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Capitalizing on their increasing control of the material world, design engineers will soon 

incorporate high-strain elastomers and biology-mimicking materials into critically stressed 

structural components [1].  ‘High-strain� is described by a simple and essential mathematical 

concept to which engineering students are uniformly exposed.  Nevertheless, in this writer�s 

view, the theory is seldom internalized. 

 

Engineering educators who seek to solidify the connection between the mathematics and their 

students� eventual workplace toolbox may, therefore, wish to re-visit a nice little hands-on 

exercise [cf. 2, 3] which illustrates the concept of one-dimensional strain and its elegant 

mathematical analog, the logarithm. 

 

Following a sufficient number of lectures on the topic of deformations and stress, engineering 

students memorize the definition of engineering strain, the change in length divided by the initial 

length, ε = O�Oi.  In later courses, students use this engineering strain formulation in virtually all 

analysis problems that call for a strain calculation.  Understandably focused on the problem-

solving aspects of the current topic, rather than on the mathematical foundation, most students 

remain unmindful of the fact that engineering strain is a pure approximation, a useful calculation 

for only small values of deformation.  This circumstance presents a classroom opportunity to 

deepen the understanding of mechanical deformations by applying the logarithm in a hands-on 

exercise. 

 

Mechanical engineering students respond readily to hands-on experiments; this is especially true 

when the attendant instrumentation requires no explaining.  Such is the case when two points, 

defining the extremes of a (albeit long gage length) strain gage, are laid out lengthwise on a 

standard rubber band.  Using the simplest of tools, namely a piece of cardboard backing, two 

thumb tacks, and a finely graduated scale, the results of the true strain formulation may be 

directly compared with those of engineering stain.  For large strains, greater than say, 10%, these 

two values disagree significantly, which leads to a quick, physically based explanation of the 

logarithm. 

 

Beginning with a counter example, students are asked to lay out several small ink dots along the 

length of a slightly stretched rubber band and then log the distances between the dot pairs.  As is 

soon discovered, the dots define a series of strain gages laid end to end.  Stretching the band 
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slightly more, say 25% or so, the students are again asked to carefully measure and log the new 

distances separating the dot pairs and then use these data to calculate the value of engineering 

strain along the rubber band’s length. 

 

Repeating once this procedure for a single gage (a single dot pair) yields, for example, the 

following table. 

 

initial length 

li (mm) 

final length 

lf (mm) 

change in length 

O (mm) 

engineering strain 

ε = O/li 

40 50 10 25% 

50 60 10 20% 

 

As the rubber band is stretched, it is seen that the distance separating any given dot pair ranges 

from 40 to 60 mm.  When this operation is done in two steps, as shown above, the total 

engineering strain clearly sums to 45%. 

 

Students are then asked to repeat the experiment by stretching the rubber band in a single step 

during which time the dot separation again ranges from 40 to 60 mm.  But, for a single stretch, 

the engineering strain is clearly 50%, and the contradiction is compelling. 

 

Reinforcing the point, students may be directed to repeat the exercise a few more times while 

using more, and smaller, steps.  In any event, converging results suggest a differential 

formulation which is abridged in the next few lines. 

 

True strain, εt, is defined by the infinite sum 

 

εt = Oi/li + l2/l2 + O3/l3 . ������ Of/lf = �� O�O. 
 

Here, the summation ��H[WHQGV�EHWZHHQ�WKH�OLPLWV�RI�Oi and lf, the initial and final gage lengths, 

respectively. 

 
As� O� ���WKen εt = ��GO�O��with limits again given by li and lf.  Engineering students usually 

recognize this form, which leads to 

 

εt = ln(lf – li) = ln(lf/li). 

 

Also, since lf = li + O, we have εt = ln[(li + O)/li]. 

 

To finish the derivation, since O�Oi is defined as engineering strain, ε, we get 

 

εt = ln(1 + ε). 

 

A quick check verifies that true strain is indeed true.  Using the original tabulated two-step 

values, 

P
age 9.903.2



Proceedings of the2004 American Society for Engineering Education Annual Conference 

Copyright © 2004, American Society for Engineering Education 

εt = ln(1 + ε) = ln(1 + .25) = .223 

 εt = ln(1 + ε) = ln(1 + .20) = .182, 

 

it is seen that the two-step true strain sum is precisely equal to the one-step true strain value: 

 

εt = ln(1 + .5) = .405. 

 

Graphical representations are almost always illustrative, and so students are directed to plot, on a 

sheet of graph paper, the values of εt vs ε, shown (solid line) in the figure below. 

 

true strain vs engineering strain
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The slope at the origin (dashed line) is seen equal to unity, leading to the conclusion that one-to-

one correspondence between εt and ε exits only when ε is vanishingly small.  Further, students 

may also note that the value of true strain is always less than the value of engineering strain 

when the loaded structure is in tension, and conversely, always greater when the structure is 

compressed.  The perceptive student may also infer the physical implication of the negative 

asymptote – that a compressed structure cannot have negative length, no matter how large is the 

load. 

 

If students make use of sufficiently translucent graph paper, the page may be flipped over, 

exchanging dependent and independent variables to view the function y = e
x
 (displaced by one 

on the abscissa).  This simple transformation illustrates an interesting property of the exponential P
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function – that the y-value is always equal to the slope – further emphasizing the term ‘natural’ 

logarithm. 

 

Lacking experience, engineering designers shall always resort to the proverbial ‘fundamentals’.  

This will certainly be the case as succeeding generations of high-strain materials increasingly 

find their way into crucially loaded machine components.  The few classroom minutes expended 

in this exercise can bring to life one of these fundamentals. 
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