Manufacturing System A Class Project in Industry Environment

Nikhil K. Kundu, Jerry L. Wickman Purdue University / Ball State University

ABSTRACT

-

Many of the technology students in the first two years do not understand how the coursework is applied in the practice of engineering. These courses introduce engineering students to the type of tasks they are expected to handle on the job after graduation. Courses in automated manufacturing including computer numerical control (CNC) machining, materials handling, time and motion study, etc. should be designed to provide students hands on training towards their professional goals.

The objective of this project is to manufacture a product using a complete manufacturing system. It includes manufacturing processes such as machining, materials handling, assembly, and inspection. The project also involves time and motion study, flow process charts, and operation sheets as usually required in an industrial production operation.

The sample project presented here deals with the manufacturing of a shuttle selector manifold in an industry environment. The manifold was manufactured by a group of students in a local manufacturing company. Methods engineering and work measurements functions were performed wherever possible. The manifold is designed to work on hydraulic systems using petroleum based fluid up to 3000 psi.

INTRODUCTION

Mechanical and manufacturing technology students are expected to be proficient in and be familiar with broad based manufacturing subjects. One of the most important and demanding requirements should be their familiarity with the state of the art technology including manufacturing processes such as CNC machining, materials handling, assembly, and inspection and testing. In the course of this project, students get an exposure to not only the design and machining aspects but also get into methods engineering and motion time measurements.

This project assignment include product design, CNC programming for a milling machine, and prototype manufacturing. In the course of this project students were required to prepare standard process sheets, flow process charts, standard method sheets for operation, stopwatch observation sheet, and videotaping of the manufacturing processes for motion time measurements.

THE PRODUCT

The product for this assignment is a shuttle selector manifold for high pressure hydraulic applications (fig 1). The manifold is designed to work on hydraulic systems using petroleum based fluid up to 3000 psi. Four pressure lines may be routed through the manifold and the highest pressure will be seen at the GA port or a line may be run to the load sense port of the system using a pressure compensated pump. A pressure compensated pump will only output as much pressure as the hydraulic system requires saving energy and unneeded wear on components. The manifold senses the highest pressure and returns information to the pump. Typical market for this product may be machine tools, factory automation, earth moving equipment, farm machinery, ship building, oil drilling, and automotive industries to name a few. The design of the manifold was not emphasized in this project. It is assumed that the students have previous knowledge of machine elements, computer aided design, and CNC programming. Fluid power background was very useful for this project. The drawings were made on CIM-CAD software from CIM-Line Inc. [2].

PLANT LAYOUT

Major thrust of this project was to familiarize students with the layout of the manufacturing plant which they obtained from a number of field trips to local manufacturing plants. Then through group discussions, they came up with the optimum solution for the system layout with required quality and quantity of the product in mind.

Figure 3 shows the shop floor layout indicating the material flow from raw material to the finished product including packaging and shipping. In the sample project however material flow through the plant was not exactly the same as in the layout.

As per layout, aluminum bars are transferred from the racks at station 1 to the automatic saw bar feeder at station 2, which takes it to the saw to be cut to size at station 3. The bar is then conveyed to the horizontal machining center at station 5 where all the machining operations are performed. The machined part is then transferred to the thermal deburring furnace at station 6 followed by washing and cleaning at station 8. Quality control is done at station 11 where the finished product is measured and inspected as per specifications. Then after assembly and packaging at station 12, it is stocked in the finished goods inventory at station 14 ready to be transferred to the shipping bay at station 15.

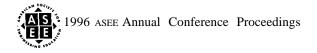
PROTOTYPE MANUFACTURE

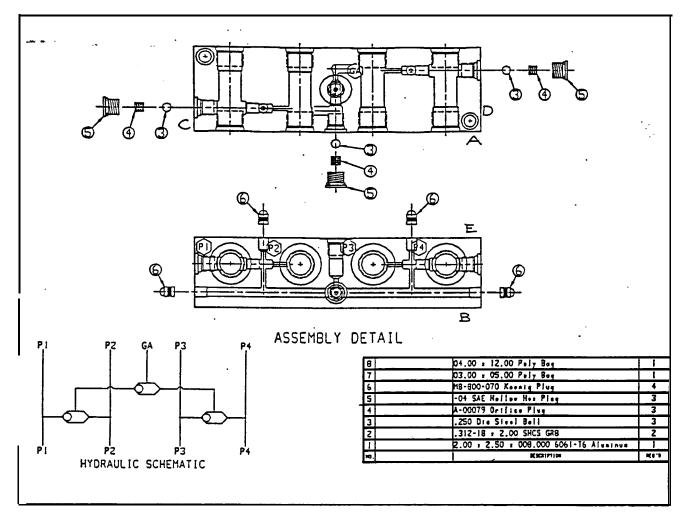
The shuttle selector manifold was manufactured in a MAZAK VQC-20/50B double pallet horizontal mill [3]. A part of the CNC program is shown in figure 2. Once complete the parts were deburred and inspected. The manufacturing processes were videotaped for later use in motion time measurements. Standard process sheets were prepared for record keeping and future process control. Due to the limited space available, only a brief summary of the standard process sheet is shown in table 1.

Stopwatch observation sheet was used to determine the time for individual elements. The attached sample for stopwatch observation was prepared in continuous timing and a part is shown in table 2. The analyst starts the watch at the beginning of the first element and allows it to run for the duration of the study. At the end of each element, the watch reading is recorded in the proper place in the observation sheet. The

readings are listed in the R column and subtracted time under the T column. In this project four manifolds were machined and assembled.

In the project students were required to contact a number of manufacturers of machine tools, various types of conveyors, and instruments for quality control and inspection. Through this exercise students had the opportunity for communications with other professionals, investigate manufacturers catalogs, become familiar with specifications like capacity, power limitation, operation characteristics of manufacturing equipments, and the costs involved in the manufacturing system.

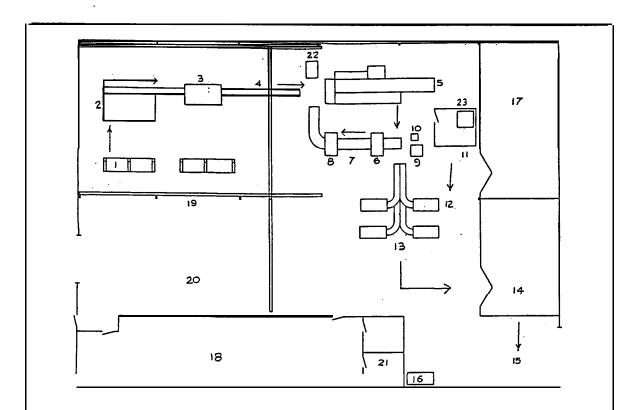

References


- Amrine, H. T., Ritchey, J. A., Moodie, C. L., and Kmec, J. F., Manufacturing Organization and Management, Prentice Hall
- 2. CIM CAD Software, Version 3.2, Cim Line Inc., Itasca, Illinois
- Versatech V-40, five face double column machining center, Mazak System International, Florence, Kentucky

Authors: **Nikhil K. Kundu** Purdue University 2424 California Road Elkhart, Indiana

Jerry L. Wickman Ball State University Muncie, Indiana

Participating Students: Tom Weinkauf, Matt Giloth, Rob Gunn, and Dale Schmalz



	MAT ALMINUM									LTI	FLAG	PI	TCH	i-X	PI	тсн-	Y.	
							THETA			z								
1		•								_	0							
2							0.0											
3							0.0											
							0.0											
4		<u>د</u> /	3120	,	0.00	000	0.0	00										
	UNIT																	
	DRILLING														_			
SNO	TOOL	NOM-D	NO	HOLE-	DHO	OLE-DE	EP PRE	-DIA	PRE	-DEP	P RGH	DEPI	нс	:-SP	FR		м	M
1	CTR-DR	1.008	1	0.25	00					118	3	6	00	0.02	200	-8		
2	DRILL	0.25	2	0.25	00	4.12	50				PCK2	TO.12	25	185	0.0	080	8.	
	DRILL		3	0.27	50	0.420	50 00		-		PCK1	TO .06	0	200	0.0	080	8	•
FIG	PTN Z		X		Y		AN1		AN2		Tl		T2	1	F M	N	ΡQ	R
1	PT Q	.0000	. 0.	4400	-1	.8800		•							0 0	0		
UNO	UNIT	NOM	-D		MA	JOR-D	PITC	н	TAP-	DEP	CHMF	C:	łP					
2	TAPPING	UN 75	-20		0	.4374	0.050	0	0.5	5750	0.00	 C).					
SNO	TOOL	NOM-D	NO	HOLE-	O H		EP PRE	-DIA	PRE	-DES	P RGH	DEPT	гн с	:-sp	FR		M	M
- 1	CTR-DR	1.008	1	0.39	14					118	3	6	00	0.0	200	8		
2	DRILL DRILL	0.26	4	0.25	50	2.28	00				PCK2	TO.25	50	185	0.0	080	8	
3	DRILL	0.38	5	0.37	'50	1.56	00				PCK1	TO .06	50	185	0.0	080	8	
4	DRILL	0.44È	6	0.43	180	0.69	00				PCK2	TO .63	30	170	0.0	050	8	
5	TAP UN	75-20	7	0.43	374	0.57	50			F	FIXP.	0500		30 0	.050	0 8	1	
	PTN Z		x		Y		AN1		AN2		TL		T2	1		N		6
	PT 0	0000	1			.8100									0 0	0		

Figure 2 Mazatrol CNC Program (sample)

1996 ASEE Annual Conference Proceedings EE

ITEM	Model No.			Catalog	
1. Material Racks	89816508	(6) req'd		MSC pg.	1989
2. Automatic Saw Bar Feeder	Special fro	m Bosch A	utomation		
3. Automatic Feed Saw	Scotchmar	n CPO 350	NF AFR	MSC pg.	1844
4. Conveyor for sawed parts	Special fro	m Bosch A	utomation		
5. Horizontal Machining center	Mazak VQ	C-20/50B	ŀ		
6. Thermal Deburr Furnace					
7. Wash Deburr, Stamp conveyor	Special fro	m Bosch A	utomation		
8. Parts wash station	Custom				
9. Roll stamping machine					
10. Roll stamper bench	Custom				
11. Quality control					
12. Ass'y & Packaging bench	Custom				
13. Ass'y conveyor	Special fro	m Bosch A	utomation		
14. F. Inventory (shelving)	Custom				
15. Shipping Bay					
16. Shipping Bench	Custom				
17. Stock Room					
18. Offices	-				
19. Overhead cranes - trolley	89817720			MSC pg.	
electric hoist	89812523			MSC pg.	2029
20. Ship. & Rec'q bay					
21. Restrooms					
22. Machine operator bench	Custom				
23. Coord. Measuring machine					

Figure 3 Shopfloor Layout

1996 ASEE Annual Conference Proceedings

Materia	Il Space	Part Nu	mber	Part No		
Purcha	sed Stock Size	Usage		Date Issue	d	
Pcs. Pa	r Pur. Size	Assy N	0	Date Supe		
Neight		Sub As	sy No	Issued By	1	
Oper.	Operation Description	Dept	Machine	Set-up	Rate	Tools
10	Transport to saw	1	Overhead Crn	20 ft/min		
20	Load saw and cut to length	2, 18	Automatic		1 pc/min	saw
	16 pcs of 2x2.5x8 with .03 tol		feed saw			
30	Convey to CNC machine	19	Belt Conveyor		20ft/min	
40	Load & machine sides D,A	3, 4	Mazatrol		4 pcs/hr	
	Load pallet 1 with 8 pack, 4 on		Hozl. mill	1		1
	each side		2 pallet			
	Machine side C					1
	Drill .25x4.12 dp					.25 drill
	Drill 7 mm drx 1.56 dp				1	7 mm drill
	Tap .062-27 NPTFx 1.75 dp.				1	.38 drill
	Drill .44-20 SAE Point tool					.062NPTF
	Tap .44-20 SAE .7 dp				Т	#4 SAE
	Machine sides D& E					#4 SAE
	(cntd. drill & tap as above)					
80	Wash & dry	5	Washer		2 ft/min	Basket
100	Thermal deburr	6	Nova 2000		4pcs/min	
	Natural gas, vacuum pump				1	
130	Conveyor to assembly	8	Beit çonvevor	I	20 ft/min	
140	Inspection at quality control	11	СММ			
		9				Al.wrench
	Part removed from conveyor					Air hammer
	Assemble side A, place 7 mm					unit load
	plugs into holes, use air					pallet
	hammer to seat plugs					
	Flip part to side B					
	(Assemble continued)					
160	Transport to inventory		1		1	unit load
200	Packaging		1			boxes
210	Shipping	1	1	1	1	

Table 1 Standard Process Sheet

Table 2 Stopwatch Observation Sheet

	ELEMENTS	Cycle	1	Cycle	2	Cycle	3	Cycle	4	Avg.	Rate	Time	Extra	Std
	DESCRIPTION	R	T	R	T	R	Т	R	Т	Elem.			Time	Time
									1	Time				
1	Grasp, Position work piece	0.75	0.75	1.14	1.14	1.6	1.6	1.01	1.01	1.02	100	1.02	5%	1.07
2	Reach, grasp plug	1.47	0.72	1.9	0.76	3.2	1.6	1.7	0.69	0.94	100	0.94	5%	0.91
3	Place plug into hole	4.89	3.43	6.08	4.28	11.8	8.6	8.58	6.88	5.77	. 100	5.77	5%	6.06
4	Install plug	7.84	4.85	12.4	6.28	17.7	7.91	13.4	5.29	6.08	100	6.09	5%	6.38
5	Lay gun down	11.3	4.43	13.7	6.33	20.5	0.88	14.7	0.91	1.12	100	1.12	5%	1.18
6	Flip part	12.2	0.92	14.4	0.73	21.1	0.66	18.4	0.72	0.76	100	0.76	5%	0.78
7	Grasp stl. ball, position	15.1	1.6	18.1	3.65	23.1	2.37	19.9	14.5	8.5	100	3.5	- 5%	3.68
14	Flip part	44.2	1.07	43.1	0.99	47	0.89	42	0.89	0.96	100	0.96	5%	1.01
15	Grasp, place plug	47.5	2.74	45.1	1.05	51.1	2.09	46.8	4.71	3.15	100	3.15	5%	3.31
21	Hand thd. #4 SAE plug	69.1	5.66	67.1	3.32	75.7	6.14	73.5	6.9	5.6	100	5.6	5%	5.89
22	Tighten # 4 SAE plug	75.8	6.48	74.8	3.5	83.2	7.58	78.3	4.76	6.57	100	6.57	5%	6.88

Table 3	Standard Method Sheet sample)
---------	-------------------------------

	LEFT HAND	RIGHT HAND	SPEED	FEED	STD.TIME
19	Grasp T-handle and position	Hold orifice plug in position			2.11
	into orifice plug				
20	Guide orifice plug into hole and	Guide T-handle			6.86
	tighten				
21	Lay T-handle down	Pick up #4 SAE plug and hand	-		5.88
		thread into position			
22	Pickup allen wrench and tighten	Hold part and allen wrench			6.89
	#4 SAE plug	· ·			· ·
				1	T

