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Abstract 
 

The purpose of this paper is to present an improved and easy way for dealing with the 
influence lines for indeterminate beams. This paper describes the approach used to teach the 
topic of influence lines for indeterminate beams in the structural analysis and design courses, in 
the Civil Engineering Department at Manhattan College. This paper will present a simple method 
for teaching influence lines for indeterminate beams based on a mathematical model derived 
from the fundamental use of the flexibility method. The mathematical model is based on 
describing the forces and the deformations of the beam as mathematical functions related by 
consecutive integration processes. 

 
Introduction 

 
Many civil engineering students have difficulties dealing with the effects of live loads on 

structures because of the lack of knowledge of influence lines in general, and in particular, of the 
influence lines for indeterminate beams. These difficulties are perhaps due to the minimal 
amount of time spent on covering this very important topic in a structural analysis course, or due 
to unclear and confusing methods used to present the topic of influence lines. Several 
textbooks,1,2,3,4 cover the topic of influence lines, theories, examples dealing with determinate 
structures. Since these textbooks put little emphasis on indeterminate beams, this paper will 
focus on this topic. Two years ago, while the faculty of the Civil Engineering Department at 
Manhattan College, were conducting the assessment of the topics covered in the structural 
analysis courses, we found out that there was a great concern from our students about their 
capabilities to deal with influences lines for indeterminate beams. Based on the input from the 
students, we went back, and took another look at the way the topics of influence lines are being 
covered.  Last year, the new approach was introduced in a structural analysis course, Advanced 
Structural Analysis II. At the end of the semester the student’s assessments of the topic, showed 
a major improvement in their capabilities to solve problems of influence lines for indeterminate 
beams. After learning the new approach, the students were capable of developing their own 
computer programs using Excel/ Quattro, and Maple/MathCAD, to solve the problems of 
influence lines for multi-span beams with various boundary conditions. 
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The approach presented in this paper is not based on new theories or principles, but rather 
on new methodology to solve a typical structural problem. The flexibility method, and the 
Conjugate- beam method have been used by others5,6 to construct the influence lines for 
indeterminate beams. 

This paper will focus on describing a new approach adopted by the Civil Engineering 
Department at Manhattan College to teach and construct the influence lines for indeterminate 
beams. The new approach is easy to learn and program, but the mathematical manipulation 
required to obtain a symbolic solution can be too cumbersome. The topic of influence lines of 
indeterminate beams at Manhattan College is covered in a senior level elective course, 
“Advanced Structural Analysis II”. The students enrolled in this course have already learned the 
analysis of indeterminate structures.   
 
The New Approach 
 
 The mathematical model of influence lines for indeterminate beams presented in this 
paper is based on two fundamental principles that have been already covered in a previous 
structural analysis course. These two principles are outlined in the next section.  
 I- Flexibility Method 
The flexibility method procedure adopted in this paper can be summarized as follows: 
1- Determine the degree of static indeterminacy. 
2- Choose the unknowns/redundants, name them X1, X2,.....,  Xn. 
    [the redundant can be external reactions, internal forces or both] 
    (Make sure that the structure remains stable). 
3- Remove the redundants, i.e. set the unknowns equal to zero. The structure is now statically                                 

determinate, and it is called, the released structure7, 
4- Remove all the loads and apply a unit load corresponding to X1, at the location of X1. 
5- Repeat the process for all the X’s. 
6- Find the displacements corresponding to the unknowns in the released structure.  
7- Find the flexibility coefficients. 
8- Use the principle of superposition, and apply the compatibility conditions at the locations  
    of all the redundants. 
9- The equations developed by applying the compatibility conditions can be written in the form: 
      { }DOXi  =  { }DRXi  + [ ]Fij *{ }Xi  
DOXi = the displacement corresponding to Xi in the indeterminate beam. 
DRXi = the displacement corresponding to Xi in the determinate/ released beam. 
Fij      =  the displacement in the direction of X i at the location of Xi, due to a unit load applied in                            

the direction of Xj at the location of Xj. 
 

II- The Mathematical Model  
The mathematical model can be summarized as follows: 
          1 - Describe the load as a function YL in the X-Y coordinate system as shown in figure 1.  
               Since the influence line is based on applying a unit concentrated load, then, YL = 0. 
          2 - The shear is equal to YV   = IYL  dx   = C1  
          3 - The bending moment Ym = IYv  dx   = C1 x + C2   
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       Y     Y  w         Y             w 
  P  
                             
       

      X        X     X        
          L 
                 YL = 0          YL = -w              YL = (-X/L)*w 
 

Figure 1. Description of the Load Function, YL 
 
4 - The slope of the elastic curve is described by 
               Ys = I1/(EI)Ym  dx   = (1/EI)*(C1 x2/2 + C2x +C3)  
      Assuming constant EI      
5 - The transverse deflection of the beam is described by  
               Yd = (1/EI)*(C1 x3/6 + C2 x2/2 +C3x+C4) 

 
The constants of integration can be determined by applying the geometric (slope, 

deflection, and compatibility conditions) and the loading (shear, moment, and joint equilibrium) 
boundary conditions. In this paper the derivation starts with the bending moment equation.  

 
The procedure will be demonstrated in the next two examples, by developing the 

parametric solutions for the influence lines of the vertical reaction at an interior support of a two-
span continuous beam, and the bending moment at a fixed end support of a propped cantilever. 
The equations of these two influence lines will be used in constructing the influence lines for any 
multi-span beam.     
 
Examples 
 
Example # 1: 
Draw the influence line for the vertical reaction at B, RB, for the beam shown in figure E1.1. 
The beam is statically indeterminate to the first degree, choose as a redundant the vertical 
reaction at B, RB = X1.  
 
          y1        1.0               y2 
           x1                 x2 
  
       D 
      A     B            C  

                                
         a              X1         b   

                                                              L   
Figure E1.1. Two-span continuous beam 
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Remove the redundant, the beam shown in figure E1.2. is statically determinate 
.   
                      1.0 
  
           dDD dBD  
           

                      
Figure E1.2. The released beam of example 1 

     
Remove the applied load, and apply a unit vertical load at B, the virtual beam is shown in figure 
E1.3.  
  
      
                    dDB         F11           C 
  
        A                B              
                  1.0       

    b/L                     a/L       
Figure E1.3. The virtual beam of example 1 

 
Making use of the principle of superposition, the relationship between the three previous figures, 
can be summarized by:  
Figure (E1.1) = Figure (E1.2) + Figure (E1.3)*X1 
Applying the compatibility condition for the vertical deflection at B, gives 
0 = - dBD + F11* X1  
Since we are dealing with a unit load in figures E1.2 & E1.3, we can set dBD = dDB, and the 
reaction RB, can be found from the above equation to be, RB = X1  = dDB / F11 
As it can be seen from the above equation, the only figure needed is figure E1.3. 
X1  = the vertical reaction at B due to a unit vertical load at any point D along the beam. 
dDB = the vertical displacement at D due to a unit vertical load at B. 
F11  = the vertical displacement at B due to a unit vertical load at B. 
The moment diagram of the beam in figure E1.3 is drawn below. 
                 y1                        y2  
          A  x1                  C  x 2 
             
 
        M 
      B 
      - ab/L 

Figure E1.4.   Moment diagram for the virtual beam 
      
 Due to the discontinuity in the moment diagram, the equations for the two segments AB 
and BC are needed to describe the moment functions. x1-y1 from A to B, and x2-y2 from C to B. 
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From A to B   (origin at A)           From C to B   (origin at C) 
(ym)1  = -(b/L) x            (ym)2 = (a/L)*x               
(yS )1  = (1/EI)*[(-b/L)*x2/2+C3]                  (y S )2 = (1/EI)*[(a/L)*x2/2+k3]            
(yd )1  = (1/EI)*[(-b/L)*x3/6+C3 x+C4]          (yd )2 = (1/EI)*[(a/L)*x3/6+k3x+ k4]           
Apply the boundary conditions to find the constants of integration. 
At x1 = 0, (yd )1  = 0, Þ C4 = 0                     At x2 = 0, (yd )2    = 0   Þ k4 = 0 
The compatibility condition for the slope at B, can be written as 
 [(ys)1 at x1 = a] = [(ys)2 at x2 = - b], which gives  
 -b*a2/2L+C3 = a*b2/2L+ K3 
Simplifying the above equation yields, C3 - K3 = (ab/2L)*(a + b) = ab/2         (1) 
The compatibility condition for the vertical deflection at B, can be written as 
 [(yd)1 at x1 = a] = [(yd)2  at x2 = - b], which gives 
-b*a3/6L+C3 a =- a*b3/6L - K3b  
Simplifying the above equation yields, C3a + K3b = (ab/6)*(a-b)                     (2)  
Solving equations, (1) and (2) for C3 and K3, yield 
   
C3 = (ab/6L)(2b+a)  and     K3 = -(ab/6L)(b+2a)  
 
Having solved for all the constants of integration, the equations describing the vertical 
displacement at any point along the beam due to a unit vertical load at B can be written as 
(yd)1      = (1/6EIL)*[-b*x3 + (a*b)*(a+2b)x]                            0£ x £ a    
(yd)2      = (1/6EIL)*[a*x3  -  (a*b)*(2a+b)x]                     -b£ x £ 0          
yd  represents the vertical deflection at any point D due to a unit vertical load at B, dDB. 
F11 = (yd)1  at x1 = a, F11 = (2/6EIL)*[a2b2], and the vertical reaction at B, RB can be written as,         
X1 = (yd)1/ F11= (1/6EIL)*[-bx3+x*(ab)(a+2b)]/[(2/6EIL)*(a2b2)]  0£ x £ a     
X1 =RB = [-x3+x*(a2+2ab)/(2*a2b)]                                                 0 £ x £ a      
X1 =RB = [x3 –x*(2ab+b2]/(2*b2a)]                                                -b£ x £ 0      
Knowing RB, the others two reactions can be found by static equilibrium.  
Summary 
0£ x1 £ a (origin at A)   -b£ x2 £ 0     (origin at C) 
RA= [x3-x*(2ab+3a2)+2*(a2L))/(2*a2L)]         RA = [(-x3(a/b)+(ab)*x)/(2*(a2L))]  
RB = [(-x3+x*(a2+2ab))/(2*(a2b))]   RB = [(x3 –x*(2ab+b2))/(2*b2a)] 
RC = [x*(x2-a2)/(2abL)]    RC = - [(x3-x*(2ab+3b2)-2b2L)/(2b2L)]  
0£ x  £ a (origin at A)   a£ x  £ L         (origin at A) 
RA = [(x3-x*(2ab+3a2)+2*(a2L))/(2*a2L)]   RA= [(-(x-L)3(a/b)+(ab)*(x-L))/(2*a2L)]  
RB = [(-x3+x*(a2+2ab))/(2*a2b)]          RB = [((x-L)(x2 –2Lx+a2))/(2*b2a)] 
RC = [(x*(x2-a2))/(2abL)]           RC = [(-x3+3Lx2+ax*(a-4L)+a2L)/(2b2L)] 
 

These equations are used to determine the internal resisting forces at any point in the 
beam. The equations of the reactions, and the shear and bending moment have been implemented 
into a spreadsheet computer program capable of determining the placement of the live load, and 
the magnitude of the reaction and the internal resisting forces. A sample of the spreadsheet 
program is shown below. The program has more capabilities than what is presented in this paper. 
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STATION X RA RB RC CHECK  M1 M2 

1 0.00 1.000 0.000 0.000 1 0.000 0.000 
2 2.40 0.879 0.137 -0.016 1 1.188 -0.255 
3 4.80 0.759 0.272 -0.031 1 2.389 -0.494 
4 7.20 0.642 0.402 -0.044 1 3.615 -0.702 
5 9.60 0.528 0.526 -0.054 1 4.880 -0.864 
6 12.00 0.420 0.641 -0.060 1 4.196 -0.964 
7 14.40 0.318 0.744 -0.062 1 3.177 -0.987 
8 16.80 0.224 0.834 -0.057 1 2.235 -0.918 
9 19.20 0.138 0.908 -0.046 1 1.383 -0.741 
10 21.60 0.063 0.964 -0.027 1 0.634 -0.440 
11 24.00 0.000 1.000 0.000 1 0.000 0.000 
12 27.20 -0.065 1.014 0.051 1 -0.651 0.818 
13 30.40 -0.110 0.992 0.118 1 -1.097 1.883 
14 33.60 -0.136 0.938 0.198 1 -1.360 3.168 
15 36.80 -0.146 0.856 0.290 1 -1.463 4.645 
16 40.00 -0.143 0.750 0.393 1 -1.429 6.286 
17 43.20 -0.128 0.624 0.504 1 -1.280 4.864 
18 46.40 -0.104 0.482 0.622 1 -1.040 3.552 
19 49.60 -0.073 0.328 0.745 1 -0.731 2.322 
20 52.80 -0.038 0.166 0.872 1 -0.377 1.147 
21 56.00 0.000 0.000 1.000 1 0.000 0.000 

 
 

Figure E1.5. Spreadsheet input and output for example 1.  
 
 
 
 
 
 
 

THE INPUT IS RESTRICTED TO THE HIGHLIGHTED BOXED CELLS.
L = 56 a = 24 b = 32
EI = 1

M1 is the bending moment in span 1 at a distance X1 from A.
M2 is the bending moment in span 2 at a distance X2 from A.
In span1 the moment is maximum at X between 9.6 and 12
INFLUENCE LINE FOR M1 AT X1 = 10
In span2 the moment is maximum at X between 36.8 and 40
INFLUENCE LINE FOR M2 AT X2 = 40
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INFLUENCE LINE FOR THE REACTIONS
TWO-SPANS BEAM
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Figure E1.6. Graphical representation of the reactions of example 1 

 
Example #2: 
 
Draw the influence line for bending moment at A, MA, of the propped cantilever beam shown in 
figure E2.1. The beam is statically indeterminate to the first degree, choose the bending moment 
at A, as the redundant, X1 = MA 
         y 
                                                 1.0               
      X1                      
    A                   x     I               B 
             x   
                   L                          

Figure E2.1. Propped cantilever beam 
 

Remove the redundant, now, the beam is statically determinate as shown in figure E2.2. 
                                              1.0               
                            
  
      ?AI  
         A                  dII                        B  
 
 

 
Figure E2.1. The released beam for example 2 
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Remove the applied load, and apply a unit bending moment at A, the virtual beam is shown in 
figure E2.3.                         
         1.0        ?AA  = F11                           
                            
  
          
         A                  dIA                        B  
 
 

Figure E2.3. The virtual beam of example 2 
 

Making use of the principle of superposition, the relationship between the three pervious figures, 
can be represented by: Figure (E2.1) = Figure (E2.2) + Figure (E2.3)*X1 
Applying the compatibility condition for the slope at A, we get 
(?A)1= (?A)2 + (?A)3* X1 , or,  0     =  (?AI) + F11 * X1 
Applying the Maxwell’s law of reciprocal deflections in figures E2.2 & E2.3, set  
?AI  = dIA.  From which  
X1  = - dIA  / F11 
It can be seen from the above equation that the only figure needed is figure E2.3 
X1    = the bending moment at A due to a unit vertical load at any point I along the beam.  
?AI  = the rotation at A due to a unit vertical load at I. 
dIA  = the vertical deflection at I due to a unit bending moment at A. 
F11 = the rotation at A due to a unit bending moment at A. 

 
The moment diagram for the beam in figure E2.3 is drawn in figure E2.4.   
         1.0                1 – x/L 
       
 
        M       y                            x 
 
 
              L 

Figure E2.4.  The moment diagram for the beam in figure E2.3 
(ym)  = 1-x/L               
yS     = (1/EI)*(- x2/2L+ x + C3)                                    
yd     = (1/EI)*(- x3/6L+ x2/2+ C3 x + C4)                       
Apply the boundary conditions to find the constants of integration.  
At x = a, yd  = 0, then, C4 = 0                           
At x = L, yd = 0, then, C3 = - L/3       
Now, rewrite the equations for the slope and the deflection. 
yS     = (1/6EIL)*(- 3x2+6xL – 2L2)                                    
yd     = (1/6EIL)*(- x3+ 3x2L – 2L2x)                                        
The slope at x = 0 is equal to F11 = -L/3EI 
yd  represents the vertical deflection at any point I due to a unit bending moment at A, dIA. 
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X1 = MA = - dIA  / F11  = (-x3+3Lx2-2L2x)/(2L2)    
MA is maximum when x = .422649 L. (MA)max = -.19250L 
The other reactions can be found by static equilibrium, and they are described below. 
RA = (x3-3Lx2+2L3)/(2L3), and RB = (-x3+3x2L)/(2L3). 
 

Having derived the equation for the vertical reaction of the internal support for the two-
span beam in example1, and the equation for the bending moment at the fixed end of the propped 
cantilever in example 2, these equations will be used in the solution of any indeterminate multi-
span beam. The next two examples will demonstrate the use of these equations in developing the 
solutions for two continuous beams with different support conditions.  
    
Example #3: 
 
Derive the equations of the influence lines for the reactions of three-span continuous prismatic 
beam shown in figure E3.1. 
The beam is statically indeterminate to the second degree, choose as redundants the vertical 
reactions at B and C, where RB = X1, and RC = X2. 
 
 
          y1         1.0                 
           x1           
 
        I 
        A    B         C           D   

           X1   L      X2   
     
   a                                                        b  
      c       d 

Figure E3.1. Three-span prismatic beam 
 

Remove the redundants, now, the beam is statically determinate as shown in figure E3.2.   
           1.0  
          y                          
           x         I         
              dCI  
                      dII          dBI  
            

 
Figure E3.2. The released beam of example 3  

 
Remove the applied load, and apply a unit vertical load at B, as shown in figure E3.3.  
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                F11              
            dIB         F21            
  
                   I                1.0 
           

Figure E3.3. The virtual beam loaded by a unit vertical load at B 
 
Figure E3.4 shows the virtual beam loaded by a unit vertical load at C.    
 
 
                        F22          
            dIC F12                    
  
                   I          1.0 
           

Figure E3.4.  The virtual beam loaded by a unit vertical load at C 
 
Making use of the principle of superposition, the relationship between the four previous figures 
can be represented by: Figure (E3.1) = Figure (E3.2) + Figure (E3.3)*X1 + Figure (3.4)*X2 
Applying the compatibility conditions for the vertical displacements at B and C respectively, 
yield the equations shown below. 
0 = -dBI+F11 X1 + F12*X2            (3) 
0 = -dCI+F21 X1 + F22*X2      (4) 
Since we are dealing with unit load in figures E3.2, E3.3 and E3.4, we can set dBI = dIB,  dCI  =  
dIC, and F12 = F21. 
In a matrix form, the above two equations can be represented by: 

  ú
û

ù
ê
ë

é
2212

1211

FF
FF

=
þ
ý
ü

î
í
ì

2

1

X
X

þ
ý
ü

î
í
ì

IC

IB

d
d        (5)    

F11=  vertical displacement at B due to a unit vertical load at B. 
F22=  vertical displacement at C due to a unit vertical load at C. 
F12=  vertical displacement at B due to a unit vertical load at C. 
F21=  vertical displacement at C due to a unit vertical load at B. 
dIB =  vertical displacement at any point I along the beam due to a unit vertical load at B. 
dIC =  vertical displacement at any point I along the beam due to a unit vertical load at C. 

 
The parametric values of the above terms have been determined in the formulation of the 
influence line for RB, for two-span beam presented in example 1. 
F11 = 2*a2b2/(6EIL), F22 = 2*c2d2/(6EIL), F21= F12 = [a*(c-L)*(c2-2cL+a2)]/(6EIL) 
(dBI)1 = the vertical displacement at B due to a unit load at I, where, I is located anywhere 

between A and B.                        
(dIB)1 = (-bx3+ab*x*(a+2b))/(6EIL)             0 £  x £ a 
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(dBI)2 = the vertical displacement at B due to a unit load at I, where, I is located anywhere 

between B and D. 
(dIB)2 = [a*(x-L)*(x3+-2xL+a2)]/(6EIL)           a £  x £ L 
(dCI)1 = the vertical displacement at C due to a unit load at I, where, I is located anywhere 

between A and C. 
(dIC)1 = [-dx3+cd*x*(c+2d)]/(6EIL)                                    0 £  x £ c 
(dCI)2 = the vertical displacement at C due to a unit load at I, where, I is located anywhere 

between C and D. 
(dIC)2 = [c*(x-L)*(x3+-2xL+c2)]/(6EIL)           a £  x £ L 

 
By multiplying both sides of equation (5) by the inverse of the flexibility matrix we get: 
RB = X1  = [1/(F11*F22 - F12*F21)]*(F22*dIB – F12*dIC)   (6) 
RC = X2  = [1/(F11*F22 - F12*F21)]*(F11*dIC – F12*dIB)   (7) 
The solutions are represented graphically on the diagram shown below.   
                    
   (dIB)1 (dIC)1             (dIB)2 (dIC)1      (dIB)2(dIC)2            
  
         
                 RB1   RC1   RB2      RC2            RB3   RC3 

 
To solve for RB1 = substitute (dIB)1 and (dIC)1 in equation (6). 
To solve for RB2 = substitute (dIB)2 and (dIC)1 in equation (6). 
To solve for RB3 = substitute (dIB)2 and (dIC)2 in equation (6). 
To solve for RC1 = substitute (dIB)1 and (dIC)1 in equation (7). 
To solve for RC2 = substitute (dIB)2 and (dIC)1 in equation (7). 
To solve for RC3 = substitute (dIB)2 and (dIC)2 in equation (7).  
        
Example # 4: 
Derive the equations for the influence lines for the reactions of the two-span continuous 
prismatic beam shown in figure E4.1. 
The beam is statically indeterminate to the second degree, choose the bending moment at A, and 
the vertical reaction at B, as the redundants. X1 = MA, and X2 = RB. 
 
          y        1.0                 
           x            
            A 
  X1     D 
                 B               C 
        a     X2      b  
                                                                L                               
      

Figure E4.1. Two-span continuous beam fixed at one end 
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Remove the redundants, now, the beam is statically determinant as shown in figure E4.2. 
           
          1.0 
 
   
      dAD 
          dDD  dBD     

  
            

Figure E4.2. The released beam for example 4 
 

Remove the applied load and apply a unit bending moment at A, as shown in figure E4.3.  
  
         1.0        dAA  = F11                           
                            
  
                 dDA 
         A     dBA = F21                                     C  
 
 

Figure E4.3. The virtual beam subjected to a unit bending moment at A 
 

Apply a unit vertical load at B as shown in figure E4.4. 
  
                    dDB            
        dAB = F12           dBB = F22  
 
            
               1.0       

Figure E4.4. The virtual beam subjected to a unit vertical load at B 
 
Making use of the principle of superposition, the relationship between the four previous figures 
can be represented by:  Figure (E3.1) = Figure (E3.2) + Figure (E3.3)*X1 + Figure (3.4)*X2.  
Applying the compatibility conditions for the rotation at A, and the vertical displacement at B 
respectively, yield the equations shown below. 
0 = dAD  + F11 X1 - F12*X2       (8) 
0 = -dBD  - F21 X1 + F22*X2       (9) 
Since we are dealing with unit load in figures E4.2, E4.3 and E4.4, we can set dAD = dDA,  dBD  =  
dDB, and F12 = F21. 
In a matrix form the two equations can be represented by: 

  ú
û

ù
ê
ë

é
-

-
2212

1211

FF
FF

=
þ
ý
ü

î
í
ì

2

1

X
X

þ
ý
ü

î
í
ì

- DB

DA

d
d         (10)   
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F11= rotation at A due to a unit bending moment at A. 
F22= vertical displacement at B due to a unit vertical load at B. 
F12= rotation at A due to a unit vertical load at B. 
F21= vertical displacement at B due to a unit bending moment at A. 
dDA =  vertical displacement at any point D along the beam due to a unit bending moment at A. 
dDB =  vertical displacement at any point D along the beam due to a unit vertical load at B 
 
The parametric values of the above terms have been determined in the formulation of the 
influence lines for RB and MA, in examples 1, and 2 respectively. 
 
F11 = 2*L2/(6EIL), F22 = 2*a2b2/(6EIL), F21= F12 = [ab*(2b+a)]/(6EIL) 
(dDB)1 = the vertical displacement at any point D, in figure E4.4 due to a unit vertical load at B, 

where, D is located anywhere between A and B. 
(dDB)1 = [-bx3+ab*x*(a+2b)]/(6EIL)                          0 £ x £ a 
(dDB)2 = the vertical displacement at any point D, in figure E4.4 due to a unit vertical load at B, 

where, D is located anywhere between B and C. 
(dDB)2 = [a*(x - L)*(x2  - 2xL + a2)]/(6EIL)  a £ x £ L 
(dDA)   = the vertical displacement at any point D, in figure E4.3, due to a unit bending moment at                   

A, where, D is located anywhere along the beam. 
(dDA)  = (-x3+3x2L-2L2x)/(6EIL)                              0 £  x £ L 
 
By multiplying both sides of equation (10) by the inverse of the flexibility matrix we get: 
MA = X1  = [1/(F11*F22 - F12*F21)]*(F22*dDA - F12*dDB)   (11) 
RB =  X2  = [1/(F11*F22 - F12*F21)]*(F12*dDA  - F11*dDB)   (12) 
 
The explicit parametric representation of MA, and RB are cumbersome. 
The solutions are represented graphically on the diagram shown below. 
                     
                         (dDA) (dDB)1                            (dDA) (dDB)2                 
                           
 A         
   MA1, RB1         B         MA2 , RB2                        C                         

To solve for MA1 = substitute (dDA) and (dDB)1 in equation (11). 
To solve for MA2 = substitute (dDA) and (dDB)2 in equation (11). 
To solve for RB1   = substitute (dDA) and (dDB)1 in equation (12). 
To solve for RB2  = substitute (dDA) and (dDB)2 in equation (12). 
 

As proven by the two previous examples the influence lines for multi-span beams with 
various support conditions, can be developed by using the solutions from examples 1 and 2. The 
students in the Advanced Structural Analysis course have been using the procedures presented in 
this paper to create their own programs to obtain the solutions for the influence lines for many 
multi-span beams, with different boundary conditions.   
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Conclusion 
 
 The mathematical model of influence lines for indeterminate beam has been presented. 
The mathematical model offers a new and simple approach to construct the influence lines for 
indeterminate beams. The mathematical manipulations involved in the derivation of the solution 
of multi-span beam are cumbersome. It was proven in examples 3 and 4, that the parametric 
derivations presented in examples 1 and 2 can be used to develop the solutions for multi-span 
beams. Student response to the implementation of the mathematical model into a structural 
analysis has been outstanding. After dealing with multi-span beams, several students suggested 
removing the word “simple” from the new approach and replacing it with the word “complex”. 
Many students have developed their own computer programs to solve the problems of influence 
lines for indeterminate beams. The majority of the programs have been developed using 
spreadsheet packages. These programs are being used in graduate classes dealing with long span 
structures. The student evaluations of the new approach showed their appreciation of the use of 
mathematics in their civil engineering courses. The new approach is an excellent method to 
cover the topic of influence lines for indeterminate beams. 
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