Live Energy: An Initiative for Teaching Energy and Sustainability Topics with the most Up-to-date and Relevant Content

Dr. Christine Ehlig-Economides, Texas A&M University

Dr. Ehlig-Economides has been full professor of petroleum engineering at Texas A&M University in the Albert B. Stevens endowed chair since 2004. Before that she worked for Schlumberger for 20 years in well test design and interpretation, integrated reservoir characterization, modern well construction design, and well stimulation. She has worked in more than 30 countries and authored more than 60 papers. Dr. Ehlig-Economides has received a number of technical awards and was inducted into the National Academy of Engineering in 2003. She is currently working on an e-book titled Live Energy.

Dr. Bugrahan Yalvac, Texas A&M University

Bugrahan Yalvac is an associate professor of science education in the Department of Teaching, Learning, and Culture at Texas A&M University, College Station. He received his Ph.D. in science education at the Pennsylvania State University in 2005. Prior to his current position, he worked as a learning scientist for the VaNTH Engineering Research Center at Northwestern University for three years. Yalvac’s research is in STEM education, 21st century skills, and design and evaluation of learning environments informed by the How People Learn framework.

Dr. Emily Binks-Cantrell, Texas A&M University

Emily Binks-Cantrell, Ph.D., is a faculty member in the Department of Teaching, Learning & Culture at Texas A&M University, where she teaches undergraduate and graduate courses in the field of reading education. Additionally, she serves as a statistical consultant for the NSF-funded Live Energy project, a collaborative e-textbook project for freshmen engineering courses between Texas A&M University, Pennsylvania State University, Stanford University, California State University Long Beach, and Prairie View A&M University. She has published several articles and book chapters on the importance of quality teacher education in the field of reading and also regularly leads professional development opportunities for in-service teachers throughout the state of Texas.

Mr. Don R Gilman PE, PMP, Texas A&M University

Don Gilman has been an IT professional and entrepreneur since 1983. His IT interests are team building, software engineering, and cost effective audit compliance. With three being computer game companies, his business start-ups have been IT-related. He has named credit in over a dozen PC/Mac video games since 1985 including many versions of the computer Harpoon products. Gilman holds a Project Management Professional (PMP) certificate and an ITIL Foundations Certification. He is also a Licensed Professional Engineer (Software). Gilman has been active in various local, state, and national organizations including Rotary, Computer Cleanup Day, Leadership Brazos, B/CS Library Board, multiple IT groups, and the Software Engineering Task Force for the Texas Board of Professional Engineers.

Dr. Mehmet Ayar, TUBITAK

Dr. Mehmet Ayar is a scientific programs expert in the Scientific and Technological Research Council of Turkey (TUBITAK). He received his Ph.D. in Curriculum and Instruction with specialization in STEM education at Texas A&M University in 2012. His research is in ethnographic studies of science and engineering practice, curriculum development, design of learning environments, and robotics activities. Dr. Ayar worked for the Live Energy Project during his Ph.D. studies at Texas A&M University. Prior to his Ph.D. studies, he worked for three years as a science teacher at a private school in Turkey.

Mr. Timothy Allen Robinson, Penn State University
Prof. Anthony R Kovscek, Stanford University
Tony Kovscek is a professor of Energy Resources Engineering at Stanford University where he joined the faculty in 1996. His academic interests center around coupled heat and reactive flows in porous media as well as the efficient use of energy. Kovscek has been honored with the Distinguished Achievement Award for Faculty from the Society of Petroleum Engineers (SPE), the SPE Western North America Region Technical Achievement Award, and he was the inaugural Global Climate and Energy Project (GCEP) Distinguished Lecturer in Carbon Sequestration. Kovscek is the director of SUPRI-A, Unconventional and Enhanced Oil Recovery Consortium as well as a co-director of the Stanford Center for Carbon Storage (SCCS). He holds B.S. and Ph.D. degrees in Chemical Engineering from the University of Washington and University of California at Berkeley, respectively.

Dr. Reza Toossi, California State University, Long Beach

Dr. Reza Toossi is a professor of mechanical and aerospace engineering at CSULB. He received his B.S. degree from the Sharif University of Technology in Tehran, Iran and his M.S. and Ph.D. degrees from the University of California, Berkeley. He continued his post-doctoral research studies in the Lawrence Berkeley Laboratory and joined the CSULB faculty in 1981. Dr. Toossi has worked both as a research scientist and a consultant on various projects related to aqueous aerosols and droplets in the atmosphere, nuclear safety, sensor design, air pollution modeling, flame propagation, fluid mechanics, and fiber optics. Dr. Toossi has successfully managed over $6M in research contracts from various private and government agencies, holds two patents, and has published a book on energy in various peered and refereed journals. His current research interests are in hydrogen storage systems, combustion-generated soot emission, sorption refrigeration, hybrid-electric vehicle design, and renewable energy systems. Dr. Toossi is a member of ASME, ASEE, SAE, SPIE, AAPT, and Tau Beta Pi, and the recipient of the 2001 CSULB Distinguished Faculty Teaching, the 1995 CSULB Distinguished Faculty Scholarly and Creative Achievement, and the 1994/1995 TRW Excellence in Teaching awards.

Dr. Sarma V. Pisupati, Pennsylvania State University, University Park

Dr. Sarma V. Pisupati is an associate professor and Energy Engineering program officer in the Department of Energy and Mineral Engineering.

Dr. Sukesh K Aghara, University of Massachusetts Lowell

Dr. Sukesh Aghara is an associate professor with the Nuclear Engineering Program at University of Massachusetts Lowell, a member of the University of Massachusetts System. He teaches nuclear engineering classes and participates in nuclear reactor experiments and research. His research interests are radiation shielding analysis for space radiation and nuclear fuel cycle analysis.
This paper presents the ongoing activities of a National Science Foundation (NSF)-funded collaborative research project, its iterative research design, and the preliminary findings. Five engineering professors at five university campuses, [Texas A&M University (TAMU) College Station, Prairie View A&M University (PVAMU), California State University Long Beach (CSULB), The Pennsylvania State University (Penn State), & Stanford University] as well as a technology expert and four learning scientists at the leading campus (TAMU) have worked in collaboration over two years on two objectives. One objective is to create an online textbook for teaching energy and its sustainability to all college majors. To provide the most meaningful and relevant information to students from all majors in their courses, our five professors, who are experts in their fields, are authoring an online textbook with embedded dynamic content that can be frequently updated according to emerging technical developments and sociopolitical, economic, and environmental events. To assess the pedagogical merit of the developed textbook, as our second objective, we identified several instruments and administered them at the participating campuses to collect the control data. In this paper, we discuss the nature of the courses taught in the five campuses, progress in the textbook project initiative, and the data collected over the five semesters. Our project activities, administration of the instruments, and the lessons learned provide insights to similar efforts aimed to implement online and up-to-date content material in teaching courses that are trans-disciplinary and dynamic in nature.

Introduction

In this three-year, National Science Foundation (NSF)-funded collaborative research project, five engineering faculty across university campuses in the US are co-authoring an online textbook with the most up-to-date and relevant content to teach energy and its sustainability to college students. Conventional printed textbooks on energy and its sustainability tend to be out-of-date from the moment they become available because the energy landscape is constantly changing in response to technical, political, economic, and environmental developments.

Research in learning sciences¹ and in engineering education² recommends that college students learn more effectively when they find connections between the material they learn in class and the information they receive in mass media and elsewhere in their daily lives. Students’ intrinsic motivation is triggered when the course material is relevant to their daily experiences or to the public information they hear about in informal settings. Students who make use of the newly learned material in generating arguments are likely to learn and retain the course material comprehensively and develop skills to communicate effectively and more readily than students who do not make practical use of the course content. Recognizing the sources of information on mass media and the Internet are life-long learning skills.
Energy and its management, conversation, and sustainability are among the subjects that are discussed in mass media continuously. Unrest in many of major oil exporting countries, the oil spill in the Gulf of Mexico, and the impact of the recent tsunami in Japan on nuclear power are some recent events that influence the arguments one can develop on energy and its sustainability. Even though the professors teaching energy courses are accustomed to discussing these current events in their classes, the information in conventional printed textbooks is at best what was current at the time of printing. Online content that the course instructors (or any reliable and interested parties) can update appears to be the solution for the limited current event discussion of conventional textbooks. In addition, e-book technology enables ample use of color and the prospect for animated illustrations and even games.

Our engineering professors and the NSF have recognized the need to develop a textbook involving dynamic content in nature that can be updated frequently online by multiple authors to better serve the needs of the college students learning about energy and its sustainability. Led by the TAMU campus, five engineering faculty began working with technology experts and the learning scientists in October 2010.

The Study Context

Our five engineering faculty members teach courses in energy and its sustainability at five campuses across the US, one located at Northeast--The Pennsylvania State University (Penn State)--, two at West Coast--California State University Long Beach (CSULB) & Stanford University--, and two in the South--Texas A&M University (TAMU) College Station and Prairie View Texas A&M (PVAMU).

At the TAMU campus, the energy and its sustainability course attracts students from all majors. The average number of students enrolled in the course is 80 per semester. The instructional medium includes lectures taught by experts in industry and academy and recitation sessions taught by undergraduate peer-teachers and graduate teaching-assistants. Students complete a semester long and open-ended collaborative project of their choice that requires a final product. Among the final products students generated were an engineering model for solar water heating, survey instruments administered to public and/or online, and a presentation given to local stakeholders pertaining to installing wind turbines in a housing development. Developed by an NSF-funded TUES phase I grant, this course aims to enhance students’ content understanding and their life-long learning and effective communication skills.

At the PVAMU campus, a graduate course in global energy systems is offered. This course was developed to assess the interest of the students in energy courses. The course is designed to be student interest driven requiring extensive independent work by the students.

At Penn State, State College, two energy courses are offered and hundreds of students enroll in the courses. The objectives of the courses are to provide basic understanding and appreciation of energy and environmental concepts, analyze energy consumption patterns, discuss various energy resources that power the modern society, examine the energy conversation processes, explore interrelationships between energy use and industrial progress, and discuss future energy alternatives and conservation methods.
At Stanford University, around 100-170 students enroll per year in two courses on energy and its sustainability taught consecutive quarters. In the first course, an engineering problem-solving approach has been implemented to analyze the existing energy landscape and guide designs for future energy supply. Students complete a group project, write a report, present their final projects, and answer questions from their peers in the first course. In the second course, students examine alternative energy processes, such as, renewables and nuclear energy, with the potential for low carbon intensity and environmental impact.

At CSULB, 100 to 300 students enroll in the energy and environment course in every semester. Roughly 20% of students are from engineering, another 20% from environmental science policy program, and rest from all majors across the campus. Students participate in a variety of activities including online group discussion and debate, projects and site visits.

The characteristics of the five faculty participants and their instructional contexts are summarized in Table 1.

<table>
<thead>
<tr>
<th>Faculty Member</th>
<th>Campus Location</th>
<th>Gender</th>
<th>Years of teaching in academia</th>
<th>Number of courses taught per semester or quarter</th>
<th>Approximate number of students enrolled in the energy course per semester or quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty 1</td>
<td>TAMU</td>
<td>Female</td>
<td>>10</td>
<td>1-2</td>
<td>80-120</td>
</tr>
<tr>
<td>Faculty 2</td>
<td>PVTAMU</td>
<td>Male</td>
<td>>5</td>
<td>1-2</td>
<td>10-20</td>
</tr>
<tr>
<td>Faculty 3</td>
<td>Penn State</td>
<td>Male</td>
<td>>5</td>
<td>1-2</td>
<td>100-300</td>
</tr>
<tr>
<td>Faculty 4</td>
<td>CSULB</td>
<td>Male</td>
<td>>25</td>
<td>2-3</td>
<td>100-300</td>
</tr>
<tr>
<td>Faculty 5</td>
<td>Stanford</td>
<td>Male</td>
<td>>15</td>
<td>2</td>
<td>50-125</td>
</tr>
</tbody>
</table>

The Online and Dynamic Textbook

Our faculty members began drafting the book chapters in Summer 2011. Because of the geographic locations of the five faculty members, most of our communications were held on Adobe Connect conference calls. During the academic semester, the faculty members and the project collaborators met every week for one to two hours. In these weekly meetings, we discussed our project activities, such as (a) drafting the chapters by the faculty and (b) collecting data from the students. The table of contents for the most current version of the online textbook (version 0.9.4.4) is presented in Table 2.

Table 2. The table of contents for the electronic textbook version 0.9.4.4 (2012).

Section 1. Past, Present, and Future of Energy
Chapter 1.1 Energy Sustainability
Chapter 1.2 Energy Sources and Uses
Chapter 1.3 Energy Conversions

Section 2. Fossil Energy
Chapter 2.1 Coal
Appendices
Appendix A: Mathematical Notation
Appendix B: Abbreviations and Acronyms

Up to now, our five engineering professors wrote the content of the book and reviewed each other’s chapters. Our technology team used the iBook Author software3 to publish the content of the book. In the below Figures 1 through 4, four illustrative screenshots are presented.

Figure 1. A screenshot from the Live Energy iBook version 0.9.4.4
In the electronic book, the reader can zoom in to the figures, graphs, or images by a simple click. The figure, image, or graph enlarges on the screen for a better view.

![Figure 2](image)

Figure 2. A screenshot from the Live Energy iBook version 0.9.4.4

iBook Author³ allows authors to group two or more images together and list them in an order. In this way, when the reader zooms in to the grouped images, she views a series of images, which will more meaningfully illustrate the conceptual continuity or the difference among the images. Some of the images included in the Live Energy iBook are interactive, that is, the reader views different explanations when she clicks on different parts of the image.
Our Live Energy iBook included events that are recent, for example, the oil spill in the Gulf of Mexico in 2010.
Hyperlinks embedded in the text provide easy access to the information on the Internet. If the reader has an Internet connection, she can read the materials online by a simple click on the link embedded in the book.

The first release of the electronic textbook is in Apple’s iBook format. The iBook format only works on Apple’s iPad. This format was selected based on a combination of factors—mostly the lowest cost of development (due to the iBook Author software), advanced reader interactivity (iBook reader software), and an effective market share. We are also offering the textbook as a PDF due to the need to address the student population who do not have iPads and because the iBook Author tool will generate a "flat" version of the book with minimal additional editing/development effort.

Interestingly, the PDF and iBook represent two extremes in electronic textbook formats. Our informal discussions with students indicate that the iBook format’s capability for annotation, sharing, embedded glossary, search, and highlighting are features that the students desire and yet have not had. There is at least one large university level study underway that we are watching for guidance in our selection of features and formats, the Internet 2 eText study with 20+ universities.
The Nook and Kindle are the other two mostly used electronic textbooks6,7. Both the Kindle and Nook reader software is available on Macintosh, iPad, Windows, Android and other lesser platforms in addition to the proprietary Amazon and Nook tablets. Kindle and Nook do not offer adequate interactivity at this time, even though the vendors are slowly attempting to add competitive features to Apple's. Amazon's KF8 format6 was released with the latest generation color Fire tablets, however the reading experience is only slightly better than a flat PDF on most platforms, are nowhere near as interactive as the iBook, and there are no authoring tools at the level of the incompatible iBook Author tool.

Finally, it is technically possible to use game specific software development tools to build an electronic textbook that would be massively interactive featuring mini-games, puzzles, SCORM compliant data collection, leader boards, and the expected assortment of videos, animations, and interactive models.

\textbf{Research Design}

To assess the pedagogical impact of the newly developed online and dynamic textbook on student learning outcomes, we designed an iterative educational research study. Informed by the previous grant work8,9,10 we have planned to explore the following student learning outcomes: (a) content understanding, (b) attitudes towards engineering, (c) life-long learning skills, and (d) skills to locate resources pertaining to energy and its sustainability resources.

To assess students’ content understanding, we developed a content questionnaire with 20 multiple-choice items. The items we used in the questionnaire were originally developed by Faculty 4 and have already been used in assessing students’ content understanding. This supported the initial content validity of the items. After choosing 20 items from a pool of 51 items, our faculty participants and learning scientists reviewed the items one by one. We modified a few of them either by changing the verbiage in the questions or re-writing some better multiple-choice alternatives. The most recent version of the content questionnaire items are presented in Appendix A.

To assess students’ life-long learning skills, we searched the literature for a valid and reliable life-long learning scale11,12,13. After a thorough review, we have chosen Wielkiewicz and Sinner’s Life-Long Learning (LLL) scale12 which best matches our student population’s characteristics. The LLL scale included 16 items with a five-point scale.

To assess students’ attitudes towards the engineering, we followed the same procedure above and located the Engineering Attitude Survey (EAS) developed by Robinson et al.14,15 The EAS included 25 items with a six-point scale.

To assess students’ skills to use new media (e.g., Facebook, Twitter, Wikipedia, blogs, etc.), we designed another scale including six items with a five-point-scale. The six items in this scale complemented the LLL scale items. However, we grouped the items of this measure separate from the LLL scale items, because we wanted to keep the LLL scale items as a whole for the analysis. The scale items are presented in Appendix B and titled “Energy and Sustainability Survey Items.”
Our project activities are still in progress. Our faculty members have finished drafting the first version of the textbook (version 0.9.4.4). Individual faculty members have reviewed each other’s chapters, and the book has been edited for coherency among the chapters. The figures, tables, images, references, etc. are presented similarly for aesthetic purposes. We anticipate using the textbook in the participating campuses in Spring 2013.

In Spring 2011, Fall 2011, Spring 2012, and Fall 2012, we collected data from students in the five campuses without the use of the online textbook. This data will serve as the control data. Our study design is a quasi-experimental quantitative research without randomizing the groups. Our sampling strategy was convenience sampling for both control and experimental groups. Even though this is not a preferred method to assign groups in ideal experimental studies, in educational studies where subject assignment is limited by the courses offered, convenience sampling strategy is often accepted. It is worthwhile to mention that our control data (without the online textbook instruction) and the experimental data (with the online textbook instruction) will have been collected from different students. To reduce the impact of individual student differences, we collect control data as many as times as we could, so that we can investigate the individual student differences and take these differences into account during the final analysis. The individual student differences between semesters in each campus will be treated as covariances in the final analyses and their effect (if significant) will be subtracted from the final analysis results.

Findings

The pre and post responses of the students on the research instruments revealed that instruction without the online textbooks did not result in much change in students’ content understanding and their skills and attitudes pertaining to energy and engineering. Findings also showed no institutional differences. We used the collected control data to evaluate the effectiveness of the content questionnaire items. Item analysis revealed a need to redesign six items that had marginal difficulty powers or insufficient discrimination of the upper and lower student groups. The revised items were used in the Fall 2011 and subsequent semesters. The revised content questionnaire is given in Appendix A.

In our first data collection phase, the content questionnaire was printed on paper using Gravic Remark Office OMR software that enabled automated scoring. In the Fall 2011 and pre-survey of Spring 2012, the four surveys were administered online on Survey Monkey. In the post-survey of Spring 2012 and pre- and post-surveys of Fall 2012, the surveys were administered online via Qualtrics. All instruments were administered twice during the semester, once early in the semester and once after the semester was completed. Data from students who completed both pre and post surveys and the content questionnaires were used in the analysis. A total of 483 participants were matched for participation in both pre-and post-tests in Spring 2011, Fall 2011, Spring 2012, and Fall 2012 data. Any students who did not complete any of the pre or post research instruments were excluded from the analysis.

Table 3 reports the means (m) and standard deviations (sd) of the scores on the pre-and post-instruments from the data collected in Spring 2011 (n=153), Fall 2011 (n=54), Spring 2012...
(n=273), and Fall 2012 (n=3). Table 4 reports the correlations among the measures for the same data set. Because of the marginal group size differences across the campuses, we used both parametric and non-parametric tests to analyze the relations between the measures. Both test results revealed no institutional differences on gain scores in any of the measures. For the Energy & Sustainability Survey Items (which were created by authors and not yet standardized), a high internal consistency reliability was found at Cronbach’s alpha=0.8443. Further, moderate correlations were found between some of the survey sub-tests and the content questionnaire (Table 4).

Table 3. Means (m) and standard deviations (sd) of the participants’ pretest and posttest scores for each instrument (N=483).

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Pre-test [m (sd)]</th>
<th>Post-test [m (sd)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Questionnaire</td>
<td>7.48 (2.41)</td>
<td>7.63 (2.19)</td>
</tr>
<tr>
<td>(0-none correct – 20-all correct)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy & Sustainability Survey</td>
<td>1.158 (.9821)</td>
<td>1.6406 (1.107)</td>
</tr>
<tr>
<td>(0-never – 4-always/daily)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifelong Learning Survey</td>
<td>2.5389 (1.0749)</td>
<td>2.6078 (1.0601)</td>
</tr>
<tr>
<td>(0-never – 4-always/daily)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Attitude Survey</td>
<td>3.2725 (1.2388)</td>
<td>3.2306 (1.2453)</td>
</tr>
<tr>
<td>(0-most negative – 5-most positive)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Correlations among the measures (N=483).

<table>
<thead>
<tr>
<th>Correlations</th>
<th>Pre-test (Pearson’s r)</th>
<th>Post-test (Pearson’s r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Questionnaire – Energy & Sustainability</td>
<td>0.3712</td>
<td>0.2416</td>
</tr>
<tr>
<td>Content Questionnaire – Lifelong Learning</td>
<td>0.3848</td>
<td>0.0405</td>
</tr>
<tr>
<td>Content Questionnaire – Engineering Attitude</td>
<td>0.298</td>
<td>0.4227</td>
</tr>
<tr>
<td>Energy & Sustainability – Lifelong Learning</td>
<td>0.3969</td>
<td>0.416</td>
</tr>
<tr>
<td>Energy & Sustainability – Engineering Attitude</td>
<td>0.3165</td>
<td>-0.0675</td>
</tr>
<tr>
<td>Lifelong Learning – Engineering Attitude</td>
<td>0.3063</td>
<td>0.264</td>
</tr>
</tbody>
</table>

The designed Live Energy electronic textbook will be in use in Spring 2013. We will continue administering the same instruments in the Spring 2013 semester from the participating institutions. After 2013 Spring semester, we will have the data from both the control and the experimental groups. We will be able to investigate any impact of the Live Energy electronic textbook on students’ learning outcomes after the Spring 2013 semester is completed.

Conclusions

Our findings showed that the student learning outcomes were not significantly improved when traditional textbooks were used in teaching energy and its sustainability in each of the participating campuses. Results also showed no institutional differences. These are promising findings for us because when the online textbook is used, any significant improvement of student learning outcomes over the course of a semester will show favorable results for our project goals.

Our iterative research design informs the similar educational efforts aimed to help improve the student learning experiences in higher education. Particularly in the engineering courses that involve dynamic content, university faculty and curriculum developers can create online and dynamic course materials that can be updated easily and frequently as needed. The work
presented in this paper and the instruments described will also guide any systematic evaluation of a pedagogical novelty on similar student learning outcomes.

Acknowledgement

This material is supported by the National Science Foundation under TUES Phase-II Grant number 1022932. Any opinions, findings, conclusions, or recommendation presented are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

Appendix A- The content questionnaire

1- Per capita energy consumption in a modern technological society is roughly 10 times that before the Industrial Revolution.
 a) True
 b) False

2- How much does the energy content of the wind change if wind speed suddenly doubles?
 a) About one-half
 b) About the same
 c) About twice as much
 d) About four times as much
 e) About eight times as much

3- What percentage of the US’s consumable electrical capacity comes from wind?
 a) Less than 1%
 b) About 2%
 c) About 5%
 d) About 15%
 e) About 50%

4- Today, which renewable energy source provides the US with the most energy?
 a) Fossil
 b) Wind
 c) Solar
 d) Hydroelectric
 e) Nuclear

5- Roughly, what percentage of energy from burning coal is converted to electricity?
 a) 10-20%
 b) 30-40%
 c) 50-60%
 d) 70-80%
 e) 90-100%

6- During photosynthesis a plant
 a) Converts energy
 b) Absorbs energy
 c) Gives off energy
 d) Transmits energy
 e) Reflects energy

7- Which energy source is currently used most by the United States?
 a) Coal
 b) Petroleum crude oil
 c) Natural gas
 d) Propane
 e) Ethanol

8- Gasoline is a product of refining
 a) Coal
 b) Petroleum crude oil
 c) Natural gas
 d) Propane
 e) Ethanol

9- The three countries with the largest conventional petroleum reserves in the world currently are
 a) Saudi Arabia, United States, and Russia
 b) Saudi Arabia, Venezuela, and the United Arab Emirates
 c) Saudi Arabia, Iran, and Iraq
 d) Iran, Iraq, and Kuwait
 e) United States, China, and Russia

10- Ozone has the chemical formula ___, is generally ___ in the lower atmosphere, and is ___ in the stratosphere.
 a) O3, beneficial, detrimental
 b) O3, detrimental, beneficial
 c) O3, detrimental, detrimental
 d) O2, beneficial, detrimental
 e) O2, detrimental, beneficial

11- The primary source of man-made SO2 is _______; it harms people, animals, vegetation, and material through the formation of __________.
 a) Gasoline burning, nitric acid
 b) Hot springs, sulfuric acid
 c) Coal burning, sulfuric acid
 d) Coal burning, hydrocarbons
 e) Automobiles, smog
12- The source of geothermal energy is
a) Radioactive decay of elements below the earth’s crust
b) Heat still left from the time when the earth was formed
c) Chemical reactions among gases trapped below the earth
d) Underground nuclear explosions
e) Both a and b

d) The same as protons
e) None of the above

17- Baseload power plants are used
a) Primarily during the nighttime
b) Primarily during the daytime
c) Day and night
d) During peak times
e) During emergencies

18- Which of the following can be said about fuel cells?
a) Fuel cell is a well-developed technology with necessary infrastructure already in place.
b) Fuel cell vehicles can go thousands of miles between each charging.
c) Fuel cells are relatively cheap to manufacture.
d) Fuel cell efficiency can be higher than that dictated by the Carnot efficiency.
e) All of the above

19- The United States has a Gross Domestic Product (GDP) or Gross Domestic Income (GDI) in the order of
a) 10 billion dollars
b) 100 billion dollars
c) 1 trillion dollars
d) 10 trillion dollars
e) 100 trillion dollars

20- Sustainability implies
a) Using natural resources as slowly as possible
b) Using only as much as is replaced by natural processes
c) Not introducing new technology too quickly
d) Discovering new resources to allow maximum economic growth
e) All of the above
Appendix B- Energy and Sustainability Survey Items

Note: These items were written by the authors to complement the Life-Long Learning Scale. Students were asked to rate their responses on a 5-point scale (i.e., never, rarely, sometimes, often, and always/daily).

1. I read about energy on the Internet.
2. I listen to stories about energy on TV.
3. I listen to podcasts about energy.
4. I read about energy in printed media (books, newspapers, magazines, journals, etc.).
5. I discuss energy with my peers and friends.
6. I am active in a social networking group (Twitter, Facebook, Second Life, etc.) on energy.
7. I read about sustainability on the Internet.
8. I listen to stories about sustainability on TV.
9. I listen to podcasts about sustainability.
10. I read about sustainability in printed media.
11. I discuss sustainability with my peers and friends.
12. I am active in a social networking group on sustainability.