
AC 2010-169: MESH-NETWORKED MOBILE ROBOTS: A FRAMEWORK OF
LABORATORY EXPERIMENTS FOR COURSES IN WIRELESS
COMMUNICATIONS

Wookwon Lee, Gannon University
Wookwon Lee, P.E. received the B.S. degree in electronic engineering from Inha University,
Korea, in 1985, and the M.S. and D.Sc. degrees in electrical engineering from the George
Washington University, Washington, DC, in 1992 and 1995, respectively. He is currently on the
faculty of the Department of Electrical and Computer Engineering at Gannon University, Erie,
PA. Prior to joining Gannon, he had been involved in various research and development projects
in communications for more than 12 years in industry and academia.

Sreeramachandra K. Mutya , Gannon University
Sreeramachandra K. Mutya received his Bachelor's degree in electronics and communication
engineering from Bharath University, Chennai, India in 2007. He is pursuing a master's degree in
electrical engineering at Gannon University, Erie, PA, where he currently works as a graduate
research assistant. His research interests include wireless communications, computer
communications, and real-time systems.

Kirankumar Palthi , Gannon University
Kirankumar Palthi received his Bachelor's degree in electronics and communication engineering
from Jawaharlal Nehru Technological University, Hyderabad, India in 2008. He is pursuing a
master's degree in embedded software engineering at Gannon University, Erie, PA, where he
currently works as a graduate research assistant. His research interests include wireless
communications, signal processing, embedded systems, and digital Electronics.

© American Society for Engineering Education, 2010

P
age 15.868.1

Mesh-Networked Mobile Robots: A Framework of Laboratory

Experiments for Courses in Wireless Communications

Abstract

In this paper, we present an exemplary framework suitable for laboratory experiments for

undergraduate courses in communications. Initially designed to be a test-bed for a small wireless

mesh-networked system, the framework consists of a graphical user interface (GUI) for a control

center, a software-based interface referred to as the Synapse Portal, a mesh-networking node

referred to as the Bridge, and multiple mesh-networking End Nodes each of which is integrated

into a three-wheel mobile robot. The development of the test-bed requires an integration of two

microcontrollers of different code-execution speeds in cascade. In this paper, along with design

details and relevant specifics of all components of the test-bed, we discuss issues encountered

during the development and how we addressed them to successfully realize a functioning mesh

network of mobile robots. Based on our observations during the development, we believe that the

test-bed can be useful for addressing ABET engineering criteria, and also developing a set of

small-scale laboratory experiments for undergraduate courses in the areas of communications.

I. Introduction

The work presented in this paper initially began as a small research project involving master-

level graduate students on indoor positioning. Research on indoor positioning has been intense

over the past few years to facilitate a broader spectrum of location-based services and

applications. It is well known that due to the inherent limitations of the satellite signals, the

global positioning system (GPS)-based technologies do not work well in indoor environment.

Several alternative approaches have been reported in the literature, and they can be classified

largely into four categories: i) infrared signal-based, ii) ultrasound signal-based, iii) microwave

(satellite) signal-based, and iv) radio-frequency (RF) signal-based. Partly due to the advantages

in signal propagation under diverse indoor scenarios, the RF signal-based approach has become

most popular for indoor positioning systems
1-4

. In these approaches, location estimation

techniques are typically based on one or more of statistical parameters such as received signal

strength (RSS), time of arrival (TOA), and angle of arrival (AOA). More recently, a new

approach was proposed based on a new statistical parameter called the angle of transmission

(AOT)
5
. The AOT is a spatial direction of the main lobe of a beam pattern generated by transmit-

beamforming. The approach exploits the spatial information embedded in the signal transmitted

from an antenna array. In this scheme, each mobile node with an omni-directional, single-

element antenna estimates the AOT based on one (or more than one) signature signal(s)

transmitted from the fixed node equipped with an antenna array. The mobile node then further

estimates its distance from the fixed node based on the RSS of the signature signal to ultimately

be able to pin-point its location in the polar coordinates where the fixed node is assumed to be at

the origin.

Although our work on a prototype of an indoor positioning system exploiting AOT will need to

be continued to the next stage, up to the current state as described below with more details, the

P
age 15.868.2

project has produced a complete test-bed system that can be used as a basis for developing

laboratory experiments for undergraduate courses in wireless communications. The rest of this

paper is organized as follows. Section II briefly describes our test-bed system, Section III

provides details of implementation for mesh networking capability among the network nodes,

and Section IV provides implementation details for mobility control of mobile robots. In Section

V, relevant ABET criteria are discussed along with brief descriptions of suggested laboratory

experiments. Finally, concluding remarks are provided in Section VI.

II. System Description

A. Test-bed of an Indoor Positioning System

Figure 1 shows a simplified diagram of our intended indoor positioning system consisting of a

control center, a fixed node, and multiple mobile nodes. An antenna array is included at the fixed

node for indication of a beamforming-based indoor positioning approach. The fixed and mobile

nodes form a mesh network operating at the 2.4 GHz frequency band based on the IEEE

802.15.4 radio
7
 and Synapse Network Appliance Protocol (SNAP)

9
. The control center is for

control of mobile nodes’ motions and also for processing of data such as location information

from mobile nodes. Each mobile node has capability to roam around and is desired to estimate

the angle-of-transmission ș and distance d for its location within the polar coordinates with the

fixed node at the origin. Depending on the need from a particular application/service utilizing the

location information, the mobile node may report its location to the control center through the

fixed node/ gateway. If necessary, all or some nodes in the mesh network can share their location

information as the mesh network protocol can easily accommodate a network node to

communicate with the others in the same network.

In our test-bed, the control center is a host computer for a graphical user interface (GUI)

developed in our lab with Microsoft Visual Basic. In the GUI, eleven commands are associated

with buttons that can be clicked with a mouse to control mobile nodes’ moving directions: Stop,

Forward/Reverse, Forward/Reverse Right/Left by 30 degrees, and Forward/Reverse Right/Left

by 60 degrees. The control center is also a host computer for an additional graphical user

interface referred to as the Synapse Portal. For a mesh network to deliver control commands

from the GUI to a mobile node (or multiple mobile

nodes), Synapse’s Bridge Node and Protoboards
9

(also referred to as End Nodes in this paper) are

adopted for the fixed node and mobile nodes,

respectively. Synapse’s Bridge and End Nodes are

a microcontroller board with a System-on-Chip

(SoC) called the RF Engine
10

. Each RF Engine

combines a Freescale S08GT family

microcontroller (more specifically,

MC9S08GT60A), an 802.15.4 radio, and an

antenna. Synapse nodes are managed by the

Synapse Portal for application-specific

programming in python and loading the codes into

the microcontroller. For the purpose of

Figure 1. A simplified diagram of a test-bed

for an indoor positioning system

P
age 15.868.3

communicating with other mesh-networking nodes, i.e., Bridge Node and End Nodes, the

Synapse Portal has a virtual network node referred to as the Portal Node. The Synapse Bridge

Node/fixed node is in one end directly connected by a serial cable to the control center and in the

other end communicates with End Nodes/mobile nodes based on the SNAP/IEEE 802.15.4 radio.

An individual End Node is mounted on a three-wheel mobile robot, referred to as ARobot
11

, and

maintains a physical connection by wire with a microcontroller for the robot, referred to as the

BASIC Stamp
12

. The BASIC Stamp controls the motion of ARobot.

B. Location Estimation for Indoor Positioning

Implementation of a location estimation method on mobile nodes is based on our previous work

on AOT estimation
5
. We briefly summarize the algorithm here for completeness of the

description. When the fixed node broadcasts its signature signal ()s t toward a predetermined

angular direction, the instantaneous transmitted baseband signal can be expressed as

() ()ts t P s t w , where the (M 1) vector w represents the beam-forming coefficients of the

antenna array and tP is the transmitted signal power. The instantaneous received baseband signal

()y t at the mobile node in a flat fading channel can then be written as
5

() () () ()Ty t c t n t a x (1)

where is the power scaling factor for large-scale path loss, c is the channel gain for small-scale

flat fading and 2 sin / 2 (1) sin /() [1, , ,]j j M Te e a is the (M × 1) vector. Here, we have

used for the spacing between two adjacent antenna elements and for the wavelength of the

RF carrier. The superscript (·)
T
 denotes the transpose. The noise ()n t is assumed to be stationary,

complex-valued additive white Gaussian with its variance 2

n . These statistical variables are

commonly accepted for and used in design of wireless communication systems.

Three steps are involved for location estimation: i) estimation of angle-of-transmission (AOT),

 , ii) estimation of distance, d , and iii) calculation of geocentric position C(,h vL L) of the

mobile node. AOT estimation is based on the least-squares (LS) criterion to extract the spatial

information, i.e., , embedded in the received signal. With details of the derivation omitted, we

can write an LS estimator for unknown parameter as
2

1

ˆ ˆarg min () () ()
P T

l t ll
y t P c s t

 a w (2)

where P is the number of RF signal samples used for estimation and ĉ is for estimates of the

channel gain. Distance estimation is based on the radio signal strength and a log-distance (LD)

path loss model and can be done with
0[() ()]/10

0
ˆ 10 PL d PL d nd d (3)

where n is the path loss exponent, ()PL d is the measured average path loss in dB at the

transmitter-receiver separation d and includes measurement error which can be modeled as a

zero-mean Gaussian random variable with variance 2 , 0d is the close-in reference distance

close to the transmitter, and 0()PL d is the measured average path loss in dB at the corresponding

transmitter-receiver separation 0d . The transmit signal power tP and 0()PL d are pre-determined

P
age 15.868.4

and easily known to the mobile node via upper-layer communication protocols, and ()PL d is

obtained based on measurements of the received radio signal power, rP . Finally, with d and

 estimated, the geocentric coordinates C(,h vL L) of the mobile node can be ultimately obtained

from

,
ˆ ˆˆ sin 180 /h F hL L d R (4)

,
ˆ ˆˆ cos 180 /v F vL L d R (5)

where the units of the latitude and longitude are [degrees, minutes, seconds] with negative

numbers representing south latitudes and longitudes west of the Greenwich meridian, and R is

the radius of the geocentric coordinate system.

III. Mesh Networking of ARobots

A. Mesh Network for Communication with Mobile Robots

A wireless mesh network typically consists of a gateway and several mobile nodes that operate

as a communication entity engaged in communication with other communication entity outside

of the network but also as a router to forward information packets to other nodes within the mesh

network
8
. In our test-bed, a mesh network is employed for an intended utilization of the

positioning system such that location information can be possibly relayed when a mobile robot

may be far away from the gateway (and thus, the control center/GUI). Without reinventing the

wheel, we have adopted a Synapse Wireless solution for mesh networking capability that offers a

minimum level of trouble-shooting to make the network up and running. The solution offers

three networking nodes, i.e., Synapse Bridge, End Node, and Protoboard. However, the

integration of the networking nodes into the complete indoor positioning system utilizing a GUI

and mobile robots still requires a considerable amount of laboratory work that is the primary

scope of this paper.

B. Implementation for Control of Mobile Robots in a Mesh Network

Our GUI is developed to facilitate manual control of ARobot’s moving directions with a set of

buttons. Whenever a button in the GUI is clicked as a control command, the GUI writes the

corresponding command in a form of binary string to a pre-specified text file. The Synapse

Portal periodically reads the content of the text file and delivers the content to the Bridge Node,

which serves as the gateway of the mesh network and eventually delivers the command to an

ARobot. The Portal Node of the Synapse Portal facilitates communication between the Synapse

Portal and the Bridge Node. Although the Portal Node can communicate with the other Synapse

nodes (i.e., End Nodes and Bridge Nodes), as it sits outside of the gateway of the mesh network,

it is not considered part of the mesh network. Figure 2 shows a block diagram for delivery of

control commands from the GUI to an End Node in the network. The Synapse Portal displays the

status of the nodes in the network on the screen of the host computer, i.e., the control center.

While only active Bridge Node and End Nodes are displayed, the Portal Node is always

displayed on the Portal even if it is not actually connected. The Synapse Portal communicates

with the Bridge Node using a Packet Serial protocol over a RS-232 or USB 2.0 cable connection

between the control center and the Bridge Node. The Bridge Node, as well as End Nodes, has

P
age 15.868.5

two Universal Asynchronous

Receiver-Transmitter (UART)

ports, UART0 and UART1, and

UART0 is dedicated for the

communication with the

Synapse Portal.

With slightly different

functionality of the Bridge

Node and End Nodes for the

test-bed, separate scripts were

written in SNAPpy which is a

subset of python for Synapse

nodes
[9, p. 9 & p. 36]

. Key built-in

functions, i.e., Application

Programming Interface (API), for delivery of control commands are:

 RPC()

 initUart()

 crossConnect()

In contrast, the Portal Node is implemented based on a different set of built-in functions known

as the Portal APIs
[9, p. 89]

, and the key Portal API to deliver control commands is sendData().

Implementation for communication capability is done such that once powered on and initialized

for mesh networking, the Bridge Node makes a remote procedure call (RPC)
13,14

 to the Portal

Node every second. The Portal Node then sends a short data packet (i.e., command) to the Bridge

Node using sendData(). After this, the Bridge Node passes the control command to the End

Node using another RPC(). The control command delivered to the End Node is finally converted

to a binary signal (i.e., high and low) and is output to a designated pin in a serial fashion. The

designated pin for the output from the End Node is directly connected to a pin on the

microcontroller on the BASIC Stamp as the input to the board.

Every Synapse node contains an RF engine. Each RF engine has its own unique MAC address

for differentiation from the other RF engines or other nodes in a wireless mesh network. Node

addresses are the last three bytes of the MAC address that are read off the RF Engine sticker. For

example, a node with MAC address 001C2C1E 86001B67 in hexadecimal format will have its

node address 001B67. In SNAPpy format, it is expressed as \x00\x1B\x67
[9, p. 26]

, where ‘x’

indicates the hexadecimal format. The Portal Node carries a default node address

\x00\x00\x01. Users can change this address anytime by using an appropriate Portal API.

B. Key Implementations and Lessons Learned

1) Pin functions and details: Table 1 shows the RF Engine pins used in our implementation
9
.

Pins 5, 6, 8 and 9 for Data In/Out are the ones used for receiving/transmitting when UART is

enabled; otherwise, they can be used as general unidirectional input and output pins. Pins for

Clear-To-Send (CTS) and Ready-To-Send (RTS) are used for hardware handshaking. Hardware

handshaking is also called the flow control. If the flow control is not enabled, they can be used as

Figure 2. Delivery of control commands in mesh networking

P
age 15.868.6

bidirectional pins (i.e.,

input and output). The

Synapse Portal uses its

serial port(s) at a speed of

38.4 kbps. So users need

to choose a baud rate of

38,400 for binary

transmission.

2) Switchboard and

connection matrix: The

data flow through a

SNAP device is

configured via the

Switchboard. It allows

connections to be established between sources and sinks of data in the device. The following

variables, also called the Data Sources/Sinks, are defined in the SNAP along with general-

purpose input/output (GPIO) pins assigned on the RF Engine: DS_NULL = 0, DS_UART0 =

1, DS_UART1 = 2, DS_TRANSPARENT = 3, DS_STDIO = 4, DS_CLI = 5, and

DS_PACKET SERIAL = 6. Note that these pin numbers for GPIO are not the original pin

numbers of the RF Engine previously mentioned in Table 1. Table 2 shows a matrix of possible

connection for the Switchboard
9
. The entries in the first column/row represent the data

sources/sinks depending on the type of node devices. In our case, the Synapse Portal has data

sources in the first column and each Synapse node has data sources listed in the first row. Each

cell label describes the mode enabled by row-column cross-connection.

There are two ways to set up

data-forwarding paths in SNAP

to connect data sources/sinks.

They are
uniConnect(destination,

source) and
crossConnect(source1,

source2). As it stands for,

uniConnect() is for configuring one-way transmission from data source to destination. In this

case, the destination cannot send data. In contrast, crossConnect() is for two-way

communication in which each data source is able to send and receive data. In our

implementation, crossConnect() is used.

Communication between data sources can be: a) Loopback, b) Crossover, c) Wireless Serial, d)

Local Terminal, e) Local Gateway, f) Remote Terminal, and g) Remote Gateway. For instance,

consider crossConnect(DS_UART0, DS_UART0). This connection is a Loopback connection,

and the transmitting node is sending data through its UART0 and the receiving node is getting

the data through its UART0. The same Loopback can be also available when one connects nodes

using crossConnect(DS_TRANSPARENT, DS_TRANSPARENT).

Table 2. Connection Matrix of the Switchboard

Table 1. RF Engine Pin Assignments

P
age 15.868.7

3) Communication between Synapse Portal and Bridge Node: Figure 3 shows two

communication links between the Synapse Portal and the Bridge Node 1) for control commands

from the Portal to the Bridge Node and 2) for status data from the Bridge Node to the Portal to be

displayed on the screen of the host computer. As mentioned earlier, for the purposes of wireless

mesh networking, the Synapse Portal communicates with the Bridge Node using a Packet Serial

protocol, i.e., DS_PACKET_SERIAL, and the Bridge Node uses its USB 2.0 (i.e., UART0) only

for a connection to the Synapse Portal for the networking. This is a default configuration and its

configuration command crossConnect(DS_PACKET_SERIAL, DS_UART0) would not

appear in application-specific SNAPpy scripts for the Bridge Node. That means the UART0 of

the Bridge Node cannot be used for other purposes such as exchanging non-networking data with

the Portal; if UART0 is attempted for other purposes, the Portal will no longer be able to

communicate with the Bridge Node and the SNAP Communication Time Out error will

occur. This mode is shown in bold as Local Gateway in the last-row, second-column cell

(PacketSerial-UART0) of Table 2.

For delivery of control commands from the Portal to the Bridge Node, an additional transparent

mode needs to be set up at the Bridge Node using its UART1, which is a serial port for an RS-

232 cable connection. Its configuration would be done by initUart(1,38400) and

crossConnect(DS_TRANSPARENT, DS_UART1) in the SNAPpy scripts for the Bridge Node.

This mode of communication is shown in Table 2 with underlined Wireless Serial in the fourth-

row, third-column cell (Transparent-UART1). Once this is done, the Portal and Bridge Node are

transparent and the Portal can insert data into the transparent-mode link to send control

commands to the Bridge Node. Alternatively, to allow the Portal to get status data from the

Bridge Node in transparent mode as well as sending control commands to the Bridge Node, and

display the data on the screen, crossConnect(DS_STDIO, DS_TRANSPARENT) can be used

along with initUart(1,38400) in the SNAPpy scripts for the Bridge Node. This mode of

connection is shown in bold italic as Remote Terminal in the fifth-row, fourth-column cell

(Stdio-Transparent) of Table 2. In Figure 3, the corresponding flows of data in transparent mode

are shown in two dashed lines.

4) Implementation for End Node: Upon receiving the control commands from the Synapse Portal

through the Bridge Node, the End Node converts them into digital signals that can be understood

by the BASIC Stamp on an ARobot. The signaling for each command is done using a 4-bit

binary signal with each bit

lasting 75 ms. Logical bit 1 is

represented by a high voltage,

i.e., 2.8漢3.3 [V], and Logical bit

0 by a low voltage, i.e., 0 [V].

The threshold between high and

low voltages was 2.8 [V] at the

BASIC Stamp.

5) SNAP Communication

Timeout error: The SNAP
Communication Timeout

error occurs when the Synapse

Figure 3. Communication between Portal and Bridge

P
age 15.868.8

Portal is unable to communicate with the Bridge Node. This can be due to the following reasons:

a) some malicious script has been written into the Bridge Node; b) a wrong configuration of

UART ports; and c) scripts are written such that a long delay occurs while making an RPC call.

The SNAP Communication Timeout error may also be caused when changing the default

Non-Volatile (NV) parameters. NV parameters are stored in a specific memory location and each

parameter will have a specific ID. These are the Synapse configuration parameters and can be

changed by two functions loadNvParam(id) and saveNvParam(id, obj). After every

change, one should reboot the node using reboot() function.

6) Restoring to default setting: When the Bridge Node loses communication with the Synapse

Portal, a flag of SNAP Communication Error is raised, and there are three ways to recover

from this: a) Erase SNAPpy image; b) set it back to the factory default NV parameters; and c)

Upgrade Firmware. In general, one should use the Erase SNAPpy image option. The Default NV

parameters option can be used when the SNAP Communication Timeout error is caused due

to a change of the default NV parameter settings in a script. The Upgrade Firmware option can

be used when the problem persists. During our implementation, it was found that the RF Engine

may lose its firmware if a wrong script is downloaded onto it. It should be noted that while

performing these options, one will have to use the serial port. In this case, the Synapse Portal will

take care of configuration and there is no need for the user to manually set up UART for this

purpose.

7) Unsupported Opcode error: One of the significant and possible reasons for this error SNAPpy

Image Manager Error: Unsupported Opcode: LOAD_ATTR at Line: line no. is

testing the Portal Node script with the Test SNAPpy script option in the Synapse Portal.

IV. Mobility Control of ARobots

The ARobot is a three-wheel mobile robot controlled by a microprocessor board called BASIC

Stamp. It has two Whiskers as object sensors, as well as other conventional components such as

LEDs, a buzzer, and control buttons. ARobot’s motion is driven by Drive Motor, Encoder Wheel

and Sensor, and Steering Motor. The drive motor moves the ARobot forward and backward

using the H-Bridge driver circuit. The H-Bridge is controlled by the coprocessor receiving

commands from the BASIC Stamp. The encoder wheel and encoder sensor are used to measure

distance in relation to the rotation of the drive wheel. With 20 encoder slots per revolution, when

the encoder wheel is rotated along with the drive wheel, the slots are detected by the encoder

sensor and counted for distance calculation. As the drive wheel size is 3.25 inches in diameter,

each slot represents approximately 1/2 inches of ARobot’s traveling, i.e., 3.25ʌ/20 inches. The

counts can be read from the coprocessor by the BASIC Stamp when necessary to determine

travel distance. The steering motor is a remote control (RC)-style servo motor. The coprocessor

can control four RC servo motors and #1 is used for steering. Using the servo motor, one can

rotate the wheels in several directions. The values of different directions for our test-bed are

shown in Table 3.

The BASIC Stamp includes a BASIC interpreter chip, internal memory, a 5-volt regulator, a

number of general-purpose I/O pins, and a set of built-in commands for math and I/O pin

operations. The pin voltages are in the range of 0-5 [V]. The BASIC Stamp is programmed with

P
age 15.868.9

Parallax Beginner’s All-purpose

Symbolic Instruction Code (PBASIC),

which is a microcontroller-based version

of BASIC
12

. To load a PBASIC program,

the BASIC Stamp needs to be connected

to a computer hosting its graphical user

interface through a serial port. When the

BASIC Stamp needs to control a motor,

it simply sends a command with necessary parameters such as speed, direction, and/or distance

to the coprocessor for further handling of the necessary tasks. For this, two BASIC Stamp

commands are used: SERIN and SEROUT
12

. Then, the microprocessor gets acknowledgement

from the motor and continues for the rest of the main program. For the case of the servo motor,

the motor aligns the wheel before sending acknowledgement. Further details and technical

specifications of ARobot can be found in the Assembly and User Guide
11

.

A. Communication between End Node and BASIC Stamp

All mesh-networking nodes employ a high-speed microcontroller with a code-execution speed of

11,400 instructions per second, and all mobile robots’ mobility is controlled by a low-speed

microcontroller with an execution speed of 4,000 instructions per second. In our implementation,

data are coming from the Synapse End Node. Since the End Node runs on a microcontroller

much faster than the BASIC Stamp (2/2e) microcontroller, it could become an issue if the

signaling is not done properly when making them communicate with each other. To overcome

this speed mismatch, communication between the two microcontrollers is implemented in a form

of asynchronous serial communication (that is, these two microcontrollers are not time-

synchronized prior to communication. Rather, each of them runs on its own timing clock.). To

facilitate asynchronous serial communication, we have adopted a short frame format with one

Sync bit and one Start bit preceding a four-bit binary sequence that represents a specific control

command from the GUI. The four-bit representation for a control command is chosen as our

design would have at most 16 different commands to control ARobot’s motion. Figure 4 shows a

bit pattern of the frame for the asynchronous serial communication.

The Sync bit is to achieve frame synchronization between the End Node and BASIC Stamp.

When the Sync bit is recognized by the BASIC Stamp, the frame is considered synchronized.

Then, the Start bit indicates that, after its predefined duration of 150 msec, data bits start. The

combined pattern of the Sync and Start

bits are different from any possible

pattern of data bits for a control

command or a sequence of consecutive

control commands, the frame preamble

can clearly identify the beginning of

data bits. Illustrative PBASIC codes

for the asynchronous serial

communication are shown in Table 4.

Note that ‘t’ is declared as Nibble, and

the input is directly assigned to output

Figure 4. Frame structure for asynchronous serial

communication

Table 3. Code Values for Moving Directions

P
age 15.868.10

using the assignment operator. The codes in Table 4 will output the command bits at the output

pin, i.e., Pin 3, and the bit pattern can be clearly observed on an Oscilloscope.

B. Flowchart for ARobot’s Motion

The overall operation of an ARobot can be concisely described with a flowchart shown in Figure

5. With the power on, when user presses the START button, which is connected to Pin 14, the

ARobot starts moving and then the program goes to the Event loop. In the Event loop, all

possible 11 cases of commands, which are sent by user from the GUI, are implemented. Also, the

Event loop contains two built-in events for left and right whiskers as events e1 and e2; this way,

those whiskers are available and functioning while an ARobot follows user commands. After

checking all events in sequence, the program goes back to the start of the Event ‘e’ which keeps

the ARobot executing the current control commands. A subroutine for the Stop command “e3” is

shown in Table 5 for illustration. Other subroutines e4 through e13 have a similar structure with

a different subroutine(s).

Table 4. PBASIC Codes for Asynchronous Serial Communication

P
age 15.868.11

C. Observations and Remarks

The BASIC Stamp 2/2e is a

slow processor and works

with a low level language

such as PBASIC. As such,

attention to timing issues of

PBASIC Stamp is very

critical to make the test-bed

function properly. The

microcontroller used in

BASIC Stamp is Ubicom

Sx28AC featuring a processor

speed of 20 MHz and

program execution speed of

4,000 instructions/second or

250 µseconds per instruction

(minimum time). In Table 6,

we present key measurement

data relevant to the timing to

execute PBASIC codes. Note

that all numbers in the table

are determined from several

measurements in the lab. For

instance, the execution time

consumed by the processor

for the command HIGH being

150 µsec means that

whenever there is any command like HIGH 10 which is for the processor to set Pin 10 to logic 1,

150 µsec is required. A similar amount of time is consumed for LOW 10, setting the pin specified

to logic 0. For an IF condition, the processor takes 540 µsec to check for its condition. This time

measurement was made with one simple condition for IF, i.e., IF IN2=1, THEN ‘null,

ENDIF. The time consumed by the microprocessor depends on the number of conditions for the

IF statement and also the types of the conditions. For GOTO, the processor takes 300 µsec to

jump to a specified routine.

Figure 6 shows the completed test-bed components: two

ARobots, Bridge Node, and the Control Center with the

Synapse Portal. Although not explicitly shown, the GUI is

also implemented on the host computer for the Synapse

Portal. In our implementation, the minimum time required

to execute the Eventloop (i.e., taking the command

from the End Node to the final event e14) was 570 msec.

This measurement was obtained from the case where all

the conditions in all events were FALSE. If any condition

is TRUE, then the time consumed to execute Eventloop

Figure 5. Flowchart for control of ARobot’s motion

Table 5. PBASIC Code for Event 3: Stop

P
age 15.868.12

will vary according to the

command received from the

End Node. This minimum

time was the basis of

determining how quickly

the Synapse Portal could go

back to the text file to check

for a new command. In our test-bed, as mentioned in Section III, the Synapse Portal checks for a

new command and delivers it every one second as the Bridge Node issues an RPC call to the

Portal every second.

V. Discussions on Relevant ABET Criteria and Laboratory Experiments

From the discussions above and along the course of our development activities for the test-bed,

we noted that a successful implementation of our experimental indoor positioning system

involving GUI, Synapse Portal, Synapse

Bridge, Synapse End Nodes, and Basic

Stamp for ARobot requires a great deal

of attention to details. It effectively

creates a framework of an end-to-end

communication system with real-time

operations and processing of logical and

actual digital signals with visual

observations to make as a measure for

successful design. For an undergraduate

course in wireless communications, we

suggest that the following subject topics

be considered for laboratory

experiments:

 Understanding of protocols required for data communication

 IEEE 802.15.4-based signal processing and measurement of its RF signals

 Understanding of upper layer protocols, e.g., SNAP, for data communication and its

realization in a form of APIs.

 Understanding of the concepts of mesh networking, gateway, and network nodes

 Implementation of mesh-network nodes on microcontrollers (Synapse Bridge and End

Nodes)

 Asynchronous communication and its application to communication between electronic

devices built on different types of microcontrollers

 Conversion of logical bits to actual digital signals and its application to control mobile

robots

These laboratory experiments along with a practical test-bed system are believed to greatly help

students in an electrical and computer engineering program attain the following ABET

outcomes:

 an ability to design and conduct experiments, as well as to analyze and interpret data

Table 6. Execution Time of Key Instructions

Figure 6. Photos of test-bed components

P
age 15.868.13

 an ability to design a system, component, or process to meet desired needs within realistic

constraints

 an ability to identify, formulate, and solve engineering problems

 a knowledge of contemporary issues

 an ability to use the techniques, skills, and modern engineering tools necessary for

engineering practice

VI. Concluding Remarks

We have presented our experience in designing networked mobile robots each of which involves

two different types of microcontrollers for mesh networking and motion control. Creating a

simple protocol for low-rate data communication and overcoming several issues arising from

mismatched code-execution speeds of the two microprocessors, we have successfully integrated

a pair of Synapse End Node and BASIC Stamp in cascade for each ARobot. With a Synapse End

Node on the ARobot, we have established networking capability among ARobots and the Bridge

Node based on the SNAP. With an in-house GUI for generation of control commands, we have

successfully executed these commands on ARobots and controlled their motion as desired. The

inevitable inter-command delay was reasonable for the purpose of controlling ARobots in indoor

environment. Finally, we have suggested a set of laboratory experiments for undergraduate

students in electrical and computer engineering to help them better prepared for their early-stage

professional career measured by the ABET criteria.

Bibliography

1. Ali, L. A. Latiff, and N. Fisal, “GPS-free indoor location tracking in mobile ad hoc network using RSSI,” in

Proc. RF and Microwave Conf., Oct. 5-6, 2004, pp. 251-255.

2. C.-L. Chen and K.-T. Feng, “Enhanced location estimation with the virtual base stations in wireless location

systems,” in Proc. Vehicular Technol. Conf. - Spring, May 7-10, 2006, vol. 2, pp. 603-607.

3. W. Ni, G. Shen, X. Leng, and L. Gui, “An indoor location algorithm based on Taylor series expansion and

maximum likelihood estimation,” in Proc. Int’l Sympo. on Personal, Indoor and Mobile Radio Commun., Sept.

2006, pp. 1-4.

4. El Moutia and K. Makki, “Time and power based positioning scheme for indoor location aware services,” in

Proc. IEEE Consumer Communications and Networking Conf., Jan. 10-12, 2008, pp. 868-872.

5. W. Lee, “Indoor location estimation at mobile nodes based on angle-of-transmission,” in Proc. Wireless and

Microwave Conf., Apr. 20-21, 2009, Clearwater, FL, pp. 1-5.

6. D. Roddy, Satellite Communications, 4th Ed., McGraw-Hill, 2006, pp. 54-59.

7. IEEE Standard 802.15.4, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications

for Low-Rate Wireless Personal Area Networks (WPANs), Sept. 2006.

8. J. Jun and M. L. Sichitiu, “The nominal capacity of wireless mesh networks,” IEEE Wireless Communications,

pp. 8-14, October 2003.

9. Synapse, Synapse Network Appliance Protocol (SNAP) Reference Manual for Version 2.1, v1.1, Document

Number 600-0007B, 2008.

10. Synapse, RF Engine & Evaluation Kit: Hardware Technical Manual, v2.0, Document Number 600-101.01A,

2007.

11. Arrick Robotics, ARobot - Mobile Robot: Assembly and User Guide, Rev. D, Nov. 2005, available at

http://www.arrickrobotics.com/arobot/guide.pdf.

P
age 15.868.14

12. J. Martin, J. Williams, K. Gracey, A. Alvarez, and S. Lindsay, BASIC Stamp Syntax and Reference Manual,

ver. 2.1, Parallax, Inc., 2005, available at http://www.parallax.com.

13. D. Marshall, “Remote procedure calls (RPC),” Jan. 1999, available at

http://www.cs.cf.ac.uk/Dave/C/node33.html.

14. R. Thurlow, “RPC: Remote procedure call protocol specification - Version 2,” Internet Engineering Task Force

(IETF), Draft Standard RFC 5531, May 2009.

P
age 15.868.15

