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MATLAB
1
 Demonstration of 

Transmission Line Phenomena in Electromagnetics 

 

The university involved in this paper has a two semester sequence of electromagnetics. Coverage 

begins with the study of transmission lines, which constitute a very important application of 

electromagnetics. Signal reflection and impedance matching are critical concepts in wireless 

communications and radar. However, while students often can properly apply formulas to solve 

transmission line problems, they often lack a deep understanding of how these lines work.  

MATLAB can serve as a useful tool for illuminating the operation of transmission lines, and its 

use has been incorporated in several textbooks such as Wentworth
2
. MATLAB is used in variety 

of engineering classes and students have good familiarity with this important software package. 

In most schools MATLAB is widely available in engineering laboratories with access available 

to all faculty and students, mainly for classroom use. Many electrical/computer engineering 

leading industries use MATLAB and its toolboxes. 

The first investigation in this paper demonstrates under what conditions a length of connecting 

wire must be treated as transmission line. Essentially, if the operating frequency is high enough 

that the wire length is a significant portion of a wavelength, then a transmission line model must 

be used. Here, a MATLAB demonstration clarifies where this occurs. 

The second investigation concerns wave propagation in an impedance matching network realized 

using sections of transmission line (the so-called stub matching network). A MATLAB 

demonstration shows how the waves on each section of line behave and how they combine to 

achieve the impedance matching condition. An especially interesting aspect of this problem 

concerns how long after the wave is launched it takes for the matching condition to be achieved, 

and how the waves perform in the meantime. 

 

When must wire be considered a T-Line? 

It is commonly understood that wire interconnects must be treated as transmission lines when 

their lengths become comparable to a wavelength. A thorough discussion of this topic is 

provided by Inan & Inan,
3
 and Ulaby et al.

4
 considers that transmission line effects may be 

significant for wire length-to-wavelength ratio as low as 0.01. In this paper, a MATLAB 

demonstration
5
 illustrates when a distributed transmission line must be used to model wire 

interconnects. 

Figure 1(a) shows a load RL connected to a source (of voltage vs and source resistance RS) 

through a pair of connecting wires of length l. The voltage across the load, vL, is to be examined 
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as the length l is increased. For ideal connecting wires, the length is assumed negligible, and the 

magnitude and the phase of vL will therefore remain constant. This is compared with the actual vL 

calculated assuming a transmission line of characteristic impedance Zo.  

Analysis of the transmission line circuits of Figure 1a and 1b provide the basis for the MATLAB 

code. First, for time harmonic excitation, the total voltage v(k) at any point k on a lossless 

transmission line is the superposition of the incident and reflected waves. This can be written 

  ( ) j k j k

o Lv k V e e       (1) 

where 
oV   is the incident voltage wave amplitude,  is the phase constant, and L is the reflection 

coefficient at the load given by 

 L o
L

L o

R Z

R Z


 


 (2) 

 

Figure 1: (a) Connecting wires between source and load are modeled by a 

length l of transmission line. (b) Equivalent circuit with input impedance 

Zin replacing the terminated line. (c) The circuit can also be modeled by a 

single section lumped element model. 
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We can therefore find the voltage at any point on the line using (1) if we know the value of 
oV  . 

At the input end of the line we have 

  ( ) j j

IN o LV v V e e       l ll  (3) 

We can also find an expression for VIN by replacing the terminated line by its input impedance, 

ZIN, given by 

 
 

 

tan

tan

L o
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
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l
 (4) 

and we find by simple voltage division in Figure 1b: 
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IN S

IN S

Z
V V

Z R



 (5) 

where VS is the phasor source voltage. Then we can equate (3) and (5) to find an expression for 

oV  : 

 
 

1IN
o S j j

IN S L

Z
V V

Z R e e 



 


  l l
 (6) 

The voltage at the load is then 

  1L o LV V     (7) 

We can simplify our formulas for use in the MATLAB code by eliminating l in equations (4) 

and (6). Let us consider the line length l to be d wavelengths long, or l = d, and we have 

 
2

2d d


  


 l  (8) 

Finally, we know that the formulas governing transmission line behavior are derived based on a 

distributed parameter model. Figure 1(c) shows a single-element model for the transmission line. 

The MATLAB demonstration will show when this single-element model must yield to the 

distributed model of the transmission line. 

An interesting aspect of the analysis of Figure 1(c) involves calculation of L and C. In 

calculating total inductance L, starting with the distributed inductance L’ (H/m), we can use the 

length d from above and have L = L’l = L’d. Then, 

  2 ' 2 'j L j fL d j dL f       (9) 
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Now, propagation velocity up along the line can be written 

 
1

' '
pu f

L C
   (10) 

so we have 

 
1 '

2 ' 2 2
'' '

o

L
j L j dL j d j dZ

CL C
   

 
   

 
 (11) 

Similarly, it is easy to show 

 
2

oj jZ

C d 

 
  (12) 

Thus, we only need to know Zo for the line rather than the particular values of L’ and C’. 

The MATLAB code “WireModel” developed using these equations is given in the appendix. 

Figure 2 shows the results for the first simulation, where RL and RS are set to 200  and the line 

impedance is 50 . For ideal connecting wire, the magnitude of vL would be constant at 1 V and 

the phase would be constant at 0°. Here we see that the length of the connecting wire begins to 

impact the load voltage (in particular the phase) at values of d less than 0.01. We also begin to 

see appreciable difference between the lumped and the distributed element model at about 0.10. 

The second simulation is plotted in Figure 3, where RL and RS have each been reduced to 100 . 

With the lessening of impedance mismatch between connecting wire and system impedance, the 

deviation from ideal behavior occurs at longer length d. It is apparent that the degree of 

impedance mismatch is therefore an important consideration for determining when the wire must 

be treated as transmission line. 

Development and understanding of the MATLAB code used in this demonstration requires a 

basic foundation in transmission line theory. Students can follow this theory to develop their own 

version of the code, or they can modify the existing code to study other situations. For instance, 

what happens when the line is matched to the system impedance? Can students determine how 

many lumped element sections are required to model a particular length of connection? 
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Figure 2: Magnitude and phase plots for vL, (VL mag and VL phase, 

respectively) show the impact of transmission line length on load voltage 

for the case of 200 ohm system impedance and 50 ohm line impedance. 
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Figure 3: Magnitude and phase plots show the impact of transmission line 

length on load voltage for the case of 100 ohm system impedance and 50 

ohm line impedance. 
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Waves launched on a matching network 

After learning how transmission lines work, students are often introduced to the Smith Chart, a 

transmission line calculator tool that is handy for designing impedance matching networks using 

sections of transmission line. In the time harmonic case, the matching networks prevent waves 

from reflecting back to the source. If the lines are considered lossless, then no power is 

dissipated in the sections of transmission line and all of it must therefore reach the load, at least 

at the design frequency. One of the most popular of such networks is the shunt stub matching 

network, as shown in Figure 4(a). Here, the shunt stub is terminated in a short circuit although an 

open-ended termination could also be used. For the example shown in this paper, the system 

impedance is 50 and the load to be matched is RL = 170. Appropriate lengths of through line 

and stub line are selected using the Smith Chart (see Figure 4(b)) to provide an impedance match 

between the Zo system impedance and the load impedance, RL. A through line length of 0.170 

wavelengths and a stub line length of 0.104 wavelengths accomplishes the impedance match. 

Of course, it takes some amount of time after a wave is launched for a steady state time harmonic 

condition to be reached. The initially launched wave will impact the junction connecting the 

input line to the stub and through lines, and will be partially reflected. Eventually, superposition 

of the various wave components will accomplish the desired impedance match. 

The MATLAB demonstration shows an animation of the wave launched on the input section of 

line. Progress of the wave on the through and stub lines can also be viewed. The programming 

becomes somewhat challenging (and the run time can become significant) because as a wave is 

incident on the junction, it spawns a reflected wave along with transmitted waves on the other 

 

   (a)             (b) 

Figure 4: (a) A shorted shunt stub matching network.  The lengths of the through 

and stub lines are typically found using the Smith Chart (b), where through and 

stub lengths are indicated as d and l, respectively.  Here, the load is a 170  

resistor, and the system impedance is 50 . 
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two sections of line. The spawned waves will reflect off of the discontinuity at the end of their 

lines (except for the input line, where a matched source impedance is used), and will travel back 

to the junction where three new waves will spawn. The approach taken in the MATLAB program 

is to prepare arrays for the input line, the through line and the stub line. Each array is of two 

dimensions, with columns representing position along the line, and rows representing time. Each 

row of data therefore represents a time snapshot of the total voltage on the line. The 

contributions of all waves (reflected, re-reflected, and so on) are folded into this array. Stepping 

through the snapshots therefore provides an animation of wave behavior on a line. 

The program is kept fairly manageable by making several simplifications. First, the load is all 

real (no reactive components). All transmission line used is lossless. Finally, the source is 

matched to the system impedance so that we don’t have to worry about re-reflection off of the 

source. 

Figure 5 displays only the reflected voltage at the input end of the input line. At steady state, 

there will be no reflected waves if the line is properly impedance matched. Here we see that it 

takes 0.5 ns for the initial wave to travel to the junction and reflect back to the input end of the 

line. At this point we see significant reflection, but the matching network gradually manifests 

itself and the total reflected wave tends toward zero.  

Figure 6 displays several snapshots from the animations for waves on the through and stub lines.   

In this simulation, a half wavelength of transmission line is added to the design lengths for both 

through and stub lines, making their lengths 0.670 and 0.604 guide wavelengths, respectively.  It 

doesn’t change the matching condition, and gives us a chance to better view the waves on the 

line.  It does significantly extend the simulation time, so this added length was not included for 

 

Figure 5: The value of the reflected voltage is displayed at the input end of the 

input line.   
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the simulation of Figure 5.  After a steady state is reached, when the additional reflected the 

  

  

  

  

Figure 6: Snapshots of voltage on the through and stub lines.  The last plots 

display standing wave patterns. 
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simulation of Figure 5. After a steady state is reached, when the additional reflected components 

are negligible, the “hold on” feature of MATLAB allows us to see the standing wave pattern on 

the through and stub lines. The animations of course are far more enlightening than the 

snapshots. 

Students may modify the code to examine a number of conditions. First, it is easy to observe 

what happens on the lines when the matching network is not ideal; Simply change the line 

lengths or change the input signal frequency. A more challenging (but manageable) project 

would be to examine what happens when a pulse is launched. That is, after a certain amount of 

time, the input wave is turned off. This is an extremely useful case to examine as it is 

fundamental to radar systems. We would expect reflections to occur at both the leading and the 

trailing edges of the pulse. A much more significant programming challenge would be to allow 

the load impedance to be complex. While it is easy to handle complex loads in a steady state 

time-harmonic situation, it is much more difficult to handle them for non-steady state conditions. 

Code described in this paper and other examples presented at the conference will be made 

available on the author’s website: http://www.eng.auburn.edu/users/wentwsm/ 

 

 

References: 

1. MATLAB is a registered trademark of The MathWorks, Inc. 

2. S. Wentworth, Applied Electromagnetics: Early Transmission Lines Approach, John Wiley & Sons, Inc., 2007. 

3. U. S. Inan and A. S. Inan, Engineering Electromagnetics, Addison Wesley Longman, Inc., 1999, pp. 5-12. 

4. F. T. Ulaby, E. Michielssen, and U. Ravaioli, Fundmentals of Applied Electromagnetics, 6
th

 Ed., Prentice Hall, 

2010, pp. 48-49. 

5. Wentworth, pp. 58-61. 

 

P
age 25.918.11



Appendix 

% WireModel 
% When does wire need to be treated as T-Line? And when 
% does T-Line behavior deviate from simple lumped element? 
% 1/3/12 SMW 
clc;clear; 
Zo=50;  % line characteristic impedance, ohms 

RS=100;   % source resistance, ohms 
RL=100;   % load resistance, ohms 
Vs=2;   % source phasor voltage, V 
d=.01:.001:10;  % wire length, in wavelengths 

  
%T-Line calculations 
GL=(RL-Zo)/(RL+Zo);   % load reflection coefficient 
num=RL+j*Zo.*tan(2*pi.*d); 
den=Zo+j*RL.*tan(2*pi.*d); 
Zin=Zo.*num./den;   % line input impedance (Eqn (4)) 
Vin=Vs.*Zin./(Zin+RS);   % input voltage (Eqn (5)) 
Vop=Vin./(exp(j*2*pi.*d)+GL.*exp(-j*2*pi.*d)); % (Eqn (6)) 
vLTL=Vop.*(1+GL);   % T-Line model phasor load voltage 
VLTL=abs(vLTL);    % magnitude 
phLTL=180.*angle(vLTL)./pi; % phase 

  
% Lumped element calculations 
A=-j.*Zo./(2*pi.*d);   % capacitor impedance 
Z1=(RL.*A)./(RL+A);   % impedance of parallel R and C 
Z2=RS+j*2*pi*Zo.*d;   % …add series inductance 
vLle=Vs.*Z1./(Z1+Z2);  % lumped model phasor load voltage 
VLle=abs(vLle);    % magnitude 
phle=180.*angle(vLle)./pi; % phase 

  
%generate first plot 
subplot(2,1,1) 
semilogx(d,VLTL,d,VLle,'--k') 
ylabel('VL mag') 
grid on 
legend('T-Line model','lumped element model') 

  
%assemble string data for title 
RSstr=strcat('Rs = ',num2str(RS),' ohms'); 
RLstr=strcat(', RL = ',num2str(RL),' ohms'); 
Zostr=strcat(', Zo = ',num2str(Zo),' ohms'); 
Tstr=strcat(RSstr,RLstr,Zostr); 
title(Tstr) 

  
%generate second plot 
subplot(2,1,2); 
semilogx(d,phLTL,d,phle,'--k'); 
axis([.01 10 -180 180]) 
set(gca,'YTick',[-180:60:180]) 
ylabel('VL phase') 
legend('T-Line model','lumped element model') 
xlabel('d (wavelengths)') 
grid on 
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