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Materials Science Students’ Perceptions and Usage Intentions of Computation 
 
 

 

Abstract 

Over the last several decades computational methods have increasingly played a central role in 
Materials Science and Engineering (MSE) for characterizing structure, simulating processes and 
predicting materials' response. To align with this shift, an MSE department at a research 
university in the U.S. Mid-Atlantic region launched a curricular innovation to inculcate students 
with a basic facility with computational methods and to leverage computing proficiency to 
increase student comprehension of core MSE concepts. In this study we investigate the impact of 
this curricular innovation on students’ (a) perceptions regarding the utility of integrating 
computation in their studies and their future careers; (b) perceptions regarding their own abilities 
to implement computation for solving problems relevant to MSE; and (c) intentions regarding 
the use of computation in their studies and future careers. 

Results of this study suggest that the specific nature and context of students' previous experience 
with computation can have a measureable effect on students' perceived abilities to use it as a tool 
to solve problems in science and engineering as well as perceived utility for their academic 
courses and future careers.  These two constructs can potentially determine future intentions of 
use or future intentions to seek additional training. 

 

Background and Motivation 

Over the last several decades Materials Science and Engineering (MSE) as a discipline has 
embraced the integration of computational methods for characterizing structure, simulating 
processes and predicting materials' response. This change has been most notable in academia 
with the establishment of "computational materials science and engineering" (CMSE) as a 
recognized sub-discipline. Survey research indicates a consensus in the field that adequate 
training in modeling and simulation of materials is critical for both undergraduate and graduate 
students in MSE academic programs to prepare students for careers in basic research, 
engineering and material development.  

To align with this shift, an MSE department at a research university in the U.S. Mid-Atlantic 
region launched a curricular innovation to inculcate students with a basic facility with 
computational methods. The curricular innovation consists of a new course entitled 
“Computation and Programming for Materials Scientists and Engineers” (CPMSE). The course’s 
primary learning goal was for students to apply algorithmic thinking and computer programming 
toward the solution of engineering and scientific problems relevant to MSE.  The course was 
designed according to the How People Learn framework as embodied by an inverted 
lecture/homework delivery method that required students to watch lectures outside of class, 
respond to on-line quizzes and come to class prepared to engage in active learning1.  The 
creation of this new course was also coupled with the integration of computational learning 
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modules in the major’s six core courses to simultaneously reinforce CMSE skills and 
foundational MSE concepts. The central premise for introducing this curricular approach is that 
students learn disciplinary topics and scientific computing better when the topics are taught in an 
integrated manner rather than by learning each topic separately 2.   

To this date the department has completed the first delivery of the CPMSE course and has 
integrated the additional learning modules in three of the six core MSE courses.  In this study we 
report the results of students’ perceptions of computation and the computational modules as part 
of the following three foundational courses: Structure of Materials (Structures), Physical 
Chemistry of Materials I: Thermodynamics (Thermodynamics) and Biomaterials I 
(Biomaterials). The research questions driving this study are: 

1. What are students' perceptions regarding the utility of integrating computation in their 
studies and their future careers?  

2. What are students' perceptions regarding their own abilities to implement computational 
methods commonly used to solve MSE problems? 

3. What are students' intentions regarding the use of computation in their studies and future 
careers? 

 

Review of the Literature 

Computation is an essential engineering research and development tool for the analysis and 
design of solutions to modern technological needs3. Higher education, however, is not keeping 
pace by equipping undergraduate engineering students with the computational literacy needed to 
solve problems in existing or emerging application fields 4-7. Current educational strategies at the 
undergraduate level frequently treat computing as a narrow technical tool that is applied in 
isolation from related disciplinary topics 8,9. However, the power of computational thinking is 
best realized in domain-specific and professionally relevant contexts 4. Computational literacy in 
engineering requires knowing when, why, and how computation methods work and don’t, and 
applying or modifying existing numerical methods or methodologies to successfully solve 
problems or design solutions in different engineering fields 10. To develop computational literacy 
effectively in current and future engineers requires infusing computation across disciplinary 
curricula. 

A frequently used method for integrating computing into the engineering curriculum has been 
through the development of introductory programming courses e.g., 11,12-16 introduction to 
engineering courses, 17,18 or numerical analysis courses 12 designed for all engineering majors. A 
second more-focused scheme has integrated computing through projects and exercises as part of 
disciplinary courses 19-21. And a third approach has focused on developing specific courses in 
computational science and engineering 22. Other forms for integrating computation have centered 
on the use of tutorials and online modules 23-25. Some instances have infused computing modules 
in more than one course 26-28, vertically integrating problem-based learning scenarios that link 
across courses 19,29-31 and other implementations throughout the entire curriculum 32-35.  
Assessments of these implementations have mostly concentrated on student-user metrics, student 
comments/feedback (reported by the instructor), instructor perspectives, and student self-
reporting of perceptions and learning 13-15,19,20,22,23,35, and, to a lesser extent, assessments have 
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also focused on student performance 21.  The focus of our study centers on student acceptance of 
computation in their studies and future careers.  To this end, we have adopted and adapted the 
Technology Acceptance Model as the theoretical foundation to guide this investigation. 

 

Theoretical Framework 

Technology Acceptance Model (TAM), adapted from the Theory of Reasoned Action 36 and 
originally developed by Davis 37, proposes that an individual’s acceptance of technology is 
determined by (i) perceived utility and (ii) perceived ease of use.  TAM has been applied to the 
study of adoption of different technologies such as word processors, e-mail, WWW, GSS, and 
hospital information systems 38.  We are applying this model to the study of adoption of 
computation as a technology as well as a common practice. 

 

Design/Method 

The research design used a pre-post test design that included open questions and a Likert-survey 
aimed to measure predictors of future behavior according to the Technology Acceptance Model 
(TAM).  The desired future behavior is the integration of computation (e.g., algorithm design, 
modeling and simulation, data visualization) in students’ future studies and eventually in their 
future careers. 

Participants and Procedures 

Participants of this study include 154 engineering students from Structure of Materials (28), 
Physical Chemistry of Materials I: Thermodynamics (33) and Biomaterials I (93). Students 
completed two learning modules integrating computation with the course’s core concepts in the 
Structures course, three modules in the Thermodynamics course, and one in the Biomaterials 
course.  Twelve students were enrolled in two of these courses during the semester.  Students 
were asked to respond to the survey at the beginning and at the end of the semester. The analysis 
presented in this paper was conducted exclusively with all complete data (i.e., including pretest 
and posttest scores), which consisted of 93 responses.  

Data Collection  

According to TAM, the elements that predict future behavior are perceived utility (2 questions), 
perceived ease of use or ability to do or perform (8 questions) and future intention to use (2 
questions). We developed survey questions to identify how students’ perceived these constructs 
as related to computation (see Table 1).  For each of the questions we used a Likert-scale 
response and we scored our responses as follows: strongly disagree (1), disagree (2), undecided 
(3) agree (4) and strongly agree (5).  
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Table 1. Survey questions grouped by constructs of the TAM 

TAM ID Statements 

Ability to do 

Q1 I have the ability to design an algorithm.  
Q2 I have the ability to write a computer program. 
Q3 I have the ability to use a computer to solve a set of linear 

equations.  
Q4 I have the ability to visualize data using a computer.  
Q5 I have the ability to create a computer representation of an 

atomic or molecular structure.  
Q6 I have the ability to numerically solve an initial value problem.  
Q7 I have the ability to implement a numerical model based on a 

simple partial differential equation.  
Q8 I have the ability to implement a graphical user interface.  

Utility 

Q9 I feel computation (data visualization, modeling and simulation 
algorithm design) will be useful in my studies. 

Q10 I feel computation (data visualization, modeling and simulation 
algorithm design) will be useful in my career. 

Intention to use 

Q11 I intend to purposefully seek courses that will allow me to 
increase my knowledge about computation. 

Q12 I intend to use computation (data visualization, modeling and 
simulation algorithm design) in my future career. 

Data Analysis 

The data analysis started by computing a composite score for each of the three constructs being 
measured herein called ability to do, utility and intention to use. These composite scores were 
computed and plotted for all pretest and posttest scores.  Then, analysis of these scores were 
performed grouping students responses according to two different variables including (a) number 
and nature of previous courses in computing students have taken, and (b) number of core 
disciplinary courses where students were exposed to the curricular innovation. Inferential 
statistics was then used to identify significant differences between pretest and posttest scores for 
the two variables. Scores from 1 to <2.5 were interpreted as negative perceptions or intentions to 
use.  Scores from 3.5 to 5 were interpreted as positive perceptions or intentions to use.  Scores 
from 2.5 to <3.5 were considered neutral. In Tables 2 to 5 in the section below we have 
highlighted in red negative results and we have bolded positive results. 

 

Results  

Results describe students’ perceptions of computing in terms of ease or ability to do, level of 
perceived utility and intention to use.  Here we report comparisons of pretest and posttest scores 
of student responses by (a) computing courses students had previously completed, and (b) 
number of core disciplinary courses in which students were exposed to the curricular innovation. 

Previous Computing Background 

In Figure 1 we first present a comparison of data for students who completed the CPMSE course 
(N=9) vs. those who did not. The CPMSE course is primarily taken by freshmen and was offered 
the semester before students enrolled in one or more of the 3 core MSE courses in which the 

P
age 23.888.5



computational modules were integrated. The course was designed using the How People Learn 
framework and employed an inverted classroom delivery method as detailed in a previous 
publication 1. Among those who had not enrolled in CPMSE we have further distinguished 
between those not having taken a previous computing course (N=9), having taken one previous 
computing course (N=36), having taken two previous computing courses (N=26) and having 
taken from 3 to 4 computing courses (N=13). 

 

 

 
 

Figure 1. Pretest and Posttest scores of students perceived ability to use computation, perceived 
utility in their studies and future careers, and intentions of future use of computation grouped by 
previous computing background. 

 

As shown in Table 2, survey results document that students who completed the CPMSE course 
demonstrated significant higher positive perceptions at the beginning of the semester on their 
abilities to use computation to engage in programming and algorithm design as well as to solve 
specific MSE relevant science and engineering problems (F =16.84, P = 2.76e-10). They also 
had significant higher positive perceptions of the utility of computation in their academic and 
future careers (F =3.369, P = 0.013), and consistent positive perceptions in their intentions to 
continue to use computation and seek further training in computation (F =2.088, P = 0.0891).   

Survey results also show that at the beginning of the semester students who had not taken any 
previous course in computing had the most negative perception on their ability to utilize 
computation to solve specific problems in science and engineering, the utility of computation in 
their academic courses and future careers, and intentions to seek further training in computation. 
A Tukey test used to compare the students who had taken the CPMSE course and those who had 
not taken any previous computational course showed significant differences for perceived ability 
(p < 0.001) and utility (p = 0.0081). Students who had not taken any previous computational 
courses showed the largest gains in these scores at the end of the semester after which they had 
been exposed to computational modules. In the three dimensions of the TAM, however, these 
students only became less negative or changed from negative to neutral in their perceptions or 
intentions of future use. 

 

No previous computing course 
One previous computing course 
Two previous computing courses 
3 to 4 previous computing courses 
CPMSE course 
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Table 2. Pretest and Posttest scores of students perceived ability to use computation, perceived 
utility in their studies and future careers, and intentions of future use of computation grouped by 
previous computing background. 

 Pretest Scores Posttest Scores 
 Ability to do Utility Intention to 

use 
Ability to do Utility Intention to 

use 
 Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std. 

Dev. 
No previous computing 
course          (N=9) 

1.58 0.42 2.50 1.35 2.17 1.09 2.42 0.80 3.33 1.32 2.78 1.06 

One previous computing 
course other than 
CPMSE       (N=36) 

2.34 0.64 3.43 0.92 2.72 1.05 2.84 0.76 3.42 1.08 2.79 1.15 

Two previous computing 
courses other than 
CPMSE       (N=26) 

2.64 0.83 3.30 0.98 2.87 1.02 3.20 0.63 3.50 1.22 2.90 1.21 

3 - 4 previous computing 
courses other than 
CPMSE       (N=13) 

3.08 0.45 3.73 0.88 2.69 0.93 3.29 0.62 3.58 0.98 2.58 0.86 

Exposure to the CPMSE 
course          (N= 9) 

3.82 0.44 4.06 0.73 3.56 1.26 3.94 0.43 4.11 0.65 3.67 0.94 

 

On the other hand, students who were exposed to at least one programming course in the past 
indicated in the pre- and post-survey neutral perceptions of their ability to use computation to 
solve specific problems in science and engineering and of their intentions to use of computation 
in the future.  However, in the pre- and post-survey these students indicated positive results on 
the utility of computation in their academic studies and their future careers.  Scores from the 
three dimensions increased from pre- to post-survey measures; however these differences were 
not found to be statistically significant for utility and intention of use dimensions as show in the 
Table 3. 

Table 3. T-test Pre- vs Post-survey scores of students perceived ability to use computation, 
perceived utility in their studies and future careers, and intentions of future use of computation. 

TAM DF T value Pr > | t | 
Ability to do 92 -7.7624 1.12e-11 
Utility 92 -0.7754 0.4401 
Intention of use 92 -0.8888 0.3764 

 

These data suggest the lasting impact of the CPMSE course on student attitudes. Portions of the 
survey used for this study were taken by students in CPMSE course at the beginning and end of 
the previous semester 1. We present the results in Figure 2 below in terms of student self-
reported abilities to: (1) design an algorithm, (2) write a computer program, (3) solve a set of 
linear equations with computation, (4) visualize data using a computer, (5) create a computer 
representation of an atomic or molecular structure, (6) numerically solve an initial value 
problem, (7) numerically solve a boundary value problem, (8) implement a numerical model 
based on a simple partial differential equation, and (9) implement a graphical user interface.  P
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Figure 2. Previous semester CPMSE results on student perceived ability to complete a set of 
computation tasks. 

These data also suggest that exposure to computational modules may be effective in increasing 
student self-perceptions regarding their abilities to use computational methods particularly for 
students who have not had previous computational exposure, but do not change student 
perceptions as much as exposure to a disciplinarily grounded programming courses. 

Disciplinary Courses with Computational Learning Modules 

To identify the impact of the computational modules integrated into the core disciplinary 
courses, pre- and post-survey scores were analyzed by the number of core disciplinary courses 
students enrolled.  The number of students included in each category was as follows. 

 60 in the Biomaterials course 
 3 in the Structures course 
 18 in the Thermodynamics course 
 5 in the Biomaterials and Structures course 
 4 in the Biomaterials and Thermodynamics course  
 3 in the Structures and Thermodynamics course 

Because some of the categories had very few students we conducted this analysis grouping 
students in two major categories: students who were exposed to computational learning modules 
in one disciplinary course (N=81) and students who were exposed to computational modules in 
two disciplinary courses (N=12).  Results depicted on Figure 1 suggest a possible relationship 
between students’ exposure to computing courses and positive student perceptions about 
computing utility, their ability to currently use computing, and plans to use computing in future 
professional and academic work.  
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Table 4. Pre- and Post-survey scores of students perceived ability to use computation, perceived 
utility in their studies and future careers, and intentions of future use of computation grouped by 
number of disciplinary courses students completed. 

 Pretest Scores Posttest Scores 
 Ability to do Utility Intention to 

use 
Ability to do Utility Intention to 

use 
 Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std. 

Dev. 
Exposure to core 
disciplinary courses. 
 (N=81) 

2.55 0.83 3.35 1.04 2.69 1.05 3.03 0.78 3.46 1.12 2.78 1.09 

Exposure to two of the 
core disciplinary courses 
using computational 
learning modules. 
 (N= 12) 

2.89 0.87 4.00 0.56 3.42 1.06 3.33 0.69 3.96 0.84 3.54 1.12 

Survey results suggest that students who were exposed to computational learning modules in 
only one of the core MSE disciplinary courses began with neutral perceptions on their ability to 
use computation to solve problems in science and engineering, perceived utility of computation 
for their academic courses and future careers and undecided intentions to use computation or 
seek for further training in computation in the future.  The data in the previous section suggest 
that this is likely due to a lower degree of computational preparation within this group of 
students. Although students’ perceptions in these three dimensions remained neutral, all of them 
showed an increased score in the post-survey scores.  

Students who were exposed to two of the courses where students utilized computational learning 
modules remained neutral across the semester regarding their abilities to use computation to 
solve specific science or engineering problems despite rising for the post-test.  These students 
also indicated positive perceptions of the utility of computation in their academic and future 
careers and the perception remained positive in the posttest score measure.  Finally, student 
responses indicating their future intentions of use of computation changed from undecided to 
positive perceptions.  

Table 5. Anova Pre- vs Post-survey scores of students perceived ability to use computation, 
perceived utility in their studies and future careers, and intentions of future use of computation 
grouped by number of disciplinary courses students using computational learning modules. 

TAM DF F-Value P-Value 
Ability 4 2.657 0.0381 
Utility 4 1.364 0.253 
Intention of use 4 0.192 0.942 

 

The p-values on Table 5 suggest that the number of modules had a significant impact on 
students’ perceived ability to use computation. On the other hand, student perceived utility and 
future intention of use was not influenced by the number of modules due to their high pretest 
value. 
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Limitations of the Study 

This study has the major limitation that the results presented regard student perceptions rather 
than capability.  However, understanding student perceptions are important for identifying 
acceptance of technology for learning purposes and in this case, intentions of future use of 
computation. 

 

Discussion and Conclusion 

Advances in computing contribute to science and engineering discovery, innovation, and 
education by facilitating collection, representation, processing, storage, analysis, simulation, and 
visualization of ever increasing amounts of experimental and observational data. Computing, as 
both fundamental knowledge and a technical skill, is therefore required to contribute to and 
compete in our fast-changing, global society. Therefore, understanding undergraduate students’ 
perceptions and usage intentions of computing is an important research endeavor that can 
suggest future adoption. Specifically, in this study we have investigated students’ (a) perceptions 
regarding the utility of integrating computation in their studies and their future careers; (b) 
perceptions regarding their own abilities to implement computation for solving MSE problems; 
and (c) intentions regarding the use of computation in their studies and future careers. 

Results of this study suggest that previous experience in programming courses has a larger 
impact on students' attitudes about computational science than individual modules integrated into 
core disciplinary courses.  This is not surprising as these courses immerse students in 
computational methods more than core courses which focus more on foundational disciplinary 
content.  The biggest impact was measured for a computation and programming course taught 
within the context of the discipline, the CPMSE course described above, which incorporated 
active and project-based learning. The data suggests that changes in student perceptions while 
taking this course persisted into the following semester.  Similarly, this course proved more 
effective in increasing student perceptions and intentions regarding computation than taking 
multiple non-CPMSE computing courses. Also, although students’ perceptions regarding utility 
and intention of use did not show significant increase from the pretest to the posttest, they did not 
decrease either. And both of them showed a reasonable positive score during the pretest (Utility 
= 3.43, Intention of Use = 2.78). 

The results of this study can be explained through the lens of the literature in self-efficacy. 
Previous research about student self-efficacy has identified that students’ confidence in their 
abilities to complete a variety of tasks, specifically mathematical-related tasks in courses at the 
college level, predicted their future interests in mathematics courses 39.  We believe that this may 
also be the case with exposure to computation.   

Implications of this study relate not only to the integration of computation earlier and often in the 
engineering curriculum, but also to the integration of computation into disciplinary courses. This 
is consistent with recommendations from the National Research Council arguing that the power 
of computational thinking is best realized in domain-specific, personally-relevant contexts 4. And 
that learning computing within a science-and-engineering domain can be more successful than 
learning each knowledge domain separately 2. 
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Future Work  

Future work will include collecting data for three different core MSE courses offered in a 
subsequent semester that include computational learning modules. Data on surveys conducted in 
these courses will allow us to identify if (1) gains made in previous semesters persist and (2) if 
student perceptions saturate or accelerate with increased exposure to computational modules. 
The researchers are also collecting data on student performance in these courses using direct 
quantitative and qualitative measures of student learning (e.g., matched pre- and post-module 
quizzes, think-aloud) to explore if students perceptions correlate with student mastery of 
disciplinary content. 
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