AC 2012-4852: MILLENNIALS PERCEPTION OF USING CLICKER TO SUPPORT AN ACTIVE CLASSROOM ENVIRONMENT: AN EARLY ADOPTION PERSPECTIVE

Dr. John Patrick Hogan, Missouri University of Science & Technology

John P. Hogan is an Associate Professor of geology in the Department of Geological Sciences and Engineering at the Missouri University of Science and Technology. He received his Ph.D. and M.S. degrees in geology in 1990 and 1984 from Virginia Tech. He also holds a B.S. in geology from the University of New Hampshire. His research interests include igneous petrology, structural geology, and tectonics. He has active projects in Maine, Oklahoma, Missouri, Egypt, and southern Africa. He is also interested in enhancing student learning through integration of technology with active learning strategies.

Dr. Dan Cernusca, Missouri University of Science & Technology

Dan Cernusca is Instructional Design Specialist in the Department of Global Learning at the Missouri University of Science and Technology. He received his Ph.D. degree in information science and learning technologies in 2007 from the University of Missouri, Columbia. His research interests include design-based research in technology-enabled learning contexts, technology-mediated problem solving, assessment in technology-rich learning environments, applications of dynamic modeling for learning of complex topics, and the impact of epistemic beliefs on learning with technology.
Abstract

This paper presents a multi-year study of students’ perception associated with the introduction of a technology tool, personal response systems, starting from its initial stage to date. The goal is to provide a reflective perspective of this topic that intertwines the instructor’s and students’ views associated with the adoption of a technology tool that addresses Millennia’s need for quick feedback and active engagement into their learning experience. The results of the data collected with an in-class clicker survey for six semesters indicated that it took students on average two semesters to significantly shift their perception and view clickers supporting both classroom and outside classroom activities. The study indicates that both a well-crafted strategy to introduce innovative technology tools at the organizational level and the instructor’s clear focus on using clickers as a tool to increase and support active learning will reduce students’ resistance to the tool itself at the course levels.

Introduction

In educational settings in general, and in higher education in particular, changes associated with generational shifts produce tension over issues related to the structure of educational process for both students and instructors. The spreading of computer and information technology in both social and educational environments enhanced the generational issues and stimulated more focused research on those generations that were either exposed early or were born with advanced technology tools. Researchers identified, among others, the “Net Generation” 1, the “Millennials” 2,3,4 or “Me Generation” 5,6, depending on the main characteristics used to define the generational group. Among these, the Millennials attracted a significant body of research that extended from general characteristics7,8, to learning4 and to work related issues and strategies9,10.

From the learning and instruction perspectives the above mentioned generations share several characteristics with impact on how educational environments have to be shaped to stimulate learner motivation and engagement. Of these, Millennials’ high confidence combined with a significant external-driven achievement and pressure to quickly building strong resumes’ place new requirements on an educational context. Educational organizations started to address these requirements by creating an instructional environment in which: a) success criteria are clearly set, b) feedback tools associated with the attainment of success are available, c) instructional process provides multiple equivalent learning tools and strategies, and d) the content is modularized and flexible allowing both teamwork and individual work.

Technology tools and their associated instructional strategies played an important role in shaping Millennials’ learning environment. This paper presents a longitudinal study of students’ perception associated with the introduction of a technology tool, personal response systems or “clickers”, starting from its initial stage to date.
The goal is to provide a reflective perspective of this topic that intertwines the instructor’s and students’ views associated with the adoption of a technology tool that addresses Millennias’ need for quick feedback and active engagement into their learning experience.

Instructional Context

Course description and goals

Structural Geology, a course that focuses on quantifying the response (strain) of natural earth materials (i.e., minerals and rocks) to imposed stress is the context for this study. The course covers deformation from the atomic scale (e.g., dislocations, grain boundary diffusion, etc.) to the formation of mountain chains along the boundaries of colliding lithospheric plates (e.g., the Himalayas) at time scales ranging from “instantaneous” (e.g., meteorite impacts) to tens of millions of years (e.g., continental rifting). Structural Geology courses with similar content are essential components of the core curriculum for the Bachelor of Science degree in geology, geological engineering, mining engineering, and petroleum engineering in the United States.

At Missouri University of Science and Technology (Missouri S&T), Structural Geology is a required course for all undergraduate of these undergraduate degree programs and commonly several civil engineers elect to take the course as well. That is, scientists (geologists / geophysicists) and the engineers enroll in the same course as early exposure to collaboration among the different disciplines will better prepare them to participate in multidisciplinary teams – now commonplace in the work force (e.g., energy and materials sectors).

The course is typically taken in the first semester of the junior year, but many sophomores and seniors commonly enroll in the course as well. Students are expected to have already completed a course in Physical Geology and preferably a course in mineralogy and petrology. The course may include graduate students who are meeting deficiency requirements, or desire to refresh their background knowledge in Structural Geology. Students enrolled in Structural Geology meet three times a week for a fifty minute lecture and attend a three hour lab once a week. Lecture attendance is strongly suggested but not mandatory. However, missed in-class assignments for unexcused absences cannot be made up.

This course is primarily designed for the training of the next generation of scientists and engineers; however development of these skills is likely to transcend many disciplines. This course also focuses on providing students with a strong foundation in fundamental technical skills needed to describe and classify rock that, depending on your perspective, have either “suffered” or “enjoyed” deformation as well as knowledge of the physical mechanism that operated to enable these rocks to respond to an imposed stress by undergoing rigid and/or non-rigid body deformation.

The major goals for this course have been divided into three categories: 1) *technical skills* which pertain directly to becoming proficient in the subject of Structural Geology; 2) *scientific skills* which provide an opportunity for students to adopt the approach research scientists and engineers use to solve problems, and 3) *personal skills* which are essential to success in their professional career and to lifelong learning.
The technical and scientific skills are emphasized in the course as all students enrolled in the course need a basic level of proficiency in Structural Geology to proceed with additional course work towards their chosen BS degree (e.g., Mining, Geology and Geophysics, etc.) as well as be successful in their professional careers. However, some students enrolled in this course will pursue advanced graduate degrees or will engage in Petroleum industry as, for example, geologists or drilling engineers. These students will be involved at one point in higher-level projects such as: a) designing lab or field experiments or b) collecting and analyzing quantitative and qualitative data associated with difficult, “fuzzy” problems. The complexity of these problems requires multiple types of expertise to solve them, typically achieved in the industry through multi-disciplinary teams. To answer the needs of this type of challenges the instructor explicitly included the third category of course goals, the development of personal skills. That is, the course is assisting students in the development of personal skills that are important to success in any career: curiosity and imagination, independent thinking, pride in their work, confidence in their abilities, and finally respect for themselves and their peers.

Major instructional challenges

Structural Geology presents some unique challenges. For the students, under-developed 3D-spatial visualization skills initially limit their ability to comprehend the geometry of geologic structures, especially in the subsurface, that form during deformation\(^\text{11}\). These skills are enhanced over the course of the semester by working various types of problems that involve 3D visualization, for example constructing geologic cross-sections\(^\text{12}\). In addition, the ability to successfully integrate qualitative and quantitative observations and measurements made in the field on rock formations (e.g., measurements of strike and dip with a geologic compass along road cuts, etc.) with theory presented in lab and lecture (stereonets – a graphical calculator for determining the orientation of planes and lines and angles in space, Mohr Circle Analysis, Buckle Theory, etc.) to solve problems is a relatively new experience for many of the engineering students.

Adhering to the philosophy that all disciplines will take the same course carries challenges for the instructor. The content presented in lecture for required courses that are considered by students to be outside of their “major” is constantly scrutinized for immediate relevancy to the student’s perception of what is required knowledge for their intended profession. The “Why do I (geological, mining, petroleum, civil) engineer need to know this?” attitude if left unchecked leads to student disengagement from the lecture topic. This is a challenged shared by small and large enrollment courses. Large lecture courses have long been known to present a challenge to learning\(^\text{13,14}\).

While economically efficient, large lecture courses tend towards a depersonalized learning environment that can have several deleterious effects on student learning\(^\text{15}\), including: 1) faculty reliance on passive lecturing, 2) reduction in faculty-student interaction, 3) a concomitant increase on passive learning and reduction of in-depth thinking during lecture, 4) reduction in feedback to the students during lecture, leading to an overall reduction in levels of learning and performance.
In response to the high demand and high salaries for graduates in these professions, enrollment in Structural Geology at Missouri S&T has grown from an average of fifty to sixty students prior to 2005 to over one hundred and seventy students in 2011. For students such an environment can facilitate and reinforce behavior leading to disengagement thereby short-circuiting the lecturer-student learning connection. This paper presents the implementation of personal response devices i.e., “clickers” during lecture as one of the teaching strategies adopted to meet the challenge of engaging students attending a large lecture for an “outside of your major” required course.

Implementation of Clicker Strategies

As with many instructional technology tools, the classroom implementation of personal response systems commonly known as clickers stimulated educational research regarding the impact of this tool on both the learning and teaching processes. Most of the research followed an empirical approach that included quantitative methods such as surveys or quasi and full experiments. Along with the empirical research some of the clicker researchers engaged in more descriptive conceptual research focusing on the nature of clicker questions and their impact on learning and motivation and reviews of existing clicker research findings. Clicker research also covers a significant number of discipline-specific audiences well covered by the “Vanderbilt’s Center for Teaching” bibliography on this instructional tool.

While these studies cover students perceptions in individual courses or in groups of courses in a given academic area, only few research studies follow the implementation of clickers throughout various stages of their adoption as instructional tools. This study is trying to add to the later type of research on clickers by analyzing changes in students’ perceptions throughout six consecutive semesters when the instructor decided to adopt this tool as part of a much larger early adoption strategy of clickers at the university level. Even if students acted as a captive audience throughout the clicker adoption process, their perception and attitude toward this tool had a significant impact on instructor’s decision to keep the clickers and how to utilize them more effectively as part of the course activities. The context of the study is a Structural Geology course offered once a year during the Fall semester.

Organizational Context of Clicker Adoption

At Missouri S&T during early 2000’s a small group of faculty acted as innovators in introducing clickers as instructional tools to stimulate active learning in large courses such as introductory chemistry and physics. The positive results of using clickers in large classroom convinced the Information Technology (IT) department to initiate, in 2003, a more focused analysis of this instructional technology at the university level. The main criteria in selecting a vendor were: a) the ability of the technological solution to address various need of instructors across campus, b) the level of support offered both throughout the implementation phases and in long term use, and c) the ability of the technology to allow a seamless procurement and registration for both students and instructors. The selected vendor was Turning Technologies and using its technology the IT department deployed a large-scale pilot implementation in fall semester of 2004.
The major goal of this pilot was to create the conditions that will stimulate the early adoption of this technology throughout the campus in shortest time possible after its full deployment in Fall 2005 semester. The effectiveness of this activity is confirmed by the increasing number of student-seats using clickers during the seven years of full implementation of this instructional strategy.

As shown in Figure 1, the trend line resulted from the evolution of student seats using clickers has the typical shape of the early adoption stage proposed by the diffusion of innovation model (Rogers, 2003, p.410).

![Graph showing the evolution of student seats using clickers](image)

Figure 1. Early adoption of clickers to support active learning, as reflected by the evolution of student-seats using clickers across campus.

The divergence of the actual student-seats number from the trend line around 2008 was generated mainly by a temporary drop of clicker use in a series of large introductory courses. Whereas, the sharp increase of this metric during the last two years can be explained partially by the overall increase of the class sizes due to an increased student admission at the organizational level, a common late phenomena in American higher education.

Clicker Strategies in Structural Geology Course

Creating a more engaging and active learning environment for students during Structural Geology lectures was the impetus for adopting clicker technology. Anecdotal evidence suggests that students enrolled at Missouri S&T, as well as many others, were initially suspicious of “clickers” as simply a convenient means for taking attendance and forcing them to attend class rather than a tool to enhance learning. In order to promote student “buy-in” to this technology as a tool to enhance student learning a slide introducing the topic “Why I am using clickers in the classroom” is presented and discussed by the instructor during the first lecture of the semester.
This slide is immediately followed by a simple example clicker slide polling the audience with the question “What is your major area of study” with answers that include the common science and engineering disciplines in the course. The use of clickers is also explicitly discussed in the course syllabus as well.

For the first year (Fall 2006) of clickers’ implementation in Structural Geology course, only correct answers earned a point. The total points accumulated over the course of the semester, up to one hundred points, represented ten percent of the final grade. In addition, students had the opportunity to earn more than one hundred points during the course of the semester for various challenge questions. However, comments from the final student evaluation written by several students indicated that every lecture carried with it a heighten level of stress, normally associated with taking a test. This unintended result was diametrically opposed to the original purpose of introducing clickers, that is, to create a more active and engaging learning environment. In addition, the predicted outcome that inclusion of the clicker grade would represent an easy means for students to improve their final grade in the course proved to be incorrect – the clicker questions were indeed challenging!

Starting with the second year (Fall 2007 – Fall 2011) this policy was immediately changed, to respond to the unintended negative outcomes resulted from students’ written comments. Starting with this semester, clicker points accumulated during lecture counted as “Bonus Points” rather than as a “test” grade. Students still earned only points, typically one but rarely as much as five points, for each clicker question they answered correctly. The total number of clicker points accumulated was added to the number of points students earned completing in-class and homework assignments. In the end, the “Bonus Points” contribute to typically an increase of 2% in the final average grade for students that participated in using clickers, with the final grade for some students (those that attend class regularly and answer the questions correctly) obviously benefiting more than others.

In addition, students were encouraged to discuss the questions with other students in the class prior to locking in their final answer. This approach removed the angst that some students expressed with using the clickers every day in class. With the large number of clicker questions (164 questions asked in 2011) students concentrate more on the answering the questions as best they can and less on the impact on their grade if they get it correct or not. An immediate benefit to the instructor is instituting a “no-makeup” policy for clicker points regardless of the excuse (e.g., not working, forgot to bring it, overslept). The fact that clicker points were bonus points, and missing them for not attending class did not impose a negative penalty on the grade eliminated one of the major inconveniences to the instructor adopting to use clickers in the classroom.

Categories of Clicker Strategies Used in Structural Geology Course

The major goal of introducing clicker technology into Structural Geology lecture was to reduce passive lecturing. That is, throughout the lecture clickers enhanced faculty-student interactions with provocative, challenging, and discussion-oriented questions. In addition, promoting discussion among students prior to locking-in their final clicker answer enhanced active collaborative, in-depth student learning during lecture.
The clicker technology also allows for corresponding immediate feedback to the students and instructor as to the progress being made in learning by displaying the distribution of answers selected as well as revealing the correct answer. Clicker questions were therefore “designed” with the intention of emphasizing one or more of these goals: 1) review of material from previous lecture or text readings to emphasize a point; 2) introduce the subject of the lecture with a provocative question; 3) review material presented during the current lecture; 4) student-instructor assessment of understanding of lecture material; and 5) clarify subtle common misconceptions with clicker questions couplets. We present below some examples of clicker questions that focus on goals closely tied to both improved classroom dynamics and student understanding of major concepts.

Introduce the subject of the lecture with a provocative question

Introducing the lecture topic to be covered with a provocative question or a role playing scenario (e.g., an interview for a job) is an effective strategy to mitigate the “Why do I need to know this?” attitude that is common among students that are required to take a course that they perceive to be outside of their chosen major. For example, the role of pore fluid pressure in Structural Geology is introduced by taking advantage of the current publicity associated with the common practice of “Hydrofracking” and linking it to triggering of the earthquakes along with a nod to “pop culture” via “A View to a Kill” (Figure 2).

As shown in Figure 2, using a provocative current topic and a scenario relevant to all disciplines at the beginning of the lecture to pose a question is an effective means of creating interest in the material being presented (a and b). Using clickers to initially poll the audience prior to the material being introduced (c) generates more interest as the results and the answer remains unknown. At the end of the presentation, students are re-polled (d) and the dramatic shift in their responses confirms the desired learning has taken place.

The scenario created is that of a job interview. The students are given some time to discuss the topic and then polled using a clicker question slide. The initial result typically has a large distribution of selected answers which creates the desired effect of uncertainty as to which is the correct answer. After presentation of the course material related to this question, the audience is re-polled with the identical question. The dramatic shift and tightening of the responses is a strong confirmation that students understand and can apply the presented concepts towards solving a problem.

Clarifying subtle common misconceptions with clicker questions couplets

Clicker questions transform annually reoccurring misconceptions into an opportunity to proactively address the topic and minimize the potential confusion. By introducing the topic as a non-threatening opinion clicker question that includes the correct answer, the common misconception, and the option to indicate that you’re not sure, the classroom can be polled with only the results of the poll presented to the classroom - The correct answer remains a secret. The need for immediate feedback, the ambiguity created by the results, and the suspense of not knowing which answer is correct create a tension that heightens student interest in the upcoming slides.
As exemplified in Figure 3, the sequence of events includes pooling without the correct answer feedback (a), student discussions, re-polling the audience with the same question, and finally showing the correct answer (b).

Figure 3. Understanding the concept of incremental progressive simple shear and the strain ellipse results in a significant portion of the students having the same misconception year to year as demonstrated by the larger portion of students selecting answer number “2” first time (a) as compared to second time (b) the slide is shown.
Clicker questions can be designed to promote a more in-depth analysis of the material being presented followed by assessment. For example, in Figure 4 the first slide (a) introduces the concept of effective stress. In the second slide (b) the lecturer poses the problem to be addressed and then allows time in lecture for students to engage in discussion with their peers to answer this question. This slide is followed by a clicker slide (c) designed to assess if the desired understanding was achieved – notice in this case the use of all of the above as “negative” feedback to inhibit robotic answering of questions.

\[\sigma_c = \sigma_0 + \tan \phi (\sigma_n - P_f) \]

(a) Build-up of pore fluid pressure to levels approaching the lithostatic load.

(b) At high Pore Fluid Pressures \(P_f \sim \sigma_n \)

(c) What is the significance of this?

Photo by Dr. J.D. Rogers

Figure 4. A series of three slides designed to promote more in-depth analysis of a concept by peer discussion

The increase in the population of students selecting the correct answer validates the desired learning outcome occurred – which was the opportunity for students to utilize the scientific method to solve a problem rather than rote memorization of the correct answer.
Research Focus

Since 2006, the first time clickers became part of the course the instructor collected end-of-semester feedback and used it to improve the implementation of clickers in the course. The major research focus of this study is to identify the trends in students’ perception on the impact of this tool throughout its adoption both at the course level and at the university level to support the development of active learning lecture environments. More specifically, the study will analyze students’ perceptions on three major categories of clicker-related issues: 1) easiness of use; 2) classroom engagement and support; and 3) outside classroom engagement and support.

Research Methods and Instruments

To measure the impact of this strategy on students’ learning experience, an end of the semester survey was administered using clickers. The questions used in this study were part of three main categories of survey questions: easiness of use, classroom engagement and outside classroom engagement. To reduce students’ answer biases the instructor implemented two major measures in deploying the survey. First, the survey was administered as an anonymous clicker section. That is, clicker’s identification code used to link student’s name in the learning management system was not recorded but rather generated when the clicker was used for first time during the survey session. Second, a graduate student administered the survey while the instructor waited outside the classroom. Student participation in the survey was rewarded with clicker bonus points. Because of the anonymous character of the survey the research was limited to attitudinal and perception factors and the results were not linked to actual classroom performance. In addition, because the survey was administered with clickers in classroom, the data collected was limited to quantitative, scale-type variables.

Survey Instrument

The main survey initially deployed in fall semester of 2006 included 19 questions that were kept as the core part of the survey as more questions were added every year, producing a current format of 26 survey questions. The current format of the survey can be restructured in the following four main categories: a) easiness and enjoyment of use, b) classroom engagement and support, c) outside classroom engagement and support, and respectively d) grading policy. The initial 19 core questions covered only the first three categories previously mentioned. The grading-related issues emerged after the first two semesters of clicker use, when their implementation was smoother. The tested questions for each of the first three categories will be presented in the results part of this paper. Students evaluated each item in the survey using a 5-point Likert Scale with 1 - Strongly Disagree, 2-Disagree, 3-Neutral, 4-Agree and 5-Strongly Agree.

Participants

Participation in the main survey was limited by two major factors. First, the survey was typically administered in classroom at the beginning of one of the last lectures in the course and therefore only students that attended that lecture had the opportunity to participate in the survey.
Second, the participation in the survey was voluntary, and therefore some students that were present at the time of survey administration could decide not to participate for various reasons. Considering these conditions, the student participation in the survey during this study was 39 (71%) for 2006, 58 (73%) for 2007, 51 (63%) for 2008, 71 (70%) for 2009, 112 (73%) for 2010 and respectively 134 (77%) for 2011.

Research Design

To check for trends across the six semesters of successive implementation of clickers strategies in the target course we used one-way ANOVA followed by a post-hoc analysis. In addition, for each of the three categories of questions reported in this study (easiness of use, classroom engagement and outside classroom engagement) we used paired t-Tests to compare the means across the six semesters for all questions analyzed in each category.

Results and Interpretation

The analysis of results follows the three main categories of questions used for the exit clicker survey, that is, easiness of use, classroom engagement and outside classroom engagement. For the first three semesters covered in this study, we generated the dataset from the frequency tables. Therefore, for each of the three main categories of questions above-mentioned, the data analysis follows individual survey questions rather than perceptions scales.

Easiness and enjoyment of use

To analyze students’ perceptions related to the easiness and enjoyment of clicker use we analyzed the following three major questions:

Q1. I find the clickers easy to use,
Q2. I enjoyed using the clickers in this class, and
Q3. The clicker questions were too easy.

For each of these three questions, a “1” will represent the lowest level and a “5” will represent the highest level of easiness or enjoyment. The one-way ANOVA with one between-group factor, semester of implementation, indicated no statistical significance for the first question (clickers are easy to use) but indicated a significant impact of semester of implementation for the second and third question as shown in Table 1. Figure 8 summarizes the means for these three questions during the period analyzed in this study.

While the means for the three perception questions related to easiness and enjoyment of clicker use follow a similar pattern, the later is the only one that showed a clear increase from the initial to the last implementation phases of clickers. The rather flat shape of the perception of use of the technology tool itself, the clicker, can be explained by the careful implementation of this technology at the organizational level. As mentioned in the beginning of this paper, the IT department was carefully implementing this technology, from the readiness of the classrooms to the seamlessness of the clicker registration for students.
Table 1. Analysis of Variance for Enjoyment of Use and Difficulty of Clicker

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>F</th>
<th>η2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2. I enjoyed using clickers in this class</td>
<td>5</td>
<td>11.56**</td>
<td>.12</td>
<td>.99</td>
</tr>
<tr>
<td>error</td>
<td>437</td>
<td>(508)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q3. The clicker questions were too easy</td>
<td>5</td>
<td>3.11*</td>
<td>.04</td>
<td>.88</td>
</tr>
<tr>
<td>error</td>
<td>432</td>
<td>(443)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Values enclosed in parentheses represent mean square errors. **p < .001; *p < .01

Another observation is the relatively low levels of perceived easiness of clicker questions, with all of the means placed below the mid-point of the evaluation scale used (see Figure 8). The paired t-Test analysis of means across the six semesters showed that perceived questions easiness (Q3) was significantly lower than the enjoyment of clicker use (Q2), t(5) = -11.14, p < .01, but not significantly lower than the easiness of clicker use (Q1).

![Figure 8](image)

Figure 8. Means for the three questions related to the easiness and enjoyment of clicker use

The low level of perceived easiness of clicker questions indicates that even if the enjoyment of clicker use was high, students did not perceive the clicker questions deployed during the lectures as trivial. For the two questions that indicated a statistically significant effect for the semester, we conducted post-hoc analyses using Tukey HSD (honestly significant differences) test.
Enjoyment of use. Tukey HSD indicated two independent homogeneous subsets for this question as shown in Figure 9. Students enjoyed using clickers significantly less in 2007 when compared to 2009-2011 period. In addition, students enrolled in 2006 enjoyed significantly less using clicker than students enrolled in 2008, 2010 and 2011. We found no significant difference between students’ enjoyment of clicker use in 2006, 2007 and respectively 2009.

Perceived easiness of clicker questions. Tukey HDS indicated that students enrolled in 2007 perceived clicker questions as being significantly more difficult than students enrolled in 2010 and respectively 2011. There was no statistically significant difference between perceived difficulties of clicker questions for 2006, 2008, 2009 and 2011 (see Figure 10).
Classroom engagement and support

To analyze students’ perceptions related to the classroom engagement and support of clickers we analyzed two major groups of questions as follows.

Two classroom engagement questions:
- Q4. The clicker questions helped me become a more active learner during lecture
- Q5. I found the clicker questions useful in enhancing my interaction in the lecture, and

Two classroom support questions:
- Q6. The clicker questions helped me pay closer attention during lecture
- Q7. The clicker questions help me gauge whether I am following the course materials during class.

For each of these questions, a “1” will represent the lowest level and a “5” will represent the highest level of engagement and support. The one-way ANOVA with one between-group factor, semester of implementation, indicated a significant effect of the semester of implementation for all four questions, as shown in Table 2.

Table 2. Analysis of Variance for Classroom Engagement and Support

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>F</th>
<th>η²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q4. … helped me become a more active learner</td>
<td>5</td>
<td>11.14**</td>
<td>.12</td>
<td>.99</td>
</tr>
<tr>
<td>error</td>
<td>428</td>
<td>(354)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q5. … useful in enhancing my interaction</td>
<td>5</td>
<td>7.46**</td>
<td>.08</td>
<td>.99</td>
</tr>
<tr>
<td>error</td>
<td>435</td>
<td>(406)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q6. …helped me pay closer attention</td>
<td>5</td>
<td>5.20**</td>
<td>.06</td>
<td>.98</td>
</tr>
<tr>
<td>error</td>
<td>408</td>
<td>(402)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q7. …help me gauge whether I am following the course</td>
<td>5</td>
<td>13.78**</td>
<td>.14</td>
<td>.99</td>
</tr>
<tr>
<td>error</td>
<td>430</td>
<td>(374)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Values enclosed in parentheses represent mean square errors. **p < .001

Figure 11 summarizes the means for these four questions during the period analyzed in this study. As seen in Figure 11, the shapes of the curves representing the four classroom engagement questions are quite similar. For the last two years also, the mean values for all four questions are quite close, a clear statement for the increased quality of clicker use as this technology tool got into a more mature stage of implementation. The pair t-Test analysis confirms this observation by not showing any statistically significant differences for the four clicker classroom engagement and support questions across the six semester of implementation.
Since the two major categories of questions indicated a statistically significant effect for the semester, we conducted post-hoc analyses using Tukey HSD test.

Perceived clicker-related classroom engagement. For the perceived help of clickers to *stimulate active learning* Tukey HSD indicated that students enrolled in the course between 2008 and 2011 found clickers more effective in helping them to become active learners than students enrolled in 2006. In addition, students enrolled in the course between 2009 and 2011 found clickers *more effective* in helping them to become active learners when compared with students enrolled in both 2006 and 2007 semesters.

For the perceived help of clickers to *enhance interaction* during the lectures, Tukey HSD indicated a different trend. That is, students enrolled in the course in 2008, 2010 and 2011 were considering clickers more instrumental in supporting interaction when compared to students enrolled in 2006 and 2007. However, no significant differences were found between the perception of students enrolled in the course in 2009 when compared with any of the other five semesters covered in this study.

Perceived clicker-related classroom support. For the perceived help of clicker to *increase attention* during the lectures, Tukey HSD indicated that students enrolled in the course between 2008 and 2011 found clickers more helpful than those enrolled in 2006. However, no significant differences were found between the perceptions of students enrolled in the course in 2007 when compared with any of the other five semesters covered in this study.
For the perceived role of clickers to enhance the ability to follow the materials during the lectures, Tukey HSD showed two independent groups, with students enrolled between 2008 and 2011 perceiving a higher value for this type of support than students enrolled in 2006 and 2007.

Outside classroom clicker engagement and support

To analyze students’ perceptions related to the ability of clickers to enhance the engagement and support outside the classroom we analyzed the following three major questions:

8) The clicker questions helped me to assess if I understood the material being covered
9) The clicker questions helped me to remember the material covered in the lecture
10) The clicker questions motivated me to prepare for lecture before coming to class

For each of these questions, a “1” will represent the lowest level and a “5” will represent the highest level of outside classroom support or engagement. The one-way ANOVA with one between-group factor, semester of implementation, indicated a significant effect of the semester of implementation for all three questions, as shown in Table 3.

Table 3. Analysis of Variance for Outside Classroom Engagement and Support

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>F</th>
<th>η^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q8. … helped me to assess if I understood the material being covered</td>
<td>5</td>
<td>12.04**</td>
<td>.12</td>
<td>.99</td>
</tr>
<tr>
<td>error</td>
<td>429</td>
<td>(344)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9. …helped me to remember materials covered in lectures</td>
<td>5</td>
<td>14.24**</td>
<td>.14</td>
<td>.99</td>
</tr>
<tr>
<td>error</td>
<td>426</td>
<td>(346)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q10. … motivated me to prepare for lecture before coming to class</td>
<td>5</td>
<td>8.78**</td>
<td>.09</td>
<td>.99</td>
</tr>
<tr>
<td>error</td>
<td>432</td>
<td>(611)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Values enclosed in parentheses represent mean square errors. **p < .001

Figure 12 summarizes the means for the above three questions during the six semesters analyzed in this study. It can be seen that students’ perceptions related to ability to assess own understanding of course materials (Q8) and respectively to remember materials covered in lectures (Q9) followed quite similar patterns and showed mean values above the middle of the evaluation scale. However, perceived motivation to prepare for lectures before coming to the class (Q10) showed mean values lower than the middle of the evaluation scale.
In addition, the paired t-Test analyses indicated that students’ perception of clicker-related motivation (Q10) is statistically significant lower than:

a) Perceived ability to assess understanding (Q8, t (5) = -14.10, p < .001), and

b) Perceived ability to remember (Q9, t (5) = -31.11, p < .001) materials presented in lectures across the six semesters analyzed in this study.

Since all questions related to outside classroom support and motivation indicated a statistically significant effect for the semester, we conducted post-hoc analyses using Tukey HSD test.

Perceived clicker-related outside classroom support. For the perceived help of clicker to assess understanding of materials being covered, Tukey HSD indicated that students enrolled in the course between 2008 and 2011 perceived clickers as being more helpful than for students enrolled in 2007. However, only students enrolled in 2010 perceived clickers as being significantly more helpful to assess understanding than students enrolled in 2006.

For the perceived help to remember materials covered in the lecture Tukey HSD indicated two independent homogeneous subsets with students enrolled between 2008 and 2011 perceiving clickers as significantly more helpful for remembering the materials covered in the lecture than students enrolled in 2006 and 2007. Figure 8 presents the two homogeneous groups resulted from this analysis.

Perceived clicker-related outside classroom motivation. For this question Tukey HSD indicated again two independent homogeneous subsets similar with the second support question analyzed before.
Conclusions & Future Research

This analysis of an early adoption of clickers at both instructor’s and university levels shows that it took students on average two semesters to significantly shift their perception and view clickers supporting both classroom and outside classroom activities. This can be explained both by the novelty of this tool for students and the instructor’s adjustment to the potential of the instructional strategies associated with clickers. However, because the adoption of this tool at the course level closely mapped its adoption at the organizational level, students’ perception of clickers’ easiness of use was high from the beginning of clickers use in the course. This finding proves again that a well crafted strategy to introduce innovative technology tools at the organizational level will reduce students’ resistance to the tool itself at the course levels.

Finally, instructor’s clear focus on using clickers as a tool to increase and support active learning during lectures was clearly reflected in students’ perception of this tool’s classroom as support for active learning. That is, the four questions that measured students’ perception on classroom engagement and support showed a similar trend throughout the six semesters analyzed in this study. In addition, the means for the four clicker classroom engagement and support questions were very high in the last three semesters when this tool reached a more mature level of implementation.

Due to the focus on anonymity of students’ answers, one major weakness of this study was the lack possibility to associate students’ answers to this survey and their course performance. As the implementation of clickers is moving toward more mature stages, we plan to change the future administration of this survey to an online format that will allow students to provide some qualitative feedback and decide if they want to reveal their identity. This format of the survey will also allow the researchers to: a) focus on testing if some of the questions categories presented in this study can generate reliable and valid scales to measure students’ perceptions associated with the use of clickers, and b) link students’ perceptions to course performance measures. On long-term, we will like to test if these scales can be used to measure students’ perceptions associated with other active learning strategies and tools in the same course as well as the implementation of new, innovative instructional tools in other classroom settings.

References

