passing grade if he/she has self-
reported a score of 14 or better under group G2 and less than 14 under group G1, the lower the 
better. Further, the prompts in Table 1 are few, which are likely to be adopted by students with 
relative ease. The first author shared aggregated results with students in each semester, resulting 
in overall improved passing grades.  
 
This work is not complete yet. We intend to compare the statistical findings using Bayesian 
approach with those of using the Frequentists’ approach. After completing those analyses, we 
will report our findings to make further contributions to the field in this area. 
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