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Measuring the Energy Content of Food: A ‘Relevant’ First 

Law Experiment for a Thermodynamics Class 

 

Abstract 

What marginally motivated undergraduate student would not perk up at the thought of 

working with food or a “bomb”, or both, in a thermodynamics laboratory experiment?  

Sure, our experience has shown that students express some slight disappointment when 

they find out that the experiment in question does not involve any loud explosions or 

flashes of light, and that the food amounts are miniscule (on the order of a few grams, 

sealed in an unappetizing gelatin capsule); but, overall, students greatly enjoy performing 

the experiment described in this paper, and along the way learn some important lessons 

about applying the First Law of Thermodynamics and its relevance to our everyday lives.   

 

In this paper we describe a thermodynamics experiment that involves measuring the 

energy content of a food sample, whose contents are unknown to the students.  This is 

achieved by burning the sample in a combustion bomb, measuring the temperature rise of 

the water in the calorimeter, applying conservation of energy principles to estimate the 

energy value of the food sample in calories/gram and scurrying down supermarket aisles 

(or the internet) to collect nutritional information on a number of potential food items.  

The description will include an outline of the relevant measurements, calculations, 

engineering principles and their relevance to Accreditation Board for Engineering and 

Technology (ABET) Program Outcomes.  
 

Introduction 

 

Engineering Thermodynamics is a basic engineering science that deals with energy and 

energy transformation, as well as principles of problem-solving that span all engineering 

disciplines.  The importance of energy to our economy and the relevance of energy to 

current economic, political and social problems cannot be overstated.  That said, 

thermodynamics is often perceived as a difficult subject, and students often have a 

difficult time seeing relevance for the material during the early stages of their studies.  

Additionally, in those programs that require a thermodynamics course of all engineering 

majors, the non-mechanical engineering students often “resist enjoying” the material 

because they don’t immediately see relevance to their curricula or to their everyday lives.   

 

The engineering curriculum at Oakland University consists of a common engineering 

core that has included engineering thermodynamics since its inception.  In the fall of 

2004, a Core Curriculum Review Committee was established to study the core and 

propose a revised common core that would include subject material deemed necessary to 

a well-rounded engineering education, while considering the additional constraints 

imposed upon the various programs resulting from accreditation requirements, the 

incorporation of modern technologies and increasing general education content on our 

campus.  For those of us that wished to see thermodynamics remain a part of the core, 

P
age 12.1045.2



this meant that we would have to impress upon our students and our faculty colleagues 

the relevance of thermodynamics.   

 

The curriculum at Oakland University is unusually lab-intensive.  That is, the common 

core courses and many of the electives have a laboratory component as part of the course.  

Often the laboratory exercises are tied to lecture material so as to reinforce the theoretical 

concepts as they are taught.  While many of the modern thermodynamics textbooks 

incorporate problems and examples that show the relevance of thermodynamics to our 

everyday lives, it was felt that it would be even more important to include laboratory 

exercises that students would find relevant and interesting.  A new laboratory experiment, 

which applies some of the basic principles of thermodynamics in the measurement of 

food calories, is described in this paper, along with some student results and the 

connection to ABET Program Outcomes.  A survey of students indicates that students 

find this to be one of the most enjoyable lab experiences in this course. 

 

Course Laboratory Background 

 

Students are grouped into teams of three to four students.  These groups are maintained 

throughout the semester, and consist of any combination of students from all majors 

(mechanical, electrical, computer or systems engineers).  The students attend a laboratory 

introduction, typically lasting less than one hour, in which they are introduced to the 

equipment, the experimental procedures, and any details necessary for the analysis or 

report.  Teams then sign up for a time slot during which they will return to conduct the 

experiment.  This being the second experiment of the semester, the students would have 

just been exposed to the First Law of Thermodynamics (closed system form) and would 

have been applying it in homework problems.  In an earlier lab, students were taught a 

method for experimental uncertainty analysis.  For this experiment, a knowledge of 

material property evaluation is required, but has usually not been covered yet at this point 

of the course.  So the lab period is used to demonstrate the application of the First Law to 

a bomb calorimeter and to preview some basic property relationships.  There is a fairly 

detailed laboratory procedure for nascent experimentalists, and so this lab also 

emphasizes careful laboratory practice. 

 

Description of the Experiment 

 

In this experiment, students measure the energy content of a food sample, whose contents 

are unknown to the students.  This is achieved by burning the sample in a combustion 

bomb, measuring the temperature rise of the water in the calorimeter, applying 

conservation of energy principles to estimate the energy value of the food sample in 

calories/gram, and comparing this energy value to values obtained from nutritional 

information of a number of potential food items.  Based on this latter comparison and the 

results of an uncertainty analysis, students are after-the-fact asked to guess the contents of 

their food sample.  The novelty of this laboratory experiment does not lie in the use of a 

combustion bomb.  Indeed, bomb calorimetry experiments are common, particularly in 

chemistry and chemical engineering courses
1-3

, and are sometimes used in engineering or 
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mechanical engineering laboratory courses
4-6

.  For example, students in the first year 

“Chemistry of Materials” course at Rensselaer 

Polytechnic Institute and Virginia Commonwealth University use calorimetry to 

determine the enthalpy of formation of Sodium Chloride
1
 while students in the “General 

Chemistry” course for engineering and physical science majors at the University of New 

Hampshire determine the enthalpy of combustion of oxygenated fuel mixtures using 

home-made calorimeters
2
.  In engineering curricula, combustion bomb calorimeters have 

been used in courses that focus on introducing experimental techniques to undergraduate 

engineering students
4,6

 or in undergraduate thermal/fluid laboratory courses
5
.  The 

novelty of this experiment does not lie in the use of a food sample either (although the 

use of food does not appear to be very common in engineering programs).  For example, 

students in the Biological Sciences “Nature of Human Health and Disease” course at the 

University of Southern California
7
 determine the number of calories in roasted cashews 

and popcorn using a homemade calorimeter (which consists of, among other things, a 

coffee can, a smaller metal can, a glass rod and a piece of cork with wire attached).  

However, to the knowledge of the authors, students in all of these courses either analyze 

a known sample or perform the calibration of a calorimeter.  In the experiment that we 

describe in this paper, students do not know a priori what sample they are testing and 

must hence look up nutritional information of a number of possible food items and 

identify their unknown food sample based on their calorimetry and uncertainty analysis 

results.  In the sections below we describe some details of the apparatus, procedure and 

analysis.  We also show how this laboratory exercise relates to ABET outcomes. Further 

details may be found in the Appendix. 

 

Apparatus - The apparatus consists of a Parr Instruments, model 1341 Oxygen Bomb 

Calorimeter
8
, shown schematically in the Sample Laboratory Handout in the Appendix, 

plus a supply of bottled oxygen and several extra stainless steel fuel capsules (Parr No. 

43AS).  The fuel capsules are used to support the food samples within the combustion 

bomb.  They are soiled in each experiment and require cleaning before they are used 

again.  For this reason it’s convenient to have several spares so that the teaching 

assistants can clean them in batches without delaying student groups.  In our case, we 

have replaced the standard thermometer, with a YSI Series 4600 Precision 

Thermometer
9
.  The thermometer uses a precision stainless steel-encased thermistor 

probe that is much more robust than the glass thermometer.  Through a serial port, this 

thermometer can also be directly connected to a computer for automated data acquisition.  

The expendable supplies include Ni-Cr fuse wire (Parr No. 45C10), gelatin capsules (Parr 

No. 3601), weighing paper and whatever food samples are chosen for the testing.  For 

testing of liquid samples (vegetable oils, fuels, or other combustible liquids), a special 

cellulose tape
10

 is used, in place of the gelatin capsules, to seal the sample within the fuel 

capsule. Each combustion bomb apparatus must be calibrated prior to use in the course 

using a substance of known calorie content (benzoic acid in our case) to obtain a 

calibration constant that the students use in their analysis. The calibration procedure used 

was consistent with the guidelines set by the combustion bomb manufacturer
8
. 

 

Sample Preparation – Food samples are typically selected for a given semester 

according to a theme.  For example, the theme may be breakfast cereals, or snack 
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crackers, or vegetable oils.  It’s a good idea to select foods of approximately the same 

color so that students cannot easily guess which sample they receive.  Liquids require 

more careful preparation and handling, so this discussion will be limited to dry samples.  

Prior to the experiment, teaching assistants carefully prepare the food samples according 

to the following procedure.  This sample preparation procedure is in large part based on 

the manufacturer’s manuals
8
.  Dry foods are selected and then pulverized using a coffee 

grinder.  For each sample, weighing paper and then a dry gelatin capsule are weighed.  

The capsule is then filled with the food sample and then reweighed.  All weights are 

recorded to the nearest 0.1 mg, and a log of sample number, weights and food sample is 

prepared as shown in Table 1, below.  The food sample, wrapped in its weighing paper, is 

placed into a sealed and numbered plastic container along with a piece of fuse wire and a 

stainless fuel capsule.  The set of samples are stored in a large plastic storage container 

along with a dessicant.  Since the samples are to be used by the students over a two-week 

period, the use of a dessicant prevents the contamination of the samples with humidity, 

which may affect the results of the experiment. A sign-out sheet is attached to the storage 

container; the students can then record their sample number, and the weights, but will not 

know which food type they have. 

 

 

Sample
Paper 

Weight

Capsule 

Weight

Paper, Capsule, & 

Sample Weight

Sample 

Weight
Food Sample 

1 0.4481 0.1162 1.4137 0.8494 Corn Meal

2 0.4423 0.1188 1.2306 0.6695 Corn Meal

3 0.4315 0.1132 1.3568 0.8121 Corn Meal

4 0.435 0.1137 1.3475 0.7988 Corn Meal

5 0.4521 0.115 1.4358 0.8687 Basmati Rice

6 0.4183 0.1167 1.39 0.855 Basmati Rice

7 0.4442 0.1143 1.4152 0.8567 Basmati Rice

8 0.4304 0.1159 1.5029 0.9566 Basmati Rice

9 0.4323 0.1189 0.8221 0.2709 Gerber Barley Baby Food

10 0.4244 0.1141 0.8461 0.3076 Gerber Barley Baby Food

21 0.439 0.1173 0.8972 0.3409 Gerber Barley Baby Food

12 0.4449 0.1158 0.9092 0.3485 Gerber Barley Baby Food

13 0.4386 0.1167 1.1698 0.6145 Shredded Wheat

14 0.4213 0.1152 1.065 0.5285 Shredded Wheat

15 0.4467 0.1156 1.1909 0.6286 Shredded Wheat

16 0.4421 0.1173 1.2327 0.6733 Shredded Wheat

17 0.429 0.1153 0.9922 0.4479 Baked Lays Potato Chips

18 0.4238 0.1127 0.9567 0.4202 Baked Lays Potato Chips

19 0.4386 0.1146 1.0061 0.4529 Baked Lays Potato Chips

20 0.4582 0.1098 1.0865 0.5185 Baked Lays Potato Chips  
 

Table 1.  Sample Preparation Log 

 

 

Experimental Procedure – Just prior to their scheduled lab time, students pick up a 

numbered food sample.  They conduct the experiment according to detailed instructions 

given in the laboratory handout (see Appendix).  The operating instructions are, in part, 

extracted from the instrument manual and require careful measurements and lab practice.  
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After setting up the experiment, students burn their food sample in the combustion bomb 

and record the transient temperature rise of the water bath.  They also record the length of 

fuse wire consumed during the combustion process (This information is later used by the 

students for their First Law analysis).  Students wash and dry the combustion bomb and 

the fuel capsule upon completion of the experiment, and then return the fuel capsule and 

the sample container to the teaching assistant.  (The fuel capsules will be cleaned and 

reused.)  Students record their sample number and retain the temperature-time data for 

inclusion in their reports.  Note that students do not titrate the bomb washings
8
, as might 

be done in a more thorough analysis or a chemistry course.  We’ve found the chemical 

corrections for sulfuric and nitric acids to negligible for food samples. 

 

Analysis and Deliverables – In the lab handout, a First Law analysis is outlined for 

calibrating the combustion bomb using a calorific standard (benzoic acid), in place of the 

food sample.  The resulting calibration constant for each calorimeter is given to the 

students.  Students are then required to develop a very similar model to solve for the food 

energy, knowing this calibration constant.  Their model must include the effect of the 

gelatin capsule and the fuse wire on the energy balance.  Students use their measured 

temperature history to compute the temperature rise, as outlined in the lab handout.  This 

measured temperature rise is then used to compute the food energy.  Note that the 

students must be careful enough to separate the energy released by the gelatin capsule 

and the fuse wire. 

 

The students at the outset are not told which food sample they have, but they are given 

the list of possible candidates.  Students must then go to the library, the grocery store and 

the internet to obtain nutritional information about these food candidates (number of 

calories in a serving size) and then try to identify which food they were given by 

comparing this information to their experimental results.  Their laboratory reports 

include: their original sample number, their raw data, the First Law analysis and 

calculations and their guess as to which food they were given.  In our case, we also use 

the lab to teach data presentation (tables and graphs), report writing skills and uncertainty 

analysis, and so these elements are also part of their reports.  Once the reports are graded, 

students are informed of the actual contents of their food sample and are hence given an 

opportunity to evaluate the accuracy of their experimental measurements and analysis. 

 

Student Results 

 

Some typical results, from the fall 2006 semester, are shown in the figures below.  Note 

that these have not been “selected” to show the “best” possible results.  In Figures 1 and 

2, the student measurements are compared to manufacturers’ reported calorie data.  There 

are two course sections and the food samples selected were not apparently evenly 

distributed between the sections.  This was coincidental, as the students arbitrarily select 

samples.  Two of the outliers where a result of mistakes made by the students in 

separating the energy content of the gelatin from that of the food sample.   

 

Another source of the error comes in the preparation of food samples.  The food and the 

gelatin capsules must be dry when weighed, so that the weight does not include any 
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absorbed moisture which would confound the energy calculations.  Also, manufacturers 

report average calorie values, which in fact vary due to the source of base food stocks.  

For example wheat grown in one region of the country during a poor season may have 

measurable different energy content than wheat grown in a different part of the country 

during a good growing season.  Also, the manufacturers do not always measure the actual 

energy in their products.  Instead, they total the energy values for the components in the 

food.  For example, if a cracker contains wheat flour, salt, sugar and flavorings, the 

manufacturer might just the total energy content of the components.  Some also subtract 

the fiber content, presuming that the fiber will not be absorbed by the human body.  Since 

the fiber burns, the students will measure a higher energy value than that reported.  For 

the above reasons, it’s useful to compare the student results for each food sample, as 

shown in Figure 2.  Student results should be clustered, for a given sample, even if that 

cluster differs from the manufacturer’s stated energy.  One can see that in Figure 2, 

except for the one outlier in the basmati rice and one in the Gerber Baby Cereal, the 

student data looks well-clustered.  (These were the two outliers mentioned earlier.) 

 

Benefits 
 

By conducting this experiment, students come to appreciate the relevance of the principle 

of conservation of energy to every day life.  Up until this point, most have never thought 

about how nutritional content information is obtained and are excited to see that what 

they learn in a thermodynamics class doesn’t only have bearing on engineering 

applications, but also on everyday life.  Anecdotally, one of the discoveries students 

make is that “food” calories are actually kilocalories.  That really puts perspective on 

what we eat! 

 

The careful procedure and attention to details that are required in this experiment are also 

important to the education of thorough and thoughtful engineers.  Along with this comes 

an important lesson in the analysis and interpretation of data.  By requiring students to 

perform an uncertainty analysis on their measurements and data, they realize that it is 

often not sufficient to only look at the energy content result to identify the food sample.  

Indeed, some of the food samples have very similar calorific content and the energy value 

uncertainty is at times larger than the difference between the calorific content of two 

different food items.  In such cases, students can only narrow down the list to a few 

candidates but cannot make a more “certain” identification.  Of course, by picking food 

items that have significantly different energy values, this issue becomes minor. 
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Student Laboratory Results: 

Correlation between Measured Calories & Manufacturers' Data
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Figure 1.  Sample Student Results Compared to Manufacturers’ Data 
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Student Laboratory Results:

Comparison by Food Type
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Figure 2.  Sample Student Results by Food Sample 

 

 

Another benefit that we see relates to the achievement of ABET outcomes.  Currently, 

engineering programs must demonstrate that their students attain
11

:  

 

(a) an ability to apply knowledge of mathematics, science, and engineering  

(b) an ability to design and conduct experiments, as well as to analyze and interpret 

data  

(c) an ability to design a system, component, or process to meet desired needs within 

realistic constraints such as economic, environmental, social, political, ethical, 

health and safety, manufacturability, and sustainability  

(d) an ability to function on multi-disciplinary teams  

(e) an ability to identify, formulate, and solve engineering problems  

(f) an understanding of professional and ethical responsibility  

(g) an ability to communicate effectively  

(h) the broad education necessary to understand the impact of engineering solutions 

in a global, economic, environmental, and societal context  

(i) a recognition of the need for, and an ability to engage in life-long learning  

(j) a knowledge of contemporary issues  

(k) an ability to use the techniques, skills, and modern engineering tools necessary for 

engineering practice. 
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This laboratory exercise addresses a number of ABET outcomes, as summarized in 

the following table. 

 

ABET Criterion 3. 

Outcome 

Means of Addressing or Achievement 

a through the application of the first law of thermodynamics 

b through careful experimentation, analysis and interpretation of 

the results, including and uncertainty analysis 

d if the experiment is conducted in teams  

e through formulation of an energy balance model and subsequent 

solution 

g through a written laboratory report and/or oral presentation 

i by requiring students to seek outside sources of information 

(nutritional value) and discover how that information or data is 

determined 

k through the use of engineering skills and tools to solve the 

problem of the “unknown food sample.”   

 

Lastly, the students seem to enjoy this experiment.  We regularly survey students about 

the course and the lab experience.  We ask them which labs they enjoy the most and 

which they enjoy the least.  This food calories lab is almost always rated first or second in 

these surveys.  This was the motivating force for developing this experiment in the first 

place. 
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Appendix – Sample Laboratory Assignment 

 

<Course Name> 

Fall 2006            <Course No.>    <Professors Names> 

     Laboratory Assignment #2 

 

Measuring the Energy Content of Food 

 

The purpose of this laboratory exercise is to apply the 

First Law of Thermodynamics to determine the energy 

content (i.e. food calories) of some simple foods.  

 

1. Carefully read the operating instructions for the Parr 

Instruments® model 1341 Oxygen Bomb 

Calorimeter.  Ensure that every group member has 

thoroughly read the instructions. Discuss the details 

of the experiment so that you are properly prepared 

before attempting to conduct the experiment, as you 

will be given only one food sample.  Prepare a data 

sheet for recording the water-bath temperature rise, 

as discussed in the operating instructions.  

2. Sign-out a food sample in room 145 DHE.  You should do this just prior to conducting the 

experiment.  Do not open your sample capsule.  The capsule and contents have been 

weighed to the closest 0.1mg.  Moisture will damage the gelatin capsule. 

3. Prepare the oxygen bomb, using your food sample, and burn the sample within the bomb 

calorimeter.  Record the water-bath temperature as detailed in the handout. If you have any 

questions about operating the calorimeter, please ask before you attempt the experiment. 

4. Return your sample cup to room 145 DHE immediately after the experiment. 

5. Plot the water-bath temperature as a function of time, and determine the actual temperature 

rise. 

6. Develop a First Law model of the system that is composed of the water-bath, bomb, fuse 

wire and food sample.  Use your model and the measured temperature rise, to estimate the 

energy value, fse , of your food sample
1
 in cal/g and ‘food calories”/g.  Note that one ‘food 

calorie’ is equal to one kilocalorie. 

7. Perform an uncertainty analysis on your calculation of fse , and specify the magnitude of the 

uncertainty for your experiment. 

8. Your sample consists of one of the following: Shredded wheat™, Original Baked Lay’s™ 

potato chips, Gerber barley baby cereal, basmati rice or yellow cornmeal.  Research the 

calorie information for these foods and tabulate in your report (include # food calories, 

serving size (g) and energy value).  Which sample would you guess that you measured?  

Justify your answer.   

                                                 
1
 The derivation in the combustion bomb instruction sheet does not consider a gelatin capsule. You must modify the 

derivation to account for the capsule by decomposing the total “energy release” from the test sample into 2 terms: 

one accounting for the food sample itself and the other for the gelatin capsule.  The heat of combustion of the gelatin 

capsule is Eequiv/gc and is listed in the preliminary calculations section of the handout. 
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OPERATING INSTRUCTIONS 
For the Parr 1341 Oxygen Bomb Calorimeter 

 
 
 
These instructions cover the steps to be taken in setting up and operating a Parr 1341 Plain Oxygen Bomb 

Calorimeter. They are extracted from the manufacturer’s complete manuals, which are available upon request.  The 

user should study these instructions carefully before starting to use the calorimeter so that he/she will fully 

understand the capabilities of the equipment, and so that he/she will be well aware of the safety precautions to be 

observed in its operation.  

 

 

OPERATING THE CALORIMETER 

 
Place the jacket on a sturdy bench or table in a location that is reasonably free from drafts and is protected from 

sources of radiant heat, preferably in an air-conditioned room. Temperature changes in the room should be 

minimal. There should be convenient access to running water, to a drain and to an appropriate grounded electrical 

outlet. About 8 square feet of workspace will be required. The lab assistant will provide already-weighed test 

samples.  A balance capable of weighing up to 2.0 kg with 0.1 g sensitivity, and a tank of oxygen are available in 

the lab. All operations required to test an unknown sample or to standardize the 1341 plain calorimeter should 

proceed step-wise in the following manner: 

 

1. Prepare the sample and charge the oxygen bomb. 
 

Precautions. Combustion with oxygen in a sealed bomb is a very effective and reliable method for releasing all 

heat energy obtainable from a sample and for preparing hydrocarbon compounds and carbonaceous materials 

for analysis, but there are certain precautions, which must always be observed when using this equipment. In 

particular: 

• Do not overcharge the bomb with too much sample or with a sample, which might react with explosive 

violence. 

• Do not overcharge the bomb with too much oxygen. The initial charging pressure should not exceed 40 

atm (590 psig).  About 30 atm is recommended here. 

• Do not fire the bomb alone on an open bench without providing a protective cooling medium. Usually the 

bomb should be completely submerged in water during firing. 

• Do not fire the bomb if gas bubbles are released from any point on the bomb when it is submerged in 

water. 

• Do not ignite a volatile sample without using one of the sealed sample holders (which would be provided). 

• Stand away from the bomb during firing and do not handle the bomb for at least 1 minute after firing. 

• Keep the bomb in good condition at all times. Any parts that show signs of weakness or deterioration must 

be replaced promptly. 

 

Allowable Sample Size. To stay within safe limits, the bomb should never be charged with a sample, which 

will release more than 8000 calories when burned in oxygen, and the initial oxygen pressure should never 

exceed 40 atmospheres (590 psig.).  To avoid damage to the bomb and possible injury to the operator, it should 

be a standing rule in each laboratory that the bomb must never be charged with more than 1 of the samples 

provided (approx 1 g) of material. 

 

Attaching the Fuse. Set the bomb head on the A38A support stand and fasten a 10 cm length of fuse wire 

between the two electrodes. Parr 45C10 nickel alloy wire, used for most tests, is furnished on cards from which 

uniform 10 cm lengths can be cut. 

To attach the fuse to quick-grip electrodes, insert the ends of the wire into the eyelet at the end of each stem 

and push the cap downward to pinch the wire into place. No further threading or twisting is required.  
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Place the fuel capsule with its weighed sample in the electrode loop and bend the wire downward toward the 

surface of the charge. It is not necessary to submerge the wire in a powdered sample. In fact, better combustion 

will usually be obtained if the loop of the fuse is set slightly above the surface. When using pelleted samples, 

bend the wire so that the loop bears against the top of the pellet firmly enough to keep it from sliding 

against the side of the capsule. It is also good practice to tilt the capsule slightly to one side so that the 

flame emerging from it will not impinge directly on the tip of the straight electrode. 

 
Liquids in the Bomb. Most bomb combustion procedures call for a small amount of liquid to be placed in the 

bottom of the bomb as a sequestering agent and absorbent. If the amount and type of liquid are not otherwise 

specified, add 1.0 mL of distilled or deionized water from a pipet 

 

Closing the Bomb. Care must be taken not to disturb the sample when moving the bomb head from the support 

stand to the bomb cylinder. Check the sealing ring to be sure that it is in good condition and moisten it with a bit 

of water so that it will slide freely into the cylinder; then slide the head into the cylinder and push it down as far 

as it will go. For easy insertion, push the head straight down without twisting and leave the gas release valve 

open during this operation. Set the screw cap on the cylinder and turn it down firmly by hand to a solid stop. 

When properly closed, no threads on the cylinder should be exposed. If the screw cap tends to bind to the 

cylinder at this point, indicating that it might be difficult to open the bomb after it has been fired, turn the screw 

cap back slightly - but only a few degrees - enough to release the binding, since the bottom thread must remain 

fully engaged. It is not necessary to use a wrench or spanner on the screw cap. Hand tightening should be 

sufficient to secure a tight seal. 

 

Filling the Bomb.   The pressure connection to the bomb is made with a slip connector on the oxygen hose, 

which slides over the gas inlet fitting on the bomb head.   Slide the connector onto the inlet valve body and 

push it down as far as it will go. If it does not slide easily, a drop of water spread around the inlet valve will 

lubricate the sealing rings.  Close the outlet valve on the bomb head; then open or "crack" the oxygen tank 

valve not more than one-quarter turn. Open the filling connection control valve slowly and watch the gage as 

the bomb pressure rises to the desired filling pressure (usually 27 atm., but never more than 40 atm.); then close 

the control valve. The bomb inlet check valve will close automatically when the oxygen supply is shut off, 

leaving the bomb filled to the highest pressure indicated on the 0-55 atm. gage. Release the residual pressure in 

the filling hose by pushing downward on the lever attached to the relief valve. The gage should now return to 

zero. If the pressure drops slowly and a large amount of gas escapes when the pressure relief valve is opened, 

the check valve in the bomb head is not operating properly. This trouble will have to be corrected before the 

bomb can be used. If too much oxygen should accidentally be introduced into the bomb, do not proceed with 

the combustion. Detach the filling connection; exhaust the bomb; remove the head and reweigh the sample 

before repeating the filling operation. 

 

 

2.  Fill the calorimeter bucket by first taring the dry bucket on a solution or trip balance; then add 2000 (+/-0.5) 

grams of water. The water temperature should be approximately 1.5° C below room temperature, but not less than 

about 19.2 °C. 

 

3. Set the bucket in the calorimeter, noting the three dimples in the bottom of the bucket, which rest on 

supporting pins in the bottom of the jacket. The single dimple must always face forward when setting the bucket in 

the jacket. 

Attach the lifting handle to the two holes in the side of the screw cap and lower the bomb into the water with its feet 

spanning the circular boss in the bottom of the bucket.  Handle the bomb carefully during this operation so that 

the sample will not be disturbed.  Remove the handle and shake any drops of water back into the bucket; then 

push the two ignition lead wires into the terminal sockets on the bomb head, being careful not to remove any water 

from the bucket with the fingers. 

 
4. Connect the ignition unit.  The Parr 2901 Ignition Unit operates from any standard electrical outlet to provide 

the proper low voltage firing current, providing also a convenient push switch, indicating lamp and connecting 

terminals.  Connect the two lead wires from the calorimeter jacket to the "l0 CM" terminals on the ignition unit; 

then plug the power cord into any appropriate grounded electrical outlet. After the unit has been plugged into an 
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outlet do not press the firing button unless the lead wires inside the jacket are connected to a bomb. If the bare 

terminals on these wires happen to be in contact with each other or with a metal object when the circuit is closed, 

the resulting short-circuit may cause serious damage to the ignition system. 

 
5. Set the cover on the jacket with the thermometer facing toward the front. Turn the stirrer by hand to be sure 

that it runs freely; then slip the drive belt onto the pulleys and start the motor.   

 

6. Let the stirrer run for 5 minutes to reach equilibrium before starting a measured run. At the end of this period 

record the time or start a timer and read the temperature.  

 

7. Read and record temperatures at one-minute intervals for 6 minutes. Then, at the start of the 6th minute... 

 

8. Stand back from the calorimeter and fire the bomb by pressing the ignition button and holding it down until 

the indicator light goes out. Normally the light will glow for only about 1/2 second but release the button within 5 

seconds regardless of the light. Caution: Do not have the head, hands or any parts of the body over the 

calorimeter when firing the bomb; and continue to stand clear for 30 seconds after firing. 

 

9. The bucket temperature will start to rise within 20 seconds after firing. This rise will be rapid during the first 

few minutes; then it will become slower as the temperature approaches a stable maximum as shown by the typical 

temperature rise curve on page 4. 

 

10. Measure the time required to reach 60 per cent of the total rise.  Take temperature readings at 45, 60, 75, 

90 and 105 seconds after firing and interpolate between these readings to identify the 60% point after the total rise 

has been measured.  

 

11. After the rapid rise period (about 4 or 5 minutes after ignition) record temperatures at one-minute intervals 

until the difference between successive readings has been constant for five minutes. Usually the temperature will 

reach a maximum; then drop very slowly. But this is not always true since a low starting temperature may result in a 

slow continuous rise without reaching a maximum. As stated above, the difference between successive readings 

must be noted and the readings continued at one-minute intervals until the rate of the temperature change becomes 

constant over a period of 5 minutes. 

 

12. After the last temperature reading, stop the motor, remove the belt and lift the cover from the calorimeter. 

Wipe the stirrer with a clean cloth and set the cover on the support stand. Lift the bomb out of the bucket; remove 

the ignition leads and wipe the bomb with a clean towel. 

 

13. Open the knurled knob on the bomb head to release the gas pressure before attempting to remove the cap. 

This release should proceed slowly over a period of not less than one minute to avoid entrainment losses. After all 

pressure has been released, unscrew the cap; lift the head out of the cylinder and place it on the support stand. 

Examine the interior of the bomb for soot or other evidence of incomplete combustion. If such evidence is found, 

the test will have to be discarded. 

 

14. Wash all interior surfaces of the bomb with water and dry carefully. 

 

15. Remove all unburned pieces of fuse wire from the bomb electrodes; straighten them and measure their 

combined length in centimeters. Subtract this length from the initial length of 10 centimeters and enter this quantity 

on the data sheet as the net amount of wire burned, fL . 
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Note: Digital thermometer 
used in place of glass 

thermometer 
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PRELIMINARY CALCULATIONS 

 
The raw data should be plotted, as shown below, and inspected for anomalies.  There are a few features worth 
noting.  First, the data should have a very slight positive slope during the Pre-period (if the initial water temperature 
is about 1.5 °C below room temperature to start).  During the Post-period, there should be a very slight negative 
slope.   Calculations are based on identifying the Pre and Post-periods, and on identifying the time to achieve 60% 
of the total temperature rise. 

 

Assembly of Data. The following data should be available at the completion of a test in a 1341 calorimeter: 
a = time of firing 

b = time when the temperature reaches 60 percent of the total rise 

c = time at beginning of period in which the rate of temperature change has become constant 

Ta = temperature at time of firing 

Tc = temperature at time c 

rl = rate (temperature units per time, °C/sec) at which temperature was rising during the 5-min. period before 

firing 

r2 = rate (temperature units per time, °C/sec) at which the temperature was rising during the 5-min. period after 

time c. If the temperature was falling instead of rising after time c, r2 is negative and the quantity -r2 (c-b) 

becomes positive and must be added when computing the corrected temperature rise 

Lf = centimeters of fuse wire consumed in firing 

CalthC  = thermal capacitance of the calorimeter, determined under CALIBRATING THE COMBUSTION 

BOMB 

Ms = mass of test sample in grams 

Mgc = mass of gelatin capsule used to contain fuel sample (if used) 
 

Temperature Rise. Compute the net corrected temperature rise, ∆T, by substituting in the following equation:             

∆T = (Tc-Ta) – r1(b-a) – r2(c-b) 
 
Thermochemical Corrections: Compute the following for each test: 

 
Eequiv/f = (Lf) (eequiv/f) = correction in calories for heat of combustion of fuse wire 

  = (Lf in cm) x (2.3 cal/cm)     (when using Parr 45C10 nickel chromium fuse wire) 

 

Eequiv/gc = Mgc (eequiv/gc) = correction in calories for the heat of combustion of the gelatin capsule (if used) 

  = (Mgc in grams) x (4600 calories/gm) 
 

Typical Temperature Rise Curve
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Calibrating the Combustion Bomb Calorimeter 
 

The constant volume combustion bomb (bomb) has been calibrated using a standard sample of 

benzoic acid according to the procedure below.  Some simplifications have been made, but the 

resulting accuracy is certainly adequate for the purposes of this laboratory experiment.   

The calibration is based on a simple First Law analysis of the bomb.  Once the bomb has been 

calibrated, a similar analysis may be used to obtain the energy value of any test sample.  Please 

refer to the sketch below. 

 

 

 

For the process of igniting the fuse and the test sample, and the resulting rise in water 

temperature, the 1
st
 Law states that: 

outEnergyInEnergyEE 12 −=−    

so that,     B.elect QWE −=∆      (1) 

 

Since Energy is extensive, and changes in kinetic and potential energy are negligible, 

 

Bwfs UUUUUE ∆+∆+∆+∆=∆=∆    (2) 

where subscripts, 

  s = test sample 

  f = fuse wire 

  w = water surrounding bomb 

  B = bomb 

QB

Welect.

CM

Bomb

Sample

Fuse

Wire

+ -

QB

Welect.

CM

Bomb

Sample

Fuse

Wire

+ -
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  ∆ = (final state – initial state) 

 1 = initial state 

 2 = final state 

 

Substituting for E∆ , the 1
st
 Law becomes, 

 

B.electBwfs QWUUUU −=∆+∆+∆+∆     (3) 

 

   

Combining terms associated with combustion, and separately those associated with resulting 

temperature rise, 

 

.electfsBBw WUUQUU +∆−∆−=+∆+∆     (4) 

 

Reviewing the equation, term by term: 

 

� wU∆  = energy rise in the water bath = ( )12vw TTcM
W

−  

� BU∆  = energy rise in the combustion bomb = ( )12vB TTcM
B

−  

� BQ  =  heat transfer out of the bomb.  BQ  is approximately proportional to the 

temperature rise, and so the quantity  
( )










− 12

B

TT

Q
 is approximately constant. 

 

� ( ) ( )
s.prod.reactststanreacproductss UUUUU −=−−=∆−  =  total “energy release” from the 

test sample = ss eM ;  where se  = “energy value” per unit mass of the test 

sample 

 

� ( )
( )

ff

f

f.prod.react

ff.prod.reactf eL
L

UU
LUUU =







 −
=−=∆−      where, fe  is the “energy 

value”  per unit length of the fuse material, and fL is the actual length of the 

fuse consumed.  ( )
finalinitial fff LLL −=  

 

� Welect. =  electrical work necessary to ignite the fuse, and is proportional to the 

length of fuse consumed = ff wL  

 
Substituting the above back into the energy equation, 

 

  ( ) ( )
( )

( ) [ ]
434 21434 21

444444 3444444 21 fequiv

Calth

e

fffss

T

12

C

12

B

Bvwv weLeMTT
TT

Q
cMcM ++=−









−
++

∆

  (5) 
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The first term on the left, in brackets, is composed of terms that are approximately constant and 

together represent the thermal “inertia” or “thermal capacitance” of the calorimeter.  The term in 

brackets on the right represents the “energy equivalent per length of fuse material” ( ≅
fequive  2.3 

Cal/cm).  The 1
st
 Law can then be written as, 

 

fCal equivfssth eLeMTC +=∆       (6) 

 

Solving for the thermal capacitance of the calorimeter, 

 

T

eLeM
C f

Cal

equivfss

th
∆

+
=       (7) 

 

Following replicate calibration tests with a reference benzoic acid test sample, it was found that,  

CalthC =  2437 ± 20 calories/°C, or . 
CalthC =  2467 ± 20 calories/°C (unit #2). 

 

This value can now be used in conjunction with the temperature rise to account for the energy 

increase in the water bath and combustion bomb, as well as the heat transfer from the calorimeter 

when analyzing other test samples. 
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Lab Experiment #2:  Energy Content of Food

Group # = Date & Time =

Sample # = 

Sample Wt. = 

Starting H2O Temp. = 

Time (seconds) Temperature (°C) Comment

0 start timer

60

120

180

240

300 <--start logging temperature

360 pre-period

420 "     "

480 "     "

540 "     "

600 (ignite time) begin rise period

645

660

675

690

705

765

825

885

945

1005

1065

1125

1185

1245

1305

1365

1425

1485

1545

Group Leader: 
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