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Abstract:  The paper introduces MagicBlocks, a LEGO™-like game that allows learners to 
build increasingly more elaborate functioning digital logic circuits from well-defined logic 
blocks.  These logic blocks represent some fundamental digital logic (and computing) concepts 
such as: input, repetition, arithmetic and logical operations.  
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1. Introduction 
This paper presents MagicBlocks, a game kit that can be used to introduce pre-university 
learners to fundamental concepts of Digital Logic. It is our belief, based on theoretical arguments 
as well as first-hand instructional, and life experiences, that games, both virtual and embodied, 
hold great potential, especially in the delivery of advanced concepts and skills to a pre-university 
audience. 
 Many engineering subjects have been characterized as theoretical, thereby lending 
themselves to didactic lecture-based instruction accompanied by rigorous problem-solving 
exercises [1]. We do not believe that there will be a complete alternative to such an instructional 
methodology. However, the fact that the amount of information in engineering, is increasing at 
an exponential rate entails that all the relevant the material cannot be covered in lectures. 
Furthermore, the level of skill required by a practicing engineer is so high, that universities find 
it difficult to effectively deliver a comprehensive curriculum, in about four years of 
undergraduate study. Students, therefore, must be well equipped to acquire an understanding of 
the expanding field of engineering outside of their scholastic environments. There is also an onus 
on universities to produce creative thinkers among their engineering graduates. In our view, 
therefore, fundamental concepts of core subjects, such as computer architecture and 
programming, should be introduced, via appropriate educational vehicles, prior to the 
undergraduate level of education. While there will always be a need for intelligent interactive 
tuition, the role of the tutor is becoming more that of a guide who presents and mediates the P
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acquisition of advanced concepts and ideas. We contend that games are effective vehicles for 
guiding students’ understanding of concepts and for providing students with the opportunity to 
abstract a holistic working knowledge of the subject at hand, in our case, that of digital logic.  
 
2. Background 
2.1 Example of Current Educational Practice 
Digital logic is taught through lectures and labs. The lectures are presented by an instructor 
(usually a professor), and focus on theoretical aspects of the topics listed in the outline of the 
course. The instructor’s main activity in these lectures is to explain, as clearly as possible certain 
concepts or tools, such as K-maps, and then provide one or more examples of how such concepts 
are used for fulfilling some objective or solving a problem, such as minimizing logic circuits. 
There is a measure of interaction between students and the instructor. This interaction usually 
takes the form of questions and comments that seek clarifications, elaborations, and additional 
examples. The instructor attempts to answer as many of those requests as possible, but is also 
expected to cover a number of pre-determined subjects in each lecture. Lectures are accompanied 
by laboratory-based activities (labs). In each lab the students, individually or in groups, are 
required to carry out certain experiments with real components and instruments, as well as 
design, build and test, their own simple or complex circuits. The labs allow the students not only 
to experience concrete realizations of the concepts presented in the lecture (and the text book), 
but also demand that students utilize these ideas in design projects, which require creative 
thought, organization, decision-making, team work, practical skills, and an appreciation of the 
value of testing and verification.  

Assessment of students learning include pen and paper exams, pen and paper take-home 
assignments, practical lab assignments and projects, as well as pen and paper midterm and final 
exams, held under controlled conditions. These methods aim to measure (a) students’ 
understanding of the theoretical concepts, (b) students’ ability to use these concepts to solve 
problems, (c) students’ ability to carry out circuit analysis and synthesis, individually and in 
groups, in a lab as well as under controlled exam conditions. 

 
2.2 Related Work 
There have been good attempts at building simulations to aid in the teaching of digital logic. 
These, however, are almost exclusively software simulators, mainly due to the special suitability 
of computer languages to the implementation of such simulators. This fact does not affect the 
amount of work required to design, build and test usable and stable simulators. Following are 
some examples. 

Corsini & Rizzo [2] introduced a software package that can be used, by students with no 
background knowledge of professional simulation packages, to a) describe and simulate four 
classes of digital circuits by using a special language, as well as b) derive final, optimized 
Boolean equations that describe the proofed circuits. The software provides the user with a user-
friendly menu-driven interface with context-sensitive help. It is our belief that this program is a 
good tool to introduce students quickly and effectively to the formal design process used in 
packages such as OrCAD. 

El-Hajj & Kabalan [3] describe an innovative method to simulate digital circuits. The 
main innovation is the use of a spreadsheet program to implement these simulations. This can 
prove beneficial for schools that lack the resources to purchase professional or educational P
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simulators. However, their approach is rather limited because: a) it requires that the user be quite 
proficient in spreadsheet use, and b) it “.. does not allow [users] to study timing problems.”[3]. 

The above examples are simulations, while MagicBlocks is a gaming environment: the 
functionality that is derived from one or any construction of blocks reflects actual performance 
of underlying hardware circuitry. Further, according to the first-hand experience of Singh [4], 
students who use simulations place too much confidence in the precision of the results, “not 
realizing that they are only as accurate as the models used in the simulator”. In addition, Singh 
states “the greatest danger in the use of simulators is the development of ‘hardware phobia’ in 
students.”  

In addition, the immediate usability and the self-sufficiency of the blocks make them 
accessible to pre-university learners, as well as those potential learners who may not have 
sufficient access to a computer or the licenses necessary to run a useful software simulation 
package.  
 
2.3 Theoretical Foundations of Current Practice 
Current instructional practice (as briefly outlined in section 2.1) embodies a number of 
conceptions about learning. Some of these are: 
· The primary sources of knowledge about the subject are: the instructor and the various 

printed documents (e.g. text book, printed notes, handouts).  These are presented to the 
students as the authoritative and wholly accurate sources of all the declarative, and some of 
the procedural knowledge, required for the course. 

· Students activate and enhance their mental understanding of the concepts explained by 
the instructor and in the book through practice. Practice takes the form of solving pen and 
paper problems and carrying out hands-on lab assignments. 

· Cooperation between students on group projects is necessary if the relatively complex 
projects are to be completed in the time allotted to them. However, students are not 
particularly encouraged to collaborate in the discovery of knowledge or tools that enable the 
extension of this knowledge; their collaboration is oriented towards the completion of the 
project. 

· Assessment is carried out in various ways; however all answers are measured against an 
optimal or (in the case of design) a preferred solution. Assessment items are designed to test 
a student performance against a set of explicit learning objectives designated before the start 
of the course. 

Given the above, it is obvious that the learning theory of behaviorism has the strongest 
influence on the design of many digital logic courses. Its influence is apparent in the way 
learning objectives and assessment methods are devised. Emphasis is placed on specific 
measurable learning outcomes (e.g. the ability to design efficient and reliable combinational 
circuits that satisfy a prescribed functionality)[6].  

Students are mostly assessed via individual assignments and tests. Except in some design 
cases, there exists a model answer (response) to each problem (stimulus), for which the learner is 
regularly reinforced, with good marks and a measure of social recognition. Failure to produce 
correct answers requires repetitive study of the same (or similar) material until the learner can 
display that he/she has mastered it.  

Also, and in line with most instructional prescriptions of behaviorist theories, the 
instructor is the authoritarian centre of the learner’s universe. The instructor is not only the P
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source of true knowledge, but also the controller of the course, and the ultimate evaluator of 
students’ performance.   

Empiricism, a fundamental epistemological underpinning of behaviorism, expresses itself 
in the laboratory-based exercises. Empiricism emphasizes that the physical realization (i.e. actual 
circuit) of a concept should behave in line with certain pre-stated requirements. Besides 
behaviorism, cognitive information processing (CIP) [6] theories have the second biggest 
influence on instructional design. For example, all scientific instructional material (e.g. books) 
and courses (including digital logic) are carefully organized in a manner that provides a) a clear 
logical order, b) a progression of ideas and exercises from simple to complex, as well as from 
well-grounded (in older material) to substantially new. Further, problem-solving, as opposed to 
just rote memorization, is the main goal of most (advanced) exercises and assignments. 
 
3. Rationale for Development of MagicBlocks 
3. 1 Problems with Current Instructional Practices 
The development of MagicBlocks was necessitated after a critique of the existing manner in 
which digital logic is taught in many university courses. This revealed certain deficiencies. The 
main problems with current mainstream instructional strategies for teaching digital logic to 
university students are: 
· Lack of prior knowledge: Most university students encounter digital logic topics for the 

first time at the threshold of their university career. They possess no foundation of prior 
information (i.e., mental schemas) that can be used to encode new information and create 
new schemas of understanding. This places an onus on the instructor to successfully relate 
the new digital logic concepts (e.g., the binary nature of data) to existing out-of-discipline 
concepts (such as black & white printing and images.) Such a situation requires that the 
instructor or course designer (a) seek information about his/her students’ academic and 
professional background, as well as (b) allocate enough time, at the start of the course, so that 
students are able to effectively absorb/construct the seemingly simple but foundational 
concepts of the discipline.  

· Lack of time to discuss advanced concepts: Due to the time needed to introduce a good 
amount of new ideas to the students, the constraints of time allocated to a university course, 
and the dependency of students on the lecturer as the main source of knowledge, students are 
usually unable to take more than one or perhaps two courses in digital logic. Hence, 
advanced topics, which are valued by industry (e.g. validation & verification) and emerging 
areas of R&D, which are becoming increasingly important (e.g. parallel processing)[1], are 
unlikely to be studied at a serious level of depth in the context of an undergraduate degree, 
unless the student specializes in digital/computer design or a similar area.  

· Exposure to an abstract language: In addition to the lack of prior knowledge and the 
resulting lack of time for discussion of advanced topics, most instructors have no option but 
to teach concepts of digital logic and introduce the language of the discipline simultaneously. 
The learner is allowed little time, to construct his/her own understanding of concepts about 
the discipline, via the manipulation of, first actual objects (e.g. simple components), then of 
image-based and mixed representations (e.g. block diagrams), and finally, of a highly-
abstract and efficient symbolic formal language (e.g. Boolean logic). It is totally natural that 
this is not currently done, because adopting such a Brunerian [7] discovery-learning type of 
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approach to instruction requires the development of new educational technology, as well as 
early introduction, of some basic ideas of computer architecture and programming.  

 
3.2 Theoretical Foundations of Games 
For the purposes of this paper, we will define a game as a conceptual, goal-based, learner-
initiated [8], and stimulating set of situated activities [9], which, through the act of discovery and 
play, enables a constructivist form of learning.  

Childrens’ acts of play, from its freest to most structured form, have been theorized to 
enable learning [10-12]. The philosophies of children’s’ play have long informed the 
development of adult simulation and gaming [8, 11, 13, 14]. Researchers have contended that the 
act of playing a game propels learners through three critical phases: (a) experience, (b) reflection, 
and ultimately, (c) learning [11, 15]. Reflection, or reflective activity is a constructive process 
wherein learners interpret the experience of participating in the game and make sense (or 
meaning) of it. This is in stark contrast to learners receiving didactic instruction form a lecture-
based instructional strategy. Games, in our opinion, lean heavily towards the radical 
constructivist paradigm [16], focusing both on reflective discussion as well as on extensive 
‘hands-on’ participation in authentic and situated activities [9,17] 
In keeping with a constructivist tradition, MagicBlocks, is developed to satisfy the following 
broad criteria (adapted from Corbeil [8] ):  
· Goal-directed activities stimulate exploration and evoke challenge for the learner. 
· Learners are not restricted in their approach(es) to playing the game and hence, can apply 

their individual learning styles. 
· Activities are learner-centered, initiated and performed by learners, and learners set their 

own intermediary goals to help attain the ultimate goal of the activity.  
· The instructor plays a guiding and mediating role: modeling, and scaffolding instruction 

[18, 19]. 
MagicBlocks, the gaming environment described in this paper will help alleviate some of the 

problems identified in the instruction of digital logic in the following ways: 
· MagicBlocks is innovative and challenging, and hence will spike the interest of the learner. 

This will affect the intrinsic motivational traits positively [20] and increase the probability 
that students will learn how digital blocks function. 

· MagicBlocks introduces abstract concepts to the students in an authentic setting [9,17] 
thereby promoting the chances that the knowledge system developed will be relevant and 
transferable to activities outside of the gaming environment [21]. 

· The Brunerian discovery learning approach [7] is adopted in the use of MagicBlocks as a 
learning tool. Discovery learning will help learners construct mental models of digital 
design through their active participation in creating digital blocks. MagicBlocks allows 
learners to observe the necessary internal workings of digital design. Learners are also 
required to engage with digital blocks, and abstract a symbolic understanding of the manner 
in which these digital blocks function. MagicBlocks supports the construction of meaning 
through the actual manipulation of objects to the creation of a symbolic mental model 
representing the digital design created.  

 
4. MagicBlocks: Description  & Use 
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MagicBlocks consists of a) Building Board, on which blocks would be placed, b) Logic Blocks, 
and c) User Manual. 
 
4.1 The Board 
The board is large in size, and provides both the physical and electrical foundation for the logic 
blocks, which are placed on it. The blocks fit in any location on the board similar to the way a 
LEGO block fits in place. However, once a block is placed on the board, it is automatically 
grounded and provided with power. The blocks that may run synchronously are also provided 
with a universal clock pulse from the board. The board is, otherwise, a passive component.  
 
4.2 The Blocks 
The logic blocks are seven in number. They are: 
· An Input Block (fig. 1): this block is a user configurable generic package of input lines. It 

has 8 input lines. The input lines have no input pins, but provide only driven 1/0 output pins. 
The user, via a set of 8 small switches decides the logic levels of the individual pins. Each of 
the output pins is able to drive the input pin of any other block in the kit. 

 

 
Figure 1: Input Block 
 
· A Monitor (or output) Block (fig. 2): this block displays logical value of the input signal in 

binary, and in either Decimal, Hex, or ASCII. The input of each bit is connected directly to 
the corresponding output bit, as well as to a corresponding LED and to a pin on the chip. This 
gives the user the ability to use the monitor block, as either a terminal output block, or as an 
intermediate monitor, which sits in between two other blocks, expressing visually the nature 
of signals passing between them. Each of the 8 LEDs connected to the input signal indicate 
the logic level of the bit it is connected to. Together they show the value of the input signal in 
binary. Green indicates that the logic level is 1, while red indicates logic level 0. The monitor 
block also displays the value of the input signal in either Decimal, Hex, or ASCII. The user 
can toggle between these modes by repeatedly pressing and releasing the button. Each time 
the button is pressed, the mode will change from Decimal to Hex to ASCII, then back to P
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Decimal. The current mode will be displayed on an 8-segment display as “d, H, or A”. The 
current input signal value can be observed on a 16-segment display and two 8-segment 
displays. Another LED is only used in ASCII mode. Green indicates that the current ASCII 
character is upper case (otherwise it is lower case), while red indicates that it is not a 
keyboard symbol, and thus Ctrl must be depressed at the same time as the character that is 
displayed, to represent this character. 

 

 
Figure 2: Monitor Block 
 
· A Logic Function Block (fig. 3): this block accepts two 4-bit inputs, and produces a single 

1-bit output. It can either perform a sum of minterms or a product of maxterms. A switch is 
used to select the mode. Logic 0 produces a sum of minterms while logic 1 produces a 
product of maxterms. The current mode is displayed on a 16-segment display, using the AND 
symbol (^) for the sum of minterms or the OR symbol (v) for the product of maxterms. 
Green-red LEDs are connected to each input and output bit so that the current input and 
output signal values can be visually observed. 

 

 
Figure 3: Logic Function Block P
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· An Arithmetic Block (fig. 4): this block is basically a configurable simple calculator, with 

two sets of 4-bit input lines, and one set of 8-bit output lines. The user can toggle between the 
modes by pressing and releasing the button. Each time the button is pressed, the mode 
changes from addition to subtraction to multiplication to division, then back to addition. The 
current mode will be displayed on a 16-segment display as “+, -, *, or /”. In addition mode, a 
1-bit carry input is provided in case the user wishes to use 2 or more arithmetic blocks to add 
two 8-bit (or higher) numbers. If no signal is connected to the carry input, it will be assigned 
logic 0 (no carry). In subtraction mode, the absolute value of the result will be outputted, and 
a LED is used to indicate the sign of the result. Green indicates that the result is negative; 
otherwise, the LED will be off. In division mode, the 4 most significant bits of the result 
represent the integer part, while the 4 least significant bits represent the fractional part. The 
LED is also used to tell the user whether the result is an integer, contains a fraction, or a 
divide by 0 operation was attempted. If the LED is green, this indicates that the result 
contains a fraction (the 4 least significant bits are not 0), while if the LED is off, this 
indicates that the result is an integer. If a divide by 0 operation is attempted, the LED will be 
Red and all the output bits will be set to 1. Green-red LEDs are also connected to each input 
and output bit so that the current input and output signal values can be visually observed. 

 
Figure 4: Arithmetic Block 
 
· A Counter Block (fig. 5): this block is an 8-bit up/down counter that counts from 0 to 255 

then rolls over back to 0. Each time a clock pulse is received, the counter is either 
incremented or decremented by one, depending on the value of the up/down switch. By 
setting a second switch, the user can use either the system clock (provided by the board), or 
an external clock. The counter block also gives the user the option to load an 8-bit number 
into the counter (from the 8 input lines), instead of incrementing/ decrementing it. A third 
switch controls whether the counter will be incremented/ decremented or loaded when a 
clock pulse is received. The current value of the counter is provided on 8 output pins. An 
asynchronous reset switch is also provided, which sets the value of the counter to 0 when it is 
set to 1. Green-red LEDs are connected to each input and output bit so that the current input 
and output signal values can be visually observed. P
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Figure 5: Counter Block 
 
· A Memory Block (fig. 6): this block is basically a simple RAM. It can save up to eight 8-bit 

numbers (in 8-bit registers). It has 8 data inputs, 3 address inputs, and 8 outputs. The address 
lines are used to select which register (0 to 7) is selected. If no signal is connected to the 
address lines, then register 0 is selected. The number of the currently selected register is 
shown on an 8-segment display. The 8-bit number stored in the selected register can always 
be read from the output pins. A new number can also be stored in the selected register, by 
setting the read/write switch to 1. As soon as the next clock pulse is received, the old value in 
the selected register will be replaced with the value on the 8 input lines. By setting a switch, 
the user can use either the system clock (provided by the board), or an external clock. Green-
red LEDs are connected to each input and output bit so that the current input and output 
signal values can be visually observed. 

 

 
Figure 6: Memory Block 
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· A Capsule (or cover) Block: this is simply a resizable cover that allows the user to place a 
number of interconnected blocks of type 1-5 within a single package. Once a number of 
blocks are encapsulated, all that one sees is a blank block with a) input and output pins, and 
b) a set of (user-authored) notes on its top specifying: the overall functionality of the block, 
and the names of the input & output pins. The capsule block’s input and output pins can be 
connected to any number of input and output pins of the encapsulated blocks (inside). The 
cover block essentially implements information hiding. This allows the user to break the 
whole project into a number of packages, each of which encompassing its own (potentially 
elaborate) set of interconnected blocks.  The capsule block has 16 input and 16 output pins. 

 
4.3 The Learner’s Manual 
The learner’s manual contains two step-by-step sequences that explain in detail, using figures 
and text, how a total novice can use MagicBlocks to construct interesting digital circuits. The 
board, as well as all of the blocks, is required for the realization of the two examples. The board 
and each of the blocks are introduced upon first time. This provides a situated explanation of 
what the blocks do (as opposed to a detached abstract one).  

In addition the learner’s manual contains one solved and two unsolved challenges, covering a 
wide range digital circuit subjects. The subjects covered include subjects such as a) NAND, 
NOR, and XOR circuits; b) code conversion; and c) multipliers. 

4.4 Examples of Use 
Following are two examples of varying difficulty of digital logic projects built with only blocks 
from MagicBlocks. The purpose of these examples is to provide concrete evidence that: a) 
MagicBlocks can be used to build digital circuits without the need for any additional components 
(e.g. buffers or resistors), b) Digital circuits can built that are both relevant to digital logic, as 
well as meaningful to the young learner, and c) that the number of blocks required is not so 
larger as to render the whole idea practically infeasible.  
· Project #1 (Figure 7): Differentiates between odd and even numbers, by looking at the 

least significant bit of the counter block (Out0). The user can use either the system clock or 
the internal clock on the counter block.  

· Project #2 (Figure 8): Finds all multiples of a 4-bit number (entered using bits 7-4 of the 
input block). At each clock pulse, the counter will be incremented; it will roll over to zero 
after it reaches 15. Storing the most recent multiple in memory is optional. (If the storage of 
the most recent multiple is not desired, simply omit the memory block in the scenario).  
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Figure7: Odd-Even Number Classifier 
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Figure 8: Number-Multiples Calculator 
 
4.4 Educational Settings 
MagicBlocks can be incorporated into a variety of educational settings, from instructor-centred 
to student-based. MagicBlocks can be used as a complement to an instructor-led lecture to 
demonstrate relevant digital circuits. Short, laboratory-based activities can incorporate the use of 
MagicBlocks. Project-based activities, which can last as long as a semester, can realize their 
potential with the use of a MagicBlocks digital design activity. Finally, students can play with 
MagicBlocks on their own time, and at their own pace, either at their homes or as a school-based 
extra-curricular activity.       
 
5. Summary & Conclusions 
First, the current mainstream methodology for teaching digital logic is outlined. Then, a quick 
survey of a number of related simulations is presented. None of them is hardware-based, though 
all have their educational uses. The advantages that MagicBlocks offers over its most closely 
related commercial kits were presented. This was followed by an outline of the (implicit) 
theoretical foundations of the mainstream’s approach to the teaching of digital logic. What the 
authors see as the major deficiencies in current teaching practice is discussed. And this, in turn, 
forms the core of the rationale for the development of MagicBlocks. A somewhat detailed P
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description of the various components of MagicBlocks is presented next. This description 
covers: a) the board, b) the blocks, and c) the manuals. A couple of example projects of varying 
difficulty, all utilizing the blocks, are presented. Finally, examples of possible educational 
settings are put forward. 
 The most valuable contribution of this research (and development) effort is the 
presentation of a complete working example of a physical block (or embodied object) based 
approach to the learning/teaching of digital logic design. The other main alternatives to the 
approach we are proposing here are: software simulation and traditional logic labs. The first 
approach, despite its many advantages, suffers from the curse of disembodiment, and the other, 
despite its total realism, offers the learner too many unnecessary distractions (e.g. making the 
right pin connections). What we aim at is providing an embodied object-oriented approach to 
digital/hardware design, in the hope that it will remedy some of the deficiencies associated with 
simulations and traditional hardware labs, while simultaneously spiking the learners interest and 
hence motivation. It is hoped that, among other advantages, this will allow educators to introduce 
some of the most fundamental concepts of digital logic, early in the educational curricula and 
hence allow university instructors to focus more on teaching advanced topics, and supervising 
even more realistic lab-based design projects. 
 
 
 
 
Bibliography 
[1] C. Baillie and Fitzgerald, G., “Motivation and Attrition in Engineering Students”, European Journal of 
Engineering Education,  vol. 25, no. 2, pp. 145-155, June 2000. 
[2] P. Corsini and L. Rizzo, “SSCSSC: A Tool for the Teaching of Digital Circuits”, IEEE Transactions on 
Education, vol. 34, no. 1, pp. 70-75, February 1991. 
[3] A. El-Hajj and K. Y. Kabalan, “A Spreadsheet Simulation of Logic Networks”, IEEE Transactions on 
Education, vol. 34, no. 1, pp. 43-46, February 1991. 
[4] M. Singh, “Role of Circuit and Logic Simulators in EE Curriculum”, IEEE Transactions on Education, vol. 32, 
no. 3, pp. 411-413, August 1989.  
[5] Lego Website: http://mindstorms.lego.com/ 
[6] M. P. Driscoll, Psychology of Learning for Instruction, 1st ed. Boston, MA: Allyn and Bacon, 1994. 
[7] J. S. Bruner, “The Act of Discovery”, Harvard Educational Review, vol. 31, pp. 21-32., 1961. 
[8] P. Corbeil, “Learning From the Children: Practical and Theoretical Reflections on Playing and Learning”, 
Simulation and Gaming, vol. 30, no. 2, pp. 163-180, June 1999. 
[9] J. S. Brown, A. Collins and P. Duguid, “Situated Cognition and the Culture of Learning”, Educational 
Researcher, vol. 18, no. 1, pp. 32-42, February 1989. 
[10] B. Beatty, Preschool Education in America: The Culture of Young Children from the Colonial Era to the 
Present, New Haven, CT: Yale University Press, 1995. 
[11] G. Brougère, “ Some Elements Relating to Children’s Play and Adult Simulation/Gaming”, Simulation and 
Gaming, vol. 30, no. 2, June 1999. 
[12] D. Varga, “The Historical Ordering of Children’s Play as a Developmental Taks”, Play and Culture, vol. 4, no. 
4, pp. 322-333, November 1991. 
[13] J. Piaget, Biologies and Knowledge: Essays on the Relations Between Organic Regulations and Cognitive 
Processes, Paris: Gillemard, 1967. 
[14] J. Piaget, Psychology and Pedagogy, Paris: Denoel-Gönthier, 1969. 
[15] S. Thiagarajan, “How to Maximize Transfer from Simulation Games Through Systematic Debriefing”, in F. 
Percival, S. Lodge, and D. Saunders (Eds.), The Simulation and Gaming Yearbook 1993: Developing Transferable 
Skills in Education and Training, pp. 47-52, London: Kogan Page, 1993. P

age 7.825.13



 
“Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 

Copyright Ó 2002, American Society for Engineering Education” 
 

[16] E. von Glasersfeld, “An Exposition of Constructivism: Why Some Like it Radical”, Journal of Research in 
Mathematics Education, Monograh No .4, Reston, VA: National Council of Teachers in Mathematics, 1990. 
[17] J. Lave, “Situating Learning in Communities of Practice”, in L. Resnick, J. Levine and S. Teasley (eds.), 
Perspectives on Socially shared Cognition, pp. 63-82, Washington, DC: APA Press, 1991. 
[18] L. Vygotsky, Mind In Society: The Development of Higher-Psychological Processes (M. Cole, V. John-Steiner, 
S. Scribner, and E. Souberman, Eds. And Trans.), Cambridge, MA: Harvard University Press, 1978. 
[19] A. Collins, J. S. Brown, and S. E. Newman, “Cognitive Apprenticeship: Teaching the Craft of Reading, Writing 
and Mathematics”, in L. Resnick (Ed.), Knowing, Learning and Instruction: Essays in Honor of Robert Glaser, pp. 
453-494, Hillsdale, NJ, 1989.  
[20] D. Bergin, “Influences on Classroom Interest”, Educational Psychologist, vol. 34, no. 2, pp. 87-98. Spring 
1999. 
[21] S. J. Derry, J. R. Levin, H. P. Osana and M. S. Jones, “Developing Middle-School Students’ Statistical 
Reasoning Abilities Through Simulation Gaming”, in  Lajoie, S. P. (Ed.), Reflections on Statistics: Learning, 
Teaching, and Assessment in Grades K-12, Mahwah, NJ: Lawrence Erlbaum Associates, 1998. 
 
 
 
DR. NAWWAF KHARMA is Assistant Professor in the Electrical and Computer Engineering Department at  
Concordia University. His main areas of research are character/pattern recognition, artificial intelligence (AI) and 
developing innovative educational methods of engineering education.  
 
LEON CARO is a student in the Electrical and Computer Engineering Department at Concordia University whose 
interest lies in the development of games for teaching digital logic. 
 
VIVEK VENKATESH is a graduate student in the Educational Technology program at Concordia University’s 
Department of Education. His interests lie in the investigation of technology as a a teaching tool, and in developing 
mathematics curriculum material. 

P
age 7.825.14


