
Paper ID #37982

Mini-projects based Cybersecurity Modules for an Operating
System Course using xv6
Jansen Tan (Purdue University Northwest)

Divya Ravindra (Purdue University Northwest)

Quamar Niyaz

Quamar Niyaz received the B.S. and M.S. degrees in computer science and engineering from Aligarh Muslim University,
in 2009 and 2013, respectively, and the Ph.D. degree from The University of Toledo, in 2017. He has been an Assistant
Professor in computer engineering with the ECE Department, Purdue University Northwest, since 2017. He has published
papers in the areas of computer and networks security, applied machine learning, and cybersecurity education. His
research has been sponsored by the National Science Foundation.

Xiaoli Yang

Dr. Xiaoli (Lucy) Yang is currently the chair and professor of the Department of Computer Science and Engineering at
Fairfield University. Dr. Yang’s main research interests include virtual/augmented reality, , cybersecurity education,
machine learning applications, and software engineering. She has published more than 80 papers in journals and refereed
international conference proceedings, and one book by Springer. Dr. Yang has received grants from NSF-National Science
Foundation, Indiana Commission of Higher Education, Northwest Indiana Computational Grid Grant, and NSERC-
Natural Sciences and Engineering Research Council of Canada.

Sidike Paheding

Ahmad Y Javaid (Dr.)
Ahmad Y. Javaid received his B.Tech. (Hons.) Degree in Computer Engineering from Aligarh Muslim University, India in
2008. He received his Ph.D. degree from The University of Toledo in 2015 along with the prestigious University
Fellowship Award. Previously, he worked for two years as a Scientist Fellow in the Ministry of Science & Technology,
Government of India. He joined the EECS Department as an Assistant Professor in Fall 2015 and is the founding director
of the Paul A. Hotmer Cybersecurity and Teaming Research (CSTAR) lab. Currently, he is an Associate Professor in the
same department. His research expertise focuses on application of computational intelligence to various computing
domains including but not limited to education, cybersecurity, healthcare, human-machine teaming, and digital forensics.
His projects have been funded by various agencies including the NSF (National Science Foundation), AFRL (Air Force
Research Lab), NASA-JPL, Department of Energy, and the State of Ohio.

© American Society for Engineering Education, 2022
Powered by www.slayte.com

Mini-projects based Cybersecurity Modules for an Operating System Course

using xv6
Jansen Tan1, Divya Ravindra1, Quamar Niyaz1, Xiaoli Yang2, Ahmad Y Javaid3,

Sidike Paheding4
1ECE Department, Purdue University Northwest, Hammond, IN 46323

2CSE Department, Fairfield University, Fairfield, 06824, CT, USA
3EECS Department, The University of Toledo, Toledo, OH 43606

4Applied Computing, Michigan Technological University, Houghton, MI 49931

1. Introduction

Cybersecurity is critical nowadays with the increased reliance on computing systems and

technology. The cyberattacks in the past mostly damaged digital information leading to financial

or reputational loss, but now they are targeting physical infrastructure as well [1, 2, 3]. The

attackers attempt to exploit vulnerabilities at every level in the targeted computing systems, i.e.

hardware, software, and the system environment to compromise their security. An operating

system (OS) is an essential system software in multitasking computing systems that resides at the

low-level after hardware and manages system resources for applications running simultaneously

on top of it. The security of an OS is critical due to its installation on every computer unlike other

software, which may or may not be installed in a particular system. If any security flaw exists in

the OS, it will affect all the applications running on top of it and will make them vulnerable [4].

Although addressing security issues in OS development has been a key requirement for a long

time, still many vulnerabilities, such as memory exploits and privilege escalation, are discovered

over time. The reasons for the occurrence of these vulnerabilities are the complex OS code and its

support for concurrent trusted/non-trusted processes. Another significant issue is the lack of

discussion on security aspects when OS courses are taught in computer science (CS) and computer

engineering (CE) curriculum. The emphasis is given to process scheduling, memory management,

concurrency control, and I/O handling. The discussion on security is deferred for security courses,

which are offered at senior undergraduate or graduate level. This approach limits the practices of

secure system development that encourages inclusion of security measures at the inception stage

of system development. Therefore, it is important for CS/CE students that they should have an

exposure to OS-related security concepts while they are taking a course on it. Later on, they can

sharpen this knowledge in other security courses or in their professional work environment.

Many pedagogical OSs have been developed to teach OS courses through hands-on lab

exercises. Several universities have developed lab assignments using them for OS design concepts.

However, little efforts have been made towards the development of security-related labs in the OS

courses. Although few independent projects have been found that will be discussed in the related

works section, they do not offer proper documentation or their implementation is quite naive

compared to production-level OS. To bridge this gap, we develop mini-project based modules for

security concepts that instructors can adopt in their OS courses. These modules are built for xv6 ─

a modern pedagogical OS [5] and they focus on security along with the OS development. The

concepts covered in these modules include authorization, access control, and address space layout

randomization.

Towards this, the outline of the rest of the paper is as follows. The methodology of the project

is discussed in Section 2. Section 3 provides an overview of each module. Section 4 compares the

implementation of our developed modules to similar functions in other OSs. Related work is

discussed in Section 5. Finally, the paper is concluded with an insight for future work in Section

6.

2. Methodology

The project modules have been designed for undergraduate CS/CE students who are enrolled in

an OS course or have taken it. The students must have a background in C programming and

familiarity with the commands in Unix-like systems. These modules are designed in a way that

they could be completed within the course of a semester following the documentation created for

each module. We chose xv6 as the platform on which these project modules are based for a number

of reasons. Xv6 is publicly available open-source instructional OS to build and modify, which

avoids issues with cost and licensing. It is lightweight and the source code only occupies half a

megabyte of storage. In addition, xv6 compilation takes at most a few seconds on modern

machines, and running it on an emulator (e.g. QEMU) is smooth as well. It enjoys a long history

of refinement since its inception in 2006. For example, the source code in the current version (i.e.

xv6-riscv) is organized more cleanly than the previous version [6]. In the older version, all the

source files are located in the project’s root directory. In the latest version, files are organized into

three sub-directories: kernel, user, and mkfs. The documentation for xv6 is also publicly

available in the form an accompanying book.

Compared to other pedagogical candidate OSs such as Minix [7], Xinu [8], and Unix V6 [9],

xv6 is the preferred choice for developing these project modules. The other platforms may have

advantages similar to that of xv6, but do not share all of the advantages of xv6. For example,

Minix, today is developed to be a production-quality OS used in real systems. The modern version

of Minix, called Minix 3, has become much larger in storage and grown in complexity compared

to earlier versions, thus making it tedious for pedagogical purposes. Earlier versions of Minix,

while retaining their pedagogical intent, are suffering from old age that make building and booting

earlier Minix a confusing and unreliable process compared to xv6 [10, 11]. Although there is a

recent project that simplifies the Minix boot procedure, it does so in a “quick-and-dirty” way [12].

Xinu does not have a freely available accompanying book, which makes it less attractive to use.

Early versions of Unix, such as V6, are very old and hard to build with recent build tools. They

are also not properly organized, somewhat complex, and the accompanying documentation in the

educational context is less user-friendly than that of xv6. Table 1 summarizes the comparison of

these candidate platforms.

Table 1: Comparison of candidate pedagogical OSs

Candidate OS Feature complexity Build process complexity Documentation

xv6 Low Low Good

Minix 1, 2 Low High Good

Minix 3 High High Good

Early Unix Low High Poor

Xinu Low Low/High Not publicly accessible

The modules that we selected for the development have been adopted from the security topics

discussed in a popular OS textbook ─ Operating Systems: Three Easy Pieces [4]. For

implementation, attempts have been made to follow modern operating systems standards as best

as possible while keeping pedagogical appropriateness. To do so, various resources were

referenced including Unix and Linux manual (man) pages to get an idea of current

implementations of a few systems such as the header file pwd.h.

3. Overview of Modules

We developed three modules as mini-projects for adoption in an OS course. These modules include

the implementation of authentication, file access control, and address space randomization. Each

module is accompanied by proper documentation that details how it can be implemented. The

documentation provides background on the covered topic to create a sense of direction and then a

goal to provide an expectation on the output. The module documentation does not attempt to detail

how to manage other aspects of the project, such as installation, debugging, and low-level OS

mechanics. However, these are certainly critical aspects of the modules. Therefore, these details

are placed in an appendix aside from the module documentation. Each module documentation

references relevant sections of the appendix whenever appropriate. A Github repository1

containing branches of riscv-branch of xv6-riscv repository has been created. These branches

named as auth-student, access-control-student, and aslr-student contain skeleton

code for students’ implementation of these modules. Implementation of each module is discussed

as follows:

3.1 Authentication module

This module allows students to implement a password-based user authentication system into xv6.

The module guides the implementation such that students will be aware of current OS standards

regarding password-based user authentication, and follow the standards throughout the

implementation. In this module, a student will implement the user account abstraction into xv6.

The implementation conforms to POSIX specification for the pwd.h header file. The student will

create the struct passwd structure and some of the pwd.h functions specified by POSIX, such

as getpwent(). Then, a useradd program will be created. For simplicity, this program will

combine functionality of useradd and passwd programs in the Linux system. The student will

then implement process ownership into xv6. The kernel’s process control structure struct proc

is modified to include uid and gid fields and various kernel functions and system calls are

implemented to interact with the new fields. The student will then create a simple whoami program

that can be used to test the overall authentication implementation. The student will then create the

login program. The login program synthesizes the functions created in the previous steps. The user

account abstraction is used to authenticate against given credentials. After successful

authentication, the current process is set to be owned by the user, and then the process executes

the shell. The student will then modify the init process to start the login program on boot instead

of the shell program.

The auth-student branch contains skeleton code to facilitate the writing process. A header

file for user account abstraction is provided at user/pwd.h. The header file contains all needed

function prototypes and an empty declaration of the struct passwd structure. The

corresponding file user/pwd.c is also provided containing all needed function declarations and

comments guiding the writing process. The programs user/useradd.c, user/whoami.c, and

1 https://github.com/jansenmtan/xv6-riscv

user/login.c are provided containing all necessary directives, function declarations, and

comments. A test program is provided at user/pwdtests.c to test the functionality of the

module.

3.2 Access Control Module

This module allows students to implement Unix-style access control into xv6. This section is

identical to the corresponding section in the authentication module. The kernel’s process control

structure struct proc is modified to include uid and gid fields; and various kernel functions

and system calls are created to interact with the fields. The student will then implement file

ownership. Inode structures are modified to include the uid and gid ownership bits. To allow the

ownership bits to be changed, the chown kernel function and chown program are created. The

student will then implement access control lists. Inode structures are modified to include Unix-like

permission bits. The student will then implement

access authorization. An access kernel function is

created to verify that a given file is either readable,

writable, or executable. Various kernel functions

that interact with files are modified to enforce

access authorization. The student will implement

default ownership and mode for newly created

files.

The access-control-student branch

contains skeleton code to facilitate the writing

process. Comments are placed in various kernel

programs, such as at kernel/file.c,

kernel/proc.c, and kernel/sysfile.c.

Permission bit masks are added into the header file

at kernel/fcntl.h. An octal conversion

specifier is also written into the user/printf.c

program to help with printing permission bits.

3.3 Memory randomization module

This module allows students to implement a basic version of Address Space Layout

Randomization (ASLR) technique into xv6. In this module, a student will create a random number

generator. The student will then modify the executable file loader. Two memory segments within

a process will be modified. The program text segment will be modified to have a random offset

from the beginning of the virtual address space. The stack segment will be modified to have a

random offset from the end of the program text and data segments. The changes made to the user

address layout can be seen in Figure 1 (b) and compared to the unchanged layout in Figure 1 (a).

The student will then implement configuration that allows ASLR to be configured on or off.

The aslr-student branch contains skeleton code to facilitate the writing process. Comments

are placed in a few kernel programs and follow the process written in the ASLR module

documentation. A program aslrtest.c is provided at user directory, which allows checking

for layout randomization at runtime.

Figure 1: Memory address layout with disabled ASLR (a)

and enabled ASLR (b).

4. Validation of Developed Modules

Our implementation of these modules has been tested to produce behavior similar to that on

corresponding production grade systems, such as Linux.

4.1 Authentication module

In various Linux distributions, the authentication process usually happens as demonstrated in

Figure 2. The init system starts the login interface, which is the first interactive interface the user

encounters after booting the system. The login interface prompts the user to enter their login

credentials, as shown in Figure 2 (a). After the user inputs their credentials as shown in Figure 2

(b), the authentication process starts. Upon successful authentication, the user is able to interact

with the machine in a meaningful way. The form of interaction varies depending on the computing

environment. For example, on a machine with a desktop environment, the user is able to interact

with the desktop. On a machine with no desktop environment, typically, the user is able to input

commands into a shell, as depicted in Figure 2 (c). In our implementation, the authentication

process is as follows. After booting xv6, the user first encounters the login prompt shown in Figure

2 (d). If there are no users present in the user account database, then login prompts the user to

create the first user (i.e., the root user) and calls useradd to do so. Otherwise, login prompts the

user to enter their login credentials, as shown in Figure 2 (e). Upon successful authentication, the

user is able to input commands into the shell as depicted in Figure 2 (f).

4.2 Access control module

In most Unix-like operating systems, access control is managed with a number of file permission

bits and file ownership [13]. Access control in Unix-like operating systems has a precedence

feature. This feature gives precedence to the more relevant group of bits in the file permission bits.

For example, a file marked as 177 would not be writable by the owner, although every other user

Figure 2: Comparison of authentication process between Linux and our implementation in xv6.

in the system would be able to write to the file, precedence checks start with the owner. In Unix-

like operating systems, there are two types for access control validation, one for regular files and

other for directories. Regular files must have access control enforced as such:

 Only files marked as readable should be able to have their contents read or copied.

 Only files marked as writable should be able to have their contents be modified.

 Only files marked as executable should be able to be executed.

Directories must have access control enforced as such:

 Only directories marked as readable should be able to have files within it listed and copied

to other directories.

 Only directories marked as writable and executable should be able to have files added or

removed from within it.

 Only directories marked as executable should be able to be traversed.

In our implementation of the access control module, files may read, write, or execute by the users

if one of the following conditions are met:

 The root user always has access

 The read bit for either owner, group, or others is set then the file can be read.

 The write bit for either owner, group or others is set then the file can be modified.

 The execute bit for either owner, group, or others is set then the file can be executed.

The permissions for the files can be modified either by the owner of the file or root through chmod

command. Set-user-ID capabilities have been partially implemented in our access control module.

Figure 3 shows our implementation of access control module.

Figure 3: Implementation of access control module in xv6

4.3 ASLR Module

Most modern operating systems implement some sort of address space randomization to defend

against memory exploits. In Linux, ALSR currently encompasses the following features:

randomization of the executable memory segments, brk() managed heap, mmap() managed

memory, the user stack, and more [14, 15]. In addition, Linux provides support for global ASLR

configuration and per-

process ASLR

configuration [16]. In our

xv6 implementation, the

offsets of the program text

segment and user stack are

randomized, as illustrated

in Figure 1(a). ASLR

configuration is supported

globally through

modifying a variable in

source code. In a 64-bit

Linux system, the effective

entropy of memory objects

ranges from 19.5 to 39 bits

[16]. In particular, the

executable and main stack have 27 and 35 bits of entropy, respectively [17]. Our implementation

of the ASLR module only contains 4 bits of entropy for both the executable and main stack objects.

In Figure 4, our ASLR implementation is shown to mitigate a buffer overflow attack. In one of the

trials, ASLR mitigates an attack for 19 attempts before failing.

5. Related Works

There are various projects, labs, and assignments created with the intention of teaching operating

systems and security concepts through xv6. Many of these assignments are given in the course

work at various universities and focus on topics related to OS design such as system calls, process

scheduling, memory mapping, semaphore, network stacks, and interaction between computer

architecture and OS [18, 19, 20, 21]. A few independent projects implement security modules

similar to our modules. These projects focus mostly on the implementation and do not have robust

documentation that details how to implement the features. In [22], a project is implemented for

authentication and access control into the x86 version of xv6. The authentication work includes

being able to log in to accounts stored in the user account database. However, there is no ability to

add new users to the user account database through a user program. Modifying the user account

database must be done by editing the etc-passwd file. The access control work includes the

implementation of the chmod and chown system calls. However, access control is enforced only

through one userland program: access. This access control implementation is appropriate for

demonstration, but may not be convincing to undergraduate students; any user can run cat to print

out the contents of any file containing sensitive information, such as the user account database,

onto the terminal. In [23], ASLR is implemented into xv6-riscv that uses a Park-Miller random

number generator to provide offsets for the program text memory segment and the stack memory

segment. The heap is positioned after the stack with no random offset. ASLR is configured globally

through the file /randomize_va_space. This project also implements support for the dynamic

symbol table and relocations in an ELF. A similar independent project implements ASLR into

xv6-riscv, among other features [24]. It implements virtual memory areas (VMAs) into xv6 and

Figure 4: The bufof2 program reads shellcode into a vulnerable buffer to spawn a

new shell. To succeed, the location of the buffer in memory must be at 0x4F80.

In this demonstration, with our ASLR enabled, the attack takes 19 attempts to

succeed.

uses them to facilitate ASLR. A combination of kernel ticks and various mathematical operations

such as exclusive-or-ing, bit shifting, and squaring are used to provide offsets for each VMA. The

creation of VMAs and a heap VMA allow the kernel functions that modify the heap, growproc()

and sys_sbrk() to support ASLR through simple changes. However, the introduction of VMAs

into the kernel does necessitate changes to other functions in the kernel which assume a particular

address layout, such as copyin() and copyout(). ASLR was intended to be an easy-to-

implement fix that provided a larger benefit, so avoiding the implementation of VMAs in our work

may be justified.

6. Conclusion and Future Works

We discussed the implementation of mini-project based OS modules that focus on security, and

attempt to take advantage of the speed and simplicity offered by modern tools. These modules are

designed to be completed within a few weeks each and used in an undergraduate course. We use

xv6 as a platform for these modules. Among the modules created are the authentication, access

control, and address space layout randomization (ASLR) module. We have created our own

implementations for each module. We compared the details and functionalities of our

implementations with production grade OSs, such as Linux. The behavior of our implementations

has been found to be relatively similar to that of systems such as Linux, although they differ in the

depth of execution. At the time of writing, these modules have not been deployed for use in a real

course, undergraduate or otherwise. We have plan to evaluate these modules in an undergraduate

level OS course in Fall’22 and Spring’23. Various details will emerge from practical use and

experience. Our reference implementations also have a few limitations that will be released in the

future updates of the modules along with the students’ feedback.

References

1. Ralph Langner, "Stuxnet: Dissecting a cyberwarfare weapon." IEEE Security & Privacy Vol.

9, No. 3, pp 49-51, 2011.

2. Colonial Pipeline ransomware attack, Available online:

https://en.wikipedia.org/wiki/Colonial_Pipeline_ransomware_attack, Accessed Feb 15, 2022.

3. Lee Mathews, Florida Water Plant Hackers Exploited Old Software and Poor Password Habits,

Available online: https://www.forbes.com/sites/leemathews/2021/02/15/florida-water-plant-

hackers-exploited-old-software-and-poor-password-habits/?sh=188bc59e334e, Accessed Feb

15, 2022.

4. R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, 1st

ed. Arpaci-Dusseau Books, August 2018 [Online]. Available: www.ostep.org, Accessed Feb

13, 2022.

5. R. Cox, F. Kaashoek, and R. Morris. (2020, Aug.) xv6: a simple, Unix-like teaching operating

system. Massachusetts Institute of Technology. Available:

https://pdos.csail.mit.edu/6.828/2020/xv6/book-riscv-rev1.pdf, Last Accessed: Feb 13, 2022.

6. xv6-riscv, Available online: https://github.com/mit-pdos/xv6-riscv, Accessed Feb 15, 2022.

7. Andrew S. Tanenbaum, Minix3 (Online). Available: https://www.minix3.org/, Accessed Feb

13, 2022.

8. D. Comer, Xinu. [Online]. Available: https://xinu.cs.purdue.edu/#textbook, Accessed Feb 13,

2022.

9. Sixth Edition Unix source code, Version 6. [Online]. Available: https://minnie.tuhs.org/cgi-

bin/utree.pl?file=V6, Accessed Feb 13, 2022.

10. J. Thyme, (2004, Jun.) Minix on Qemu Step-by-step. [Online]. Available:

https://minix1.woodhull.com/faq/qemumx.html, Accessed Feb 13, 2022.

11. M. Spivey, Installing Minix 2 on VirtualBox. University of Oxford. [Online]. Available:

https://spivey.oriel.ox.ac.uk/corner/Installing_Minix_2_on_VirtualBox, Accessed Feb 13,

2022.

12. D. Given, Minix QD [Online]. Available: https://github.com/davidgiven/minix2, Accessed

Feb 13, 2022.

13. A. Prakash, Linux File Permissions and Ownership Explained with Examples [Online].

Available: https://linuxhandbook.com/linux-file-permissions/, Accessed Feb 13, 2022.

14. PaX team, ASLR [Online]. Available: https://pax.grsecurity.net/docs/aslr.txt, Accessed Feb

13, 2022.

15. Stein, ASLR [Online]. Available: https://isopenbsdsecu.re/mitigations/aslr/, Accessed Feb 13,

2022.

16. A. van de Ven, Patch 0/6 virtual address space randomization [Online]. Available:

https://lwn.net/Articles/120966/, Accessed Feb 13, 2022.

17. H. Marco-Gisbert and I. Ripoll Ripoll, “Address Space Layout Randomization Next

Generation,” MDPI Applied Sciences, vol. 9, no. 14, 2019.

18. P. Gonarkar, D. Arole, and P. Gondachwar, “Pedagogical tools for system software and

operating system courses using xv6 kernel,” B.Tech. Comp. Eng. project, College of

Engineering Pune, May 2014. Available:

http://foss.coep.org.in/fosslab/projects/xv6_new_assignments _project.pdf. Accessed Feb 13,

2022.

19. F. Kaashoek and R. Morris. (2020) 6.S081 / Fall 2020. Course schedule for 6.S081. Available:

https://pdos.csail.mit.edu/6.828/2020/schedule.html, Accessed Feb 13, 2022.

20. X. Wang, L. Nelson, and N. Durand. (2019) Labs - CSEP 551. Laboratory assignments for

CSEP 551. Available: https://courses.cs.washington.edu/courses/csep551/19au/labs/,

Accessed Feb 13, 2022.

21. D. Mishra, “Gemos: Bridging the gap between architecture and operating system in computer

system education,” in Proceedings of the Workshop on Computer Architecture Education,

WCAE’19. New York, NY, USA, 2019.

22. C. T. K. Koster, J. Wiglz, D. Wrecker, and B. S. B. Matthews “Authorization for xv6 OS

Project,” 2015. Available: https://github.com/CKost/Authorization, Accessed Feb 13, 2022.

23. J. Bui and N. Prasad. xv6 ASLR Project. Available: https://github.com/TypingKoala/xv6-

riscv-aslr, Accessed Feb 13, 2022.

24. Johnmwu. xv6-aslr. Available: https://github.com/johnmwu/xv6-aslr, Accessed Feb 13, 2022.

