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Lossless Image Decomposition and Reconstruction

Using Haar Wavelets in Matlab R©

for ECET Students

Abstract

A method for introducing the topic of lossless image decomposition and reconstruction to

ECET students is presented. The definition and frequency selective properties of the Haar

wavelet is introduced. In addition, the application of Haar wavelets to the decomposition and

reconstruction of a 1-dimensional signal is explained and serves as a stepping stone to

discussing the application to digital images.

Introduction

In the past few years, the authors reported their efforts of enhancing students’ learning by

utilizing a systems approach [1] - [4]. These methods focus on the functionality of system

blocks to improve students’ understanding of system performance parameters. Positive results

have been observed in strengthening students knowledge development on certain subjects.

The systems approach has been applied to the development of engineering algorithms. In the

Spring semester of 2005, we initiated a project in a Digital Signal Processing class to

implement a Matlab R© algorithm that would produce lossless decomposition and reconstruction

of a digital image using wavelets. The reason we chose this topic is twofold. First, the project

allows the student to subdivide two complicated processes into managable system blocks. This

training will be helpful when the ECET student graduates and takes on the challenges of the

engineering community. Second, the project permits testing and detection of algorithm errors

at the output of each system block. This is due to the fact that decomposition and

reconstruction are identically reverse processes, which provide the capability for comparison of

the output at each stage of decomposition with that of reconstruction. Lastly, the use of images

allows the student to visualize the effects of each system block, and thereby gain an

understanding of the function of each block. This article reports on some results in introducing

this topic into a Digital Signal Processing class. Upon completion, this experimental design is

intended to be used in our Microcontroller course for hardware implementation.
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Haar Wavelets

The basic Haar wavelets are a set of low and high pass digital filters that can be used for

lossless decomposition and reconstruction [5]. The low pass Haar wavelet is
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The high pass Haar wavelet is
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The low pass nature of h0[n] is demonstrated in the digital signal processing class by deriving

and plotting the magnitude of the discrete Fourier transform (DFT) of h0[n]. The discrete

Fourier transform is defined as

X[k] =

N−1
∑

n=0

x[n]e−
j2πnk

N (3)

where x[n] is a finite sequence of length N defined in the range from n = 0 to n = N − 1, n

is the time index, X[k] is the DFT of x[n], and k is the frequency index of the DFT. X[k] is a

finite complex sequence of length N defined in the range from k = 0 to k = N − 1. The

magnitude of the DFT of h0[n] is derived in the DSP class to be
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If x[n] is a sequence generated from an A/D converter, then an original continous-time signal

x(t) is sampled every Ts seconds. So x[n] can be defined as x[n] = x(nTs). In this case, X[k]

is an approximation of the continous-time Fourier transform of x(t) and is evaluated at

discrete frequencies. The interval between each frequency sample is f∆ = fs

N
, where fs = 1

Ts
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the sampling rate. If k is substituted for k fs

N
, then (4) can be expressed as
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Simlarly the magnitude of the DFT of h1[n] can be shown to be P
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If k is substituted for k fs

N
, then (6) can be expressed as
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Plots of (5) and (7) versus frequency over the Nyquist range are shown in Figure 1. The low

pass nature of h0[n] is illustrated in Figure 1a and the high pass nature of h1[n] is illustrated in

Figure 1b. Students are asked to derive and plot (7) versus frequency and are asked to discuss

why this is a high pass filter.

Fig. 1. Magnitude of the DFT of the (a) low pass and (b) high pass Haar wavelets.

Application to a 1D Signal

The process of decomposing a 1-dimensional signal is first introduced to students in a digital

signal processing course. The decomposition process is illustrated in Figure 2. The

reconstruction process is illustrated in Figure 3. As an example, consider the digital sequence

x[n] = {0, 1, 2, 3, 0, 1, 2, 3}. The two Haar wavelets are h0[n] = {0, 0,
√
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, 0, 0, 0, 0} and

h1[n] = {0, 0,
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, 0, 0, 0, 0}. The flipped versions of these sequences are h0[−n] =

{0, 0, 0, 0,
√
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2
,
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2
, 0, 0} and h1[−n] = {0, 0, 0, 0,

√

2

2
,−

√

2

2
, 0, 0}. The first step in the

decomposition process is to multiply the fast Fourier transform (FFT) of h0[−n] by the FFT of

x[n]. The FFT is simply an efficient implementation of the DFT. This product in the frequency

domain effectively passes x[n] through the Haar low pass filter. For this example, the result of

this product is Xlp[k] = {16.97, 0, 5.657j, 0, 0, 0,−5.657j, 0}. Next we perform the inverse FFT

of Xlp[k] to yield xlp[n] = {2.121, 0.707, 2.121, 3.536, 2.121, 0.707, 2.121, 3.536}. Next we
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down sample xlp[n] by a factor of 2 to obtain the low pass sequence f0[n] = {2.121, 2.121,

2.121, 2.121}. Similarly, we multiply the FFT of h1[−n] by the FFT of x[n] to obtain

Xhp[k] = {0, 0, 5.657, 0, 5.657, 0, 5.657, 0}. We perform the inverse FFT of Xhp[k] to yield

xhp[n] = {2.121,−0.707,−0.707,−0.707, 2.121,−0.707,−0.707,−0.707}. Next we down

sample xhp[n] by a factor of 2 to obtain the high pass sequence f1[n] = {2.121,−0.707,

2.121,−0.707}.

In the reconstruction process, the two decomposed sequences f0[n] and f1[n] are up sampled

by a factor of 2 to obtain the sequences f0up[n] = {0, 2.121, 0, 2.121, 0, 2.121, 0, 2.121} and

f1up[n] = {0, 2.121, 0,−0.707, 0, 2.121, 0,−0.707}. The sequence f0up[n] is passed through the

low pass Haar wavelet by multiplying the FFT of f0up[n] by the FFT of h0[n]. The result is

F0uplp[k] = {12, 0, 0, 0, 0, 0, 0, 0}. Similarly, the sequence f1up[n] is passed through the high

pass Haar wavelet by multiplying the FFT of f1up[n] by the FFT of h1[n]. The result is

F1uphp[k] = {0, 0,−4 + 4j, 0,−4, 0,−4 − 4j, 0}. The low pass and high pass signals are added

to produce F0uplp[k] + F1uphp[k] = {12, 0,−4 + 4j, 0,−4, 0,−4 − 4j, 0}. The inverse FFT of

this sequence produces the original sequence x[n] = {0, 1, 2, 3, 0, 1, 2, 3}.

Fig. 2. Decomposition of a 1-dimensional signal.

Fig. 3. Reconstruction of a 1-dimensional signal.
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Application to an Image

The processes of image decomposition and reconstruction are illustrated in Figure 4. Each

stage of image decomposition and reconstruction incorporates the following elements into

the design:

1) Generation of Haar wavelets - two 256 element arrays used to generate lossless high and

low pass image filters.

2) One-dimensional (1-D) fast Fourier transform (FFT) to generate lossless high and low

pass from the Haar wavelets.

3) 2-D FFT to convert the original image from the spatial domain to the frequency domain.

4) 2-D matrix multiplication in the frequency domain to pass the original image through

high and low pass filters.

5) Inverse 2-D FFT to return the filtered image from the frequency domain to the spatial

domain.

6) Row and column downsampling of the filtered images to generate four decomposed

subimages.

7) A reconstruction process consisting of row and column upsampling, 2-D FFT, 2-D

matrix multiplication, and inverse 2-D FFT to reconstruct the original image.

The results of our class project are shown in Figure 2. A 256 grayscale image (Figure 5a) is

brought through three stages of decomposition (Figures 5b-d) and three stages of

reconstruction to reproduce the original image (Figure 5e). An error image, shown in

Figure 5f, is produced by subtracting the recovered image from the original image. One will

observe that no pixel has an error that exceeds 10−12 gray levels.

Conclusion

We have introduced a method to address the topic of lossless image decomposition and

reconstruction to ECET students. Further work is projected to incorporate a hardware

implementation of the current design into a microcontroller course. The goal of this project is

to extend students’ knowledge base by introducing them to an engineering project which

incorporates both software and hardware design using knowledge gained from different

courses. Successful implementation of this project will help students achieve this goal.
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Fig. 4. Block diagram of the algorithm used for lossless image decomposition and reconstruction.
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Fig. 5. Images produced in wavelet decomposition and recenstruction. (a) Original image displayed in 256 gray levels, (b)

First stage of decomposition, (c) Second stage of decomposition, (d) Third stage of decomposition, (e) Reconstructed image, (f)

Error in reconstructed image in units of number of gray levels.
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