
Paper ID #15441

MAKER: A Kilobot Swarm

Mr. Nathan Tyler Thomas, Western Carolina University
Dr. Yanjun Yan, Western Carolina University

Yanjun Yan received her B.S. and M.S. degrees in Electrical Engineering from Harbin Institute of Tech-
nology (China), and the M.S. degree in Applied Statistics and the Ph.D. degree in Electrical Engineering
from Syracuse University. She is an assistant professor in engineering and technology at Western Car-
olina University. Her research interests are statistical signal processing, diagnostics, and particle swarm
optimization.

Dr. Hugh Jack, Western Carolina University

Dr. Jack is the Cass Ballenger Distinguished Professor of Engineering and Department Head of the
School of Engineering and Technology within Western Carolina University. His interests include robotics,
automation, and product design.

c©American Society for Engineering Education, 2016

MAKER: A Kilobot Swarm

Abstract

A Kilobot is a small, inexpensive robot designed by the Self-Organizing Systems Research Group
at Harvard University. These robots have features that enable researchers to test collective
algorithms on hundreds of robots (called a swarm) without the logistical problems that are faced
when dealing with a large number of units1. This paper presents a tested procedure on how to
construct a Kilobot Swarm. The procedure was created from a combination of the original
Kilobot documents made available by Harvard University2, other materials later released by
Harvard3, as well as some additional insight and modifications that result in a single document
with all of the relevant information to get a Kilobot Swarm operational.

Introduction

The components of a Kilobot Swarm include: multiple Kilobot agents, an assembly jig, the arena,
and the overhead infrared programmer/controller (OHC). A Kilobot agent is a small robot about
1.25” in diameter with three legs that make it stand about 1.5” tall. The legs work in tandem with
two vibration motors mounted to the sides. These vibration motors cause the legs to walk
independently giving the unit the ability to move in a differential manner1.

Figure 1: Kilobot Agents

The assembly jig is a 3D printed component that assist in the Kilobot construction, making the
mounting of the legs and motors quick and consistent.

Figure 2: Kilobot Jig

The arena can consist of any smooth reflective surface but, as recommended, a dry erase surface
should be used. The overhead infrared programmer/controller (OHC) is a circular printed circuit
board (PCB) about 3” in diameter with a USB connection on the top center and infrared LEDs
mounted on the bottom perimeter of the PCB. The OHC is designed to program or control
multiple Kilobots at one time.

Figure 3: OHC Model

Required skills for this project:

• advanced SMD soldering and reflow techniques.

• basic C or C++ programming.

• basic knowledge of Atmel products.

• basic knowledge of 3D printing and modeling.

Required equipment for this project:

• Windows PC.

• soldering iron suited for small components.

• reflow oven.

• 3D Printer.

Design Materials

The documents and software used in this procedure have been compiled from two sources: the
original Kilobot documents made available by Harvard University at
http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html and
updates later released at https://www.kilobotics.com/.

The first source of information is the Kilobot documents folder that contains most of the relevant
information needed to get a batch of Kilobots operational. The download will be labeled Kilobot
documents and will contain 17 items of different types. All .hex and .c files (there should be 13
total) should be placed in a new folder labeled System Software, then drag the KilobotController
folder in to this new folder as well. This folder now contains all of the software needed for the
system. Some of these files may not be used, but it is recommended to keep them all for later use.
Now, in the main directory of Kilobot documents there should be two folders (DESIGN FILES
and System Software), a PDF labeled Kilobot Guide and a .txt file labeled Readme. Readme
contains a link for license information explaining acceptable uses of the material. The DESIGN
FILES folder contains 6 items; three folders and three .SLDPRT files. The three folders contain
the hardware design information (schematics, PCB layout, and CAM files) for the kilobots, the
OHC, and the calibration unit (not used in this process). The three .SLDPRT files labeled
Assembly Jig1, Assembly Jig2, and Assembly Jig3 are 3D part files from a 3D modeling
software known as SolidWorks. These three files can be converted into .stl files and printed to
make the jig that will assist in placing the motors and legs on each kilobot. Lastly, Kilobot Guide
is the main reference document for the assembly and operation of the system. All relevant
information from this document has been revised and presented in this paper.

The second source of information is the Kilobotics website, and is a combination of tutorials and
web based compiler that makes operation and programming of the units less difficult. The
Kilobotics website has made improvements to the original process and therefore should be
referenced before the Kilobot Guide. Before proceeding go the Kilobotics website and under the
Downloads tab, download the Kilobot Bootloader (bootloader.hex), Controller Firmware
(controller.hex) and the KiloGUI (kilogui.exe); place these files in a new folder inside the System
Software folder and name it Kilobotics Files (if preferred kilogui.exe can be placed on the desktop
for easy access).

Additions to Design Materials

The previous section explains all the materials one needs to get started making their own swarm.
However, to complete these designs using the Kilobot Guide, Kilobotics, and the associated files
only, can be a challenge. To combat the difficulties, some of the original documentation has been
redone and some of the original procedures have been changed slightly. The changes in procedure
will be described in this paper as needed. All document changes, corrections, or updates will be
listed below. These documents should replace their original counterparts in the DESIGN FILES
folders.

The original bill of materials (BOM) for the OHC and Kilobot units are located in the folders
OHC PCB and Robot PCB, respectively, which are located in the folder DESIGN FILES inside the
main directory of Kilobot documents. Changes to the original documents are minimum; mostly
done for consistency and readability. The improved BOMs can be seen in Tables 4 and 5.

The folder, Robot PCB, contains three more documents in need of an update. The documents
bottom solder mask and copper.pdf and top solder mask and copper.pdf are the bottom
and top PCB layouts for the Kilobots. These documents are used for component placement during
soldering. The originals are crude and may contain errors; an improvement was made to these
files (seen in figures 36 and 37).

Note: As shown in the updated PCB documents, what is considered the bottom of the PCB is
actually the top of the robot and vice-versa.

The last document to address in this section, also contained in the Robot PCB folder, is the
Kilobot Schematic labeled Schematic.pdf. This document is not at all legible and therefore, has
been updated using Eagle Cad (seen in figure 38 and 39).

Parts Procurement

All of the electronic components for the Kilobot units and OHC can be obtained through a small
number of distributors (see table 1). There may be a few parts on lengthy back order or obsolete
by manufacturer; in this case different parts with the same specifications must be selected. To
assist in this, the BOM includes descriptions of all components that contains rating and package
information (package refers to the component footprint). Prices on these components can vary
with time and between distributors. Extra money can be saved by researching the best price and
price breaks for a given component through different distributors.

Table 1: Distributor List

Distributors Used
Distributor Website
Digikey www.digikey.com
Mouser www.mouser.com
Pololu www.pololu.com
Powerstream www.powerstream.com

Other Distributors
Distributor Website
Sparkfun www.sparkfun.com
Ebay www.ebay.com
Jameco www.jameco.com
Adafruit www.adafruit.com

PCB Design

A PCB design is contained in several CAM files. These files all have a different file extension to
represent each layer of the PCB; table 2 shows common extensions4. The CAM files for the
Kilobot units and the OHC are located in folders Robot PCB and OHC PCB respectively. Table 3
shows the CAM files contained in these folders. Also, in the OHC PCB folder are .Pcblib,
.PrjPCB, .Schlib, .SchDoc, and .PcbDoc files exclusive to the PCB software suite Altium and are
the schematic and PCB files that the CAMS were created from. These files are only given for the
OHC and gives the user complete freedom to manipulate the PCB as desired. The CAM files are
what gets sent to the PCB manufacturer. In this case OSH Park was used, although there are many
other good choices.

Note: OSH Park is a reliable company with quick turn around and prices as cheap as $1 per in2

with quantity price breaks.

Any PCBs ordered, no matter the company come in multiples; this is why the quantity number in
the BOM is higher than the number of units being built. To submit the CAM files to OSH Park
they must be compiled in a compressed folder per PCB and submitted to the website. Before this
is done a slight change must be made to file Kilobot Controller PCB.GM1; the extension must
be changed from .GM1 to .GKO. After submitting the compressed folder, any errors will be
addressed; if none, the PCBs can be ordered and usually arrive in about one to three weeks.

Table 2: OSH Park CAM Extensions

Ext. Layer
.GTL Top Layer
.GBL Bottom Layer
.GTS Top Soldermask
.GBS Bottom Soldermask
.GTO Top Silkscreen
.GBO Bottom Silkscreen
.GKO Board Outline
.TXT NC Drill

Table 3: Project CAMS

OHC CAMS Kilobot CAMS
Kilobot Controller PCB.GBL BottomCopper.GBL
Kilobot Controller PCB.GBS BottomSolder.GBS
Kilobot Controller PCB.GM1 BoardShape.GKO
Kilobot Controller PCB.GTL TopCopper.GTL
Kilobot Controller PCB.GTO
Kilobot Controller PCB.GTS TopSolder.GTS
Kilobot Controller PCB.TXT NCdrill.TXT

In addition to the PCBs, a Kilobot stencil for soldering the surface mount components (SMD)
should be purchased as well. A stencil assists in applying the correct amount of solder paste on all
the SMD pads. After the application of the solder and placement of parts, the entire PCB can be
baked in a reflow oven, soldering all of the SMD components at once. OSH Stencil is a company
that makes stencils from the top soldermask layer CAM file (.GTS)5. This file can be uploaded to
the website and the stencil will arrive in one to two weeks.

Note: A PCB stencil is usually made with the paste mask CAM file; this is because only the
surface mount components should be stenciled. By using the solder mask CAM, (the design files
do not contain a paste mask CAM file) all parts, including vias, will be cut into the stencil.
Because of this, care must be taken when applying the solder paste; only placing it on surface
mount pads. Also, if a reflow oven is not available, a Kilobot can be hand soldered by and
experienced individual.

Kilobot Jig Assembly

Figure 4: Magnet Placement

1. Convert the three .SLDPRT jig files to .stl files so they can be 3D printed. Because
.SLDPRT is a SolidWorks part file, it can be converted easily in SolidWorks. If SolidWorks
is not accessible, Grabcad Workbench has a free web based converter that only requires the
user to create an account6.

2. Superglue 0.25” Neodymium magnets into the jig arms. Make sure magnets 1 and 2 are
placed so that they attract each other. Similarly make sure magnets 3 and 4 are placed so
that they attract each other2.

3. Screw in the two arms so they are firmly attached to the base but can still pivot2.

Note: The PCB may not lay flat inside the square opening of the jig. During the making of
the shown jig the square had to be sanded out with a rotary tool so the PCB could be
positioned correctly.

Figure 5: Kilobot Jig

Kilobot Assembly

1. Using the solder stencil, apply an even layer of solder paste to the SMD pads on the top side
of the PCB and, using figure 37 for reference, place the SMD components to the PCB
making sure the infrared transmitter and receiver are pressed flat to the board surface (DO
NOT scratch lens). If not pressed flat, the robot may transmit more light in one direction
than in others, or be more sensitive to light in one direction; neither of which is desirable2.
Repeat this step as to have enough boards to fill the reflow oven and bake them. It is
important that the datasheet for the infrared components be reviewed and set the reflow
oven profile so not to over heat these components. After the boards are removed from the
oven hand solder the SMD components on the bottom of the boards (top of unit). All SMD
components should be soldered before moving to the next step.

2. Insert three leg pins into the leg pin jig as shown (remove plastic from leg headers), pushing
them down until they touch the table. Place the PCB in the jig as shown and solder the legs
in place (the RGB led should be facing up)2.

Figure 6: Leg Assembly

3. Insert two pin headers into the leg pin jig as shown. Place the PCB upside-down in the jig
and solder the headers in place2.

Figure 7: Header Assembly

4. If needed, cut the motor leads to be 1.1” (28 mm) in length, strip and tin the tips, and solder
onto the PCB using figure 36 as reference. Ensure that the motor leads do not cause any
shorts2.

Note: Figure 36 is mirrored from what is seen looking down on the board and the red wire
of the vibration motor should be connected to terminal labeled + and the blue wire to -
shown in figure 36. This wiring assumes that the vibration motor will rotate in the

clockwise direction with normal polarity (blue lead to ground). The left motor, M2, is
connected with normal polarity and the right motor, M1, is reversed. This is why M1’s
postive lead is acctually connected to ground. The theory behind this type of locomotion
platform is explained in more detail in Analysis, Design and Control of a Planar
Micro-robot Driven by Two Centripetal-Force Actuators7.

5. Solder the battery clip into the PCB making sure the motor wires are not tangled or pinched
and insert a coin-cell battery negative side up as shown below (the charging clip seen
below is optional and dimensions can be found in the Kilobot Userguide)2.

Figure 8: Kilobot Assembly

6. Insert the robot into the motor assembly jig as shown below. Attach the top side of each
motor onto the round magnet on the jig arms; be sure that they are properly seated in the
jig. Quickly and carefully apply a small amount of hot glue to the underside of each motor
and rotate the arms into place (glue can dry fast; make sure to close jig arms as soon as the
glue is placed). Allow 30 seconds for the hot glue to cure.

Figure 9: Kilobot Assembly

7. Solder the light detector into the PCB top-side so that the top of the lens is just below the
height of the battery clip as shown in 102. The Kilobot is now complete.

Figure 10: Light Detector

Figure 11: Complete Kilobot

OHC Assembly

1. Using the silkscreen layer (component designation printed on the PCB), the part placement
can be done by referencing the part designator in the BOM. The diodes and LEDs have
arrow symbols between the component pads pointing to the cathode terminal. Hand solder
the SMD components.

2. Solder USB header to the top side of the board as shown2.

Figure 12: OHC Assembly

3. Solder the remaining top-side components as shown2.

Figure 13: OHC Assembly

4. Solder the IR LEDs on the bottom side of the board as shown2 (a straight line indicates the
cathode terminal).

Figure 14: OHC Assembly

5. Insert the USB cable into the header as shown2.

Figure 15: OHC Assembly

6. Attach kilobot programming cable and serial cable as shown. The programming cable is a
2x3 female header to 2x3 male header connected one to one (use the OHC and Kilobot
schematics for reference). The programming cable can be used to program a kilobot and the
serial cable can be used to receive serial data from a kilobot and display it on the computer2.

(a) OHC Model
(b) Complete OHC

Figure 16: OHC Assembly

OHC Drivers and Firmware

The process about to be explained may have inconsistent results due to differences in operating
systems and settings as well as software and drivers that may already be installed. This procedure
is to assume that no needed drivers or software has been previously installed and the user’s OS is
Windows 7 (Windows 8 and 10 have not been tested with this procedure). Before starting it is
recommended to prevent Windows from automatically installing drivers when a device is plugged
in; this can be done in the Device Installation Settings.

Note: The diagram in figure 17 illustrates the connections between the ICs on the OHC. The
diagram shows two USB data lines going into the a central hub then out to the PC. Because of
this, there are several drivers needed:

1. The FT232RL driver. After installation of drivers, this connection will be seen as a COM
port by the computer.

2. The AT90USB162 driver. After installation of drivers, this connection will be seen under
Jungo with two tabs: WinDriver and AVRISP MKII.

Figure 17: OHC Connection Diagram

Driver Procedure:

1. Install AVR Studio 4.17 (build 666), AVR Studio 4.18 SP1 (build 692), and AVR Studio 4.18
SP3 (build 716)8 as well as WinAVR9 (C and C++ compiler will be needed if AVR Studio
will be used to compile code). AVR Studio 4 was chosen because it is easy to use and fast
compared to Atmel Studio 6 which uses Visual Studio making it a large install that runs
slow. AVR Studio 4 will be used later on for flashing the bootloaders on to the devices and
also contains needed drivers.

2. Install Atmel FLIP 3.4.7 10. This software will be used to program the OHC as an AVRISP
MKII programmer and also contains needed drivers.

3. Plug the OHC into the computer (if drivers are automatically installed it will change the
procedure slightly and certain steps may be skipped). The Device Manager should show the
items below when the OHC is plugged in.

Figure 18: Device Manager

4. Copy the folder KilobotController (or just the relavent driver folder) to the main director of
the C drive. Right click FT232R USB UART in the Device Manager and update driver.
Browse to c:\KilobotController\ and select the FTDI32 or FTDI64 folder depending on the
Windows version. Install and ignore any request to restart the computer, this is not
necessary2.

Note: This driver is not final, and will be replaced. It is installed at this point to allow the
user to use some of the older programs like Kilobot Controller.exe or some of the other
calibration methods if desired. Doing it this way can also simplify the process.

Figure 19: Device Manager

If the Device Manager appears like figure 19, repeat this step by right clicking on USB
Serial Port. When installed correctly the items should appear in the Device Manager as
shown in figure 20.

Figure 20: Device Manager

5. In the Device Manager at the top of the list, right click on the computer name and select
Add legacy Hardware, select Next, select Install the hardware, that I manually select from a
List (Advanced), select Show All Devices, select Have Disk, point to C:\Program Files
(x86)\Atmel\AVR Tools\usb64\windrvr6.inf, and lastly, select WinDriver an continue by
selecting Next and install until complete. The Device Manager list should then appear as in
figure 21.

Figure 21: Device Manager

6. Right click on AT90USB162 DFU and select Update Drivers and browse for C:\Program
Files (x86)\Atmel\Flip 3.4.7\usb when complete, the Device Manager list should then
appear as in figure 22.

Figure 22: Device Manager

7. Open the Flip software (installed in step 2), click on device selection and choose
AT90USB162, select the communication mode to be USB. Click load hex and select the
AVRISP-MKII.hex file located in the System Software folder. Check Erase, Blank Check,
Program and Verify, then Push the Run button. Uncheck the Reset button next to Start
Application and then click on Start Application. Unplug and reinsert the USB cable. You
should now find the AVRISP mk II in the Device Manager under Jungo2 as in figure 23. The
OHC is now setup as explained in the Kilobot Guide. This means it is setup to work with
the original GUI (Kilobot Controller.exe). If it is desired to use the original GUI and
programs (not recommended) no more needs to be done to the OHC. Else, the final step to
complete the OHC is in the following paragraph labeled IMPORTANT.

Note: If this step does not work, refer to the Hardware Boot Entrance Timing
Characteristics section of the AT90USB162 datasheet . The IC may need a manual reset
sequence before it will take the hex file; this is done by shorting R60 and R59 with a
screwdriver in the proper order.

Figure 23: Device Manager

IMPORTANT: This material has been compiled assuming the files from the Kilobotics
website will be used. One of these files is the KiloGUI (most recent GUI for controlling and
programming the Kilobots) which will need specific drivers to work properly. Because
windows may install drivers automatically during the previous procedure, it is important to
insure that the correct drivers have been installed. A program called Zadig11 allows the user
to see what driver is currently installed for a specific device; it also makes replacing drivers
easy. Download and run Zadig, go to options and select List All Devices in the pull down
tab, select FT232R USB UART. The windows below the pull down tab will show the current
driver on the left and to the right, possible drivers to install as seen in figure 24.
FTDIBUS(v13.11.35.0) (located in the FTDI64 folder inside KilobotController folder) is
the driver for Kilobot Controller.exe (the original Kilobot GUI found in the
KilobotController folder), which was installed in the previous steps and does not work well
with KiloGUI, WinUSB (v6.1.7600.16385) is the driver that windows usually automatically
installs, however KiloGui will not work with this driver either. libusb-win32 (v1.2.6.0) is
the proper driver for the KiloGui. It is important to understand that the OHC will program
through AVR Studio using any of these drivers and it is only KiloGUI that requires the use
of libusb-win32 (v1.2.6.0) for correct operation. If the use of any of the older programs
such as Kilobot Controller.exe is desired, the OHC driver should remain
FTDIBUS(v13.11.35.0). If the new programs (KiloGUI.exe)are to be used then the driver
can be replaced with libusb-win32 (v1.2.6.0) using Zadig.

Figure 24: Zadig

Firmware Procedure:

1. Plug in the OHC (make sure the jumper on CON1 is set to INTERNAL PROG) and open
AVR studio.

2. Select Tools / Program AVR / Connect...

3. Select AVRISP mkII under Platform: and USB under Port: then select Connect.... If this
window appears again, unplug the OHC, close the software, and repeat the previous steps.

4. Under the Main tab select ATmega328 as the device. Click the Read Signature button, this
should result in a Signature Code and several OK! at the bottom as seen in figure 25. This
indicates that communication between the internal IC and the software is occurring
correctly.

Figure 25: AVR Studio

5. Under the Fuses tab about mid page change the fuse values to EXTENDED = 0xFF, HIGH
= 0xD8, and LOW = 0xCE. Then click Program and a verification will appear at the bottom
similar to figure 26.

IMPORTANT: Be extremely careful programming the fuse values. If incorrect values are
entered and programmed all communication to the IC could be lost and the only practical
way to recover from this is to replace the IC, so be mindful when changing these values.

Figure 26: AVR Studio

6. Under the Program tab in the Flash section, browse for the controller.hex file that was
placed in the Kilobotics Files folder earlier in this document. Click the Program button and
another verification should appear at the bottom similar to figure 27.

7. The OHC is now ready to use.

Figure 27: AVR Studio

Kilobot Bootloader

1. Plug in the OHC (make sure the jumper on CON1 is set to EXTERNAL PROG) and open
AVR studio.

2. Select Tools / Program AVR / Connect...

3. Select AVRISP mkII under Platform: and USB under Port: then select Connect.... If this
window appears again unplug the OHC, close the software, and repeat the previous steps.

4. Turn on the robot by adding the power jumper as shown in figure 282.

Figure 28: Turning On Kilobot

5. Using a one to one, female to male cable, connect the OHC programmer to the robot as
shown. Make sure that the programmer pins do not touch the motor on the back side.
Gently press the program cable to the side to ensure a good connection.

Figure 29: Programming Connection

6. Under the Main tab select ATmega328P as the device. Click the Read Signature button, this
should result in a Signature Code and several OK! at the bottom as seen in figure 25. This
indicates that communication between the Kilobots IC and the software is occurring
correctly.

7. Under the Fuses tab, about mid page change the fuse values to EXTENDED = 0xFF, HIGH
= 0xD1, and LOW = 0xE2. Then click Program, and a verification will appear at the
bottom similar to figure 26.

8. Under the Program tab in the Flash section browse for the bootloader.hex file that was
placed in the Kilobotics Files folder earlier in this document. Click the Program button and
another verification should appear at the bottom similar to figure 27; the robot may vibrate.

IMPORTANT: Be extremely careful during the programming process. If the programming
is interrupted it could cause incorrect fuse values to be programmed and all communication
to the IC could be lost.

9. Repeat this procedure for the remaining Kilobot units.

Calibration

Motor Calibration:

Note: The procedure below is verbatim from the Kilobotics website unless labeled Note: which is
additional information to the Kilobotic’s procedure.

The Kilobots use vibration motors to move, this is known as stick-slip locomotion. Due to
manufacturing differences the power required to achieve good forward and turning motion varies
from robot to robot, and generally varies from surface to surface. Here is how to manually
calibrate the values required for turning left, turning right, and going straight, in the process, you
can also assign a unique identifier (”UID”) to your kilobot, if you so desire3.

1. Open up the KiloGUI program and click on the Calibration button, you will be presented
with the following screen3.

Figure 30: Motor Calibration

2. Select a value for turning left, click test to tell the robot to move using this value. Values
between 60 and 75 work best for turning, but this will depend on your robot and on the
surface being used. Choose different values until your robot can perform a full turn
consistently on the surface being used3.

3. Follow the same procedure for turn right. To calibrate moving straight, you can use the
values you already found for turn left and turn right as a good initial guess. Usually go
straight values should be between 2 and 10 units smaller than the turning left and turning
right values to achieve a good motion3.

4. Give your robot an identifier number by typing a positive integer in the unique ID box and
clicking test. The ID can store an unsigned 16-bit integer but we recommend picking values
that make sense given the size of the swarm you are using3.

5. Once you have calibrated all the values, make sure to click SAVE to write these changes to
the EEPROM memory of your robot. You will be able to use these values in your program,
and this is described in the Kilobot Library, API docs3.

Note: During this procedure, it is likely that some Kilobot units will move opposite of the
commands given, for example: a right command might move left, a left command might
move right and both could occur resulting in a forward command moving in reverse. To
solve this problem, pull the relevant motor off the battery holder and re-glue it upside down
or remove the battery holder and reverse the polarity by reversing the wiring. For example,
if the left turn command results in a right turn, then flip the motor that controls the left turn
(left motor). This is done because the direction of rotation for each motor may be different
given the same wiring polarity.

Distance Calibration:

Important: The Kilobots measure light intensity from the infrared transmissions of other units to
determine the distance between the two. Each Kilobot has two sets (high and low gain) of 15 light
intensity values stored in the EEPROM (Electrically Erasable Programmable Read-Only
Memory) of the microprocessor that represent distances from 0mm to 70mm in 5mm increments.
In the DESIGN FILES folder there are CAM files and schematics for a Calibration Board. This
board transmits signals from the 15 distances that are then received by a Kilobot unit and
programmed into the memory. For this procedure to work, the calibration unit must be calibrated
and then each kilobot unit must be calibrated one at a time (see the Kilobot User Guide2). To
avoid the extra expense and these extra steps, an easier method to implement was devised. This
method will use KiloGui.exe and the OHC to upload and execute programs; make sure the
materials on using the OHC and KiloGui (found at www.kilobotics.com/documentation) are
understood before proceeding with this process.

1. Using the Kilobotics editor3, compile RX CAL.c, TX CAL.c, and Distance Calibration.c.
These files can be found and copied from the end of this document. After compiling
download and save the hex files in the Kilobotics Files folder.

2. Take three Kilobots with known working transmitters and receivers and label them A, B,
and C.

3. Using the KiloGui and the OHC upload RX CAL.hex onto Kilobot A and TX CAL.hex
onto Kilobot B. Connect a serial cable from the OHC to the serial header on unit A as seen
in figure 31.

Note: The ground connection for the debug wire is the pin located nearest to the front leg of

the unit.

Figure 31: Serial Connection

4. Place units A and B so they are touching (0 mm), using the KiloGui execute by pressing
Run and press the Serial Input button. Every time the RX CAL unit receives a signal the
LED will flash yellow. After receiving ten signals the unit will output two values (low and
high gain light intensities). These values are averages from the previous ten signals
received. Repeat in 5 mm increments upto 70 mm. When all distance values have been
documented there will be 15 high gain and 15 low gain values.

5. Repeat the previous three steps for every possible combination: B transmitting to A, A
transmitting to C, C transmitting to A, etc. Collect the values in this manner until the data
looks similar to figure 32.

Note: If the receiving unit does not receive values at some of the longer distances leave the
space blank.

Figure 32: Distance Calibration Data

6. Average all of the distance values and round to whole numbers. The final values in this case
are shown in figure 33.

Figure 33: Final Distance Calibration Values

7. Place the final values into the arrays labeled Cal Low and Cal High located in Distance
Calibration.c .

Figure 34: Distance Calibration.c

8. Compile Distance Calibration.c and download the hex file, save to the Kilobotics Files
folder. Upload Distance Calibration.hex to all of the units to be calibrated and run. The
LED will flash green for a few seconds and stop. The calibration values are now stored in
the EEPROM of all the units.

9. Program the unit as desired they are now ready for use.

Note: The accuracy of this procedure depends on the surface used while collecting data, the
consistency of the components and the quality of the manufacturing process. If any parts

involving the IR sensors are substituted in a future batch of Kilobots or the arena surface
changes the previous values collected may not be satisfactory.

System Setup

Kilobots should be operated on a smooth, flat, level surface to ensure proper robot mobility. To
aid communication, the surface should be glossy or reflective. A dry-erase whiteboard oriented
horizontally is recommended. To prevent communication interference, Kilobots should be
operated in a location out of direct sunlight or other bright sources of Infra red light. The
overhead controller should be hung above the Kilobots at a distance of about one meter. The
robots beneath the OHC in about a one meter diameter region will be able to receive messages
from the OHC as shown2.

Figure 35: System Setup

Conclusion

The procedure presented in this document explains how to create a Kilobot Swarm. By following
these steps one can build a large swarm with practical expenses. For comparison, a robotics
company, K-Team, sells Kilobots and the supporting hardware like battery chargers and OHCs.
K-Team sells a pack of 10 Kilobots for about $1100. The price for building units using these
procedures comes out to be about $1400 which includes an OHC and 50 Kilobots. This latter
figure means a research team willing to put in the work can have 100 units and support hardware
under $3000.

Table 4: Kilobot BOM (50 Units)

Qty Description Distributor Distributor # Designation Unit Price
450 CAP CER 2.2UF 6.3V Y5V 0603 (****) Digikey 490-1587-1-ND C1, C9, C10, C12, C14, C17, C18, C19, C20 0.0328
250 CAP CER 10000PF 25V 10% X7R 0603 (***) Digikey 490-1520-1-ND C3, C7, C8, C11, C13 0.00872
50 CAP CER 0.1UF 16V 10% X7R 0603 (**) Digikey 478-1239-1-ND C15 0.0094
50 CAP CER 1000PF 50V 5% NP0 0603 (*) Digikey 490-1451-1-ND C2 0.0244
50 CAP CER 10000PF 25V 5% C0G 0603 (**) Digikey 445-2664-1-ND C4 0.14
100 CAP CER 68PF 50V 5% C0G 0603 (**) Digikey 445-1279-1-ND C5, C6 0.0165
50 IC CHARGER LI-ION USB/AC 10WSON (*) Digikey LM3658SD-A/NOPBCT-ND U6 1.1664
50 DIODE SCHOTTKY 30V 100MA 0603 (*) Digikey 641-1282-1-ND D1 0.2524
50 FIXED IND 10UH 50MA 900 MOHM (*) Digikey 490-4025-1-ND L1 0.101
50 IC OPAMP GP 5.5MHZ RRO 14TSSOP (*) Digikey 296-22565-1-ND U2 2.9232
50 RES SMD 0.82 OHM 1% 1/10W 0603 (*) Digikey P.82AJCT-ND R38 0.1138
50 RES SMD 1.18K OHM 1% 1/10W 0603 (*) Digikey P1.18KHCT-ND R13 0.015
50 RES SMD 1.47K OHM 1% 1/10W 0603 (*) Digikey P1.47KHCT-ND R22 0.015
150 RES SMD 1.6K OHM 5% 1/10W 0402 (**) Digikey P1.6KJCT-ND R25, R27, R29 0.0105
50 RES SMD 1.62K OHM 1% 1/10W 0603 (*) Digikey P1.62KHCT-ND R3 0.015
150 RES SMD 10K OHM 1% 1/10W 0603 (**) Digikey P10.0KHCT-ND R33, R34, R37 0.0114
50 RES SMD 10 OHM 1% 1/10W 0603 (*) Digikey P10.0HCT-ND R16 0.015
50 RES SMD 11K OHM 1% 1/10W 0603 (*) Digikey P11.0KHCT-ND R1 0.015
50 RES SMD 154 OHM 1% 1/10W 0603 (*) Digikey P154HCT-ND R14 0.015
100 RES SMD 2M OHM 5% 1/10W 0402 (**) Digikey P2.0MJCT-ND R31, R32 0.0105
50 RES SMD 2.26K OHM 1% 1/10W 0603 (*) Digikey P2.26KHCT-ND R6 0.015
50 RES SMD 2.37K OHM 1% 1/10W 0603 (*) Digikey P2.37KHCT-ND R11 0.015
50 RES SMD 20K OHM 1% 1/10W 0603 (*) Digikey P20.0KHCT-ND R21 0.015
100 RES SMD 200 OHM 1% 1/10W 0603 (**) Digikey P200HCT-ND R17, R24 0.0114
200 RES SMD 25.5K OHM 1% 1/10W 0603 (***) Digikey P25.5KHCT-ND R5,R8, R10, R36 0.00844
50 RES SMD 280K OHM 1% 1/10W 0603 (*) Digikey P280KHCT-ND R9 0.015
50 RES SMD 301 OHM 1% 1/10W 0603 (*) Digikey P301HCT-ND R15 0.015
50 RES SMD 4.87K OHM 1% 1/10W 0603 (*) Digikey P4.87KHCT-ND R20 0.015
50 RES SMD 499 OHM 1% 1/10W 0603 (*) Digikey P499HCT-ND R7 0.015
50 RES SMD 4.99K OHM 1% 1/10W 0603 (*) Digikey P4.99KHCT-ND R12 0.015
50 RES SMD 5.62K OHM 1% 1/10W 0603 (*) Digikey P5.62KHCT-ND R2 0.015
50 RES SMD 549K OHM 1% 1/10W 0603 (*) Digikey P549KHCT-ND R4 0.015
50 RES SMD 604K OHM 1% 1/10W 0603 (*) Digikey P604KHCT-ND R35 0.015
150 RES SMD 820 OHM 5% 1/10W 0402 (**) Digikey P820JCT-ND R26, R28, R30 0.0105
50 RES SMD 806 OHM 1% 1/10W 0603 (*) Digikey P806HCT-ND R19 0.015
50 RES SMD 9.76K OHM 1% 1/10W 0603 (*) Digikey P9.76KHCT-ND R18 0.015

Not Mounted R23
50 IC REG LDO 3V 0.2A SOT25 (*) Digikey 893-1100-1-ND U3 0.3612
100 IC REG LDO 3V 0.7A SOT25 (**) Digikey 893-1074-1-ND U4, U5 0.4726
50 LED RGB 4PLCC (*) Digikey VAOS-SP4RGB4CT-ND LED1 1.53
100 BJT NPN 20V 0.5A (**) Mouser 755-2SD2114KT146W T2, T3 0.129
150 TRANS NPN 50V 0.5A SOT-23 (**) Digikey MMBT6428CT-ND T5, T6, T1 0.1353
50 MCU 32KB In-system Flash 20MHz (*) Mouser 556-ATMEGA328P-MU U1 2.41
100 Shaftless Vibration Motor 10x2.0mm (**) Pololu 1638 M1, M2 2.62
50 Lithium ion Rechargeable Coin Cells (**) Powerstream Lir2477 2.02
50 SHUNT JUMPER .1” BLACK GOLD (*) Digikey 3M9580-ND Jumpers 0.06
3 CONN HEADER 50POS .100” SGL GOLD Digikey SAM1061-50-ND J3, J4, J5 4.96
50 Coin Cell Battery Holder (*) Mouser 534-1025-7 BATT 1.4
50 Infrared Emitters 5V 160mW 60Deg (*) Mouser 782-VSMB1940X01 Tx1 0.735
50 Photodiodes 60V 215mW 60Deg (*) Mouser 782-TEMD7100X01 Rx1 0.66
2 CONN HDR BRKWAY .100 80POS VERT Digikey A26536-40-ND J1(POWER), J2(DEBUG),ISP1 3.54
50 Photo Transistor(Ambient Light Sensor) (*) Mouser 782-TEPT5700 T4 0.478
90 PCB 1.7424 in2 (Total Price = 157.50) OSH Park

Total:
1282.73

* Price Break (50 Units)
** Price Break (100 Units)
*** Price Break (250 Units)
**** Price Break (500 Units)

Table 5: OHC BOM (1 unit)

Qty Description Distributor Distributor # Designation Unit Price
12 CAP CER 0.1UF 25V 10% X7R 0603 (*) Digikey 445-1316-1-ND C1, C2, C8, C13, C15, C18, C19, C26, C29, C32, C34, C36 0.024
10 CAP CER 1UF 10V 10% X5R 0603 (*) Digikey 490-1543-1-ND C3, C6, C9, C14, C20, C27, C28, C33, C35, C37 0.041
12 CAP CER 22PF 50V 5% C0G 0603 (*) Digikey 445-1273-1-ND C4, C5, C16, C17, C22, C23, C24, C25, C30, C31, C38, C39 0.03
1 CAP ALUM 100UF 16V 20% RADIAL Digikey 493-1040-ND C7 0.25
2 47uf 10v (Not Mounted) Digikey C10, C12
3 CAP CER 47UF 6.3V 20% X5R 1206 Digikey 490-3907-1-ND C11, C40, C41 0.53
8 (Not Mounted) Digikey C21, R1, R3, R10, R40, R54, R59, R60
1 CONN HEADER .100” SNGL STR 20POS Digikey S1011EC-20-ND CON1,CON2,CON3,CON4,CON5 0.46
1 IC MCU 8BIT 32KB FLASH 32TQFP Digikey ATMEGA328-AURCT-ND IC1 3.47
1 IC 2/3-PORT USB HUB 32-LQFP Digikey 296-27129-1-ND IC2 3.12
1 IC REG LDO 3.3V 0.15A SOT23-5 Digikey TC2185-3.3VCCT-ND IC3 0.5
1 IC USB FS SERIAL UART 28-SSOP Digikey 768-1007-1-ND IC4 4.5
1 IC MCU 8BIT 16KB FLASH 32TQFP Digikey AT90USB162-16AU-ND IC5 4.35
10 EMITTER IR 870NM 100MA RADIAL (*) Digikey 751-1208-ND IR-LED1 to IR-LED10 0.939
3 FERRITE CHIP 1000 OHM 1.5A 0805 Digikey 445-5223-1-ND L1, L2, L3 0.12
7 LED 572NM YW/GN WH/DIFF 0603 SMD Digikey 511-1578-1-ND LED1, LED2, LED3, LED6, LED7, LED8, LED9 0.54
2 LED BLUE HIGH BRIGHT ESS SMD Digikey LNJ937W8CRACT-ND LED4, LED5 0.45
4 MOSFET N-CH 50V 220MA SOT-23-3 Digikey BSS138KCT-ND Q1, Q2, Q3, Q4 0.38
1 MOSFET N-CH 20V 2.1A SOT23-3 Digikey ZXMN2B01FCT-ND Q6 0.59
6 RES SMD 47K OHM 1% 1/10W 0603 Digikey P47.0KHCT-ND R2, R36, R52, R53, R57, R58 0.1
4 RES SMD 2K OHM 5% 1/10W 0603 Digikey P2.0KGCT-ND R4, R5, R6, R7 0.1
12 RES SMD 1K OHM 1% 1/10W 0603 (**) Digikey P1.00KHCT-ND R8, R9, R12, R16, R17, R25, R26, R41, R55, R56, R61, R62 0.015
4 RES SMD 300 OHM 5% 1/10W 0603 Digikey P300GCT-ND R11, R13, R14, R15 0.1
7 RES SMD 28K OHM 1% 1/10W 0603 Digikey P28.0KHCT-ND R18, R19, R20, R21, R22, R23, R24 0.1
2 RES SMD 100 OHM 1% 1/10W 0603 Digikey P100HCT-ND R27, R34 0.1
5 RES SMD 1 OHM 5% 1/8W 0805 (*) Digikey RMCF0805JT1R00CT-ND R28, R29, R30, R31, R32 0.021
1 RES SMD 1.5K OHM 5% 1/10W 0603 Digikey P1.5KGCT-ND R37 0.1
6 RES SMD 27 OHM 5% 1/10W 0603 (**) Digikey P27GCT-ND R38, R39, R42, R43, R48, R49 0.0126
1 RES SMD 0.0 OHM JUMPER 1/10W Digikey RMCF0603ZT0R00CT-ND R44 0.1
5 RES SMD 15K OHM 5% 1/10W 0603 Digikey P15KGCT-ND R45, R46, R47, R50, R51 0.1
1 CONN USB JACK TYPE B VERT STR Digikey 151-1083-ND USB1 2.1
1 CRYSTAL 8MHZ 18PF SMD Digikey 535-10212-1-ND XTAL1 0.35
1 CRYSTAL 6MHZ 20PF SMD Digikey XC1000CT-ND XTAL2 0.56
1 CRYSTAL 16MHZ 18PF SMD Digikey 535-10226-1-ND XTAL3 0.35
3 PCB 11.4921 in2 (Total Price = 57.55) OSH Park

Total:
100.11

* Price Break (50 Units)
** Price Break (100 Units)
*** Price Break (250 Units)
**** Price Break (500 Units)

Figure 36: Bottom Layer (Top of Robot)

Figure 37: Top Layer (Bottom of Robot)

Figure 38: Kilobot Schematic

Figure 39: Kilobot Schematic Cont.

// RX_CAL.c

#include <kilolib.h>
#define DEBUG
#include <debug.h>

// Flag to keep track of new messages.
unsigned new_message = 0;
int lg;
int hg;
int lg_avg;
int hg_avg;
int lg_array[10];
int hg_array[10];
unsigned char i = 0;

void setup() { }
// print voltage every second
void loop() {

// Blink the LED yellow whenever a message is received.
if (new_message == 1)
{

// Reset the flag so the LED is only blinked once per message.
new_message = 0;

lg_array[i]=lg;
hg_array[i]=hg;

set_color(RGB(1, 1, 0));
delay(100);
set_color(RGB(0, 0, 0));
i++;

if (i == 10)
{
i = 0;
lg_avg = (lg_array[0]+lg_array[0]+lg_array[1]+lg_array[2]+lg_array[3]

+lg_array[4]+lg_array[5]+lg_array[6]+lg_array[7]+lg_array[8]
+lg_array[9])/10;

hg_avg = (hg_array[0]+hg_array[0]+hg_array[1]+hg_array[2]+hg_array[3]
+hg_array[4]+hg_array[5]+hg_array[6]+hg_array[7]+hg_array[8]
+hg_array[9])/10;

printf("Low High\n");
printf("%2d%6d\n", lg_avg, hg_avg);
}

}
}
void message_rx(message_t *message, distance_measurement_t *distance_measurement)
{

new_message = 1;
distance_measurement_t d;
d = *distance_measurement;
lg = d.low_gain;

hg = d.high_gain;
}
int main()
{

kilo_init();
kilo_message_rx = message_rx;
debug_init();
kilo_start(setup, loop);
return 0;

}

// TX_CAL.c

#include <kilolib.h>

message_t message;
// Flag to keep track of message transmission.
int message_sent = 0;

void setup()
{

// Initialize message:
// The type is always NORMAL.
message.type = NORMAL;
// Some dummy data as an example.
message.data[0] = 0;
// It’s important that the CRC is computed after the data has been set;
// otherwise it would be wrong and the message would be dropped by the
// receiver.
message.crc = message_crc(&message);

}

void loop()
{

// Blink the LED magenta whenever a message is sent.
if (message_sent == 1)
{

// Reset the flag so the LED is only blinked once per message.
message_sent = 0;

set_color(RGB(1, 0, 1));
delay(100);
set_color(RGB(0, 0, 0));

}
}
message_t *message_tx()
{

return &message;
}
void message_tx_success()
{

// Set the flag on message transmission.
message_sent = 1;

}
int main()
{

kilo_init();
// Register the message_tx callback function.
kilo_message_tx = message_tx;
// Register the message_tx_success callback function.
kilo_message_tx_success = message_tx_success;
kilo_start(setup, loop);

return 0;
}

// Distance_Calibration.c

#include "kilolib.h"
#include <avr/eeprom.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdlib.h>
#include <util/delay.h>
#include <avr/sleep.h>

//used locations in eeprom
#define ee_OSCCAL 0x001 // rc calibration value in eeprom
#define ee_SENSOR_LOW 0x20 //Low-gain calibration data in epromm
#define ee_SENSOR_HIGH 0x50 //High-gain calibration data in epromm

void setup() {
//High and low gain values to be placed in EEPROM
static int Cal_Low[15] = {491,388,301,227,177,141,

107,82,62,46,35,24,16,10,8};
static int Cal_High[15] = {1121,1121,1121,1098,946,765,

597,464,372,286,224,117,128,98,89};

int i = 0;

while(i<=14)
{
set_color(RGB(0,1,0));
eeprom_write_byte((uint8_t *)(ee_SENSOR_LOW+i*2),((Cal_Low[i])>>8));
_delay_ms(100);
set_color(RGB(0,0,0));
eeprom_write_byte((uint8_t *)(ee_SENSOR_LOW+i*2+1),(Cal_Low[i] & 0x00ff));
_delay_ms(100);

set_color(RGB(0,1,0));
eeprom_write_byte((uint8_t *)(ee_SENSOR_HIGH+i*2),((Cal_High[i])>>8));
_delay_ms(100);
set_color(RGB(0,0,0));
eeprom_write_byte((uint8_t *)(ee_SENSOR_HIGH+i*2+1),(Cal_High[i] & 0x00ff));
_delay_ms(100);
i++;
}
}

void loop() {

}
int main() {

// initialize hardware
kilo_init();
// start program
kilo_start(setup, loop);

return 0;
}

References

[1] Michael Rubenstein, Christian Ahler, and Nagpal Radhika. Kilobot: A low cost scalable robot system for
collective behaviors. In Proceedings of 2012 IEEE International Conference on Robotics and Automation
(ICRA 2012): May 14-18, pages 3293–3298, 2012.

[2] Radhika Nagpa. The kilobot project, 2008. URL
http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html.

[3] Kilobotics, 2013. URL https://www.kilobotics.com/.

[4] Osh park design submission guidelines, 2016. URL https://oshpark.com/guidelines.

[5] Osh stencil, 2016. URL https://www.oshstencils.com/.

[6] Grabcab workbench, 2016. URL https://grabcad.com/workbench.

[7] Panagiotis Vartholomeos and Evangeloss Papadopoulo. Analysis, design and control of a planar micro-robot
driven by two centripetal-force actuators. In Proceedings of 2006 IEEE International Conference on Robotics
and Automation (ICRA 2006): May 14-18, pages 649–654, 2006.

[8] Atmel and avr studio, 2016. URL http://www.atmel.com/tools/STUDIOARCHIVE.aspx.

[9] Winavr, 2016. URL
https://sourceforge.net/projects/winavr/files/WinAVR/20100110/.

[10] Atmel flip, 2016. URL http://www.atmel.com/tools/FLIP.aspx.

[11] zadig, 2016. URL http://zadig.akeo.ie/.

