
Paper ID #28368

Misunderstandings, mistakes, and dishonesty: A post-hoc analysis of a
large-scale plagiarism case in a first-year computer programming course

Dr. Philip Reid Brown, Rutgers, The State University of New Jersey

Philip Brown is an Assistant Teaching Professor in Undergraduate Education at Rutgers School of En-
gineering. Philip recently received his PhD from the Department of Engineering Education at Virgnia
Tech. His research interests include the use of motivation, cognition and learning theories in engineering
education research and practice, and better understanding student perspectives in engineering programs.

Dr. Ilene J. Rosen, Rutgers, The State University of New Jersey

lIene Rosen has been an educational administrator serving students in higher education for 35 years. She
earned her doctoral degree in educational psychology from Rutgers University Graduate School of Ed-
ucation. Currently the Associate Dean for Student Services at Rutgers, School of Engineering, she also
served as the director of several programs including the NJ Educational Opportunity Fund Program at
Rutgers School of Engineering, the NJ Governor’s School of Engineering & Technology, and the North-
ern NJ Junior Sciences Symposium. Rosen has been recognized as the Educator of the Year in Higher
Education by the Society of Hispanic Professional Engineers.

c©American Society for Engineering Education, 2020

Misunderstandings, mistakes, and dishonesty: A post-hoc analysis of a large-

scale plagiarism case in a first-year computer programming course

Introduction

In this evidence-based practice paper, we discuss the issue of plagiarism in a first-year

engineering computer programming course. Plagiarism is an issue that can plague any course

that asks students to submit independently created work. Traditionally, plagiarism has been

associated with writing assignments, and there are a wide variety of tools and interventions

available for both identifying and preventing plagiarism on these assignments. However,

although computer programming courses also report a large number of plagiarism cases, there

are fewer easy to use or well understood tools and interventions available to instructors of these

courses. This paper describes a sequence of plagiarism cases in a large first-year computer

programming course for engineers, and how the course was adapted in order to address the

prevalence of these cases.

Part of the issue with plagiarism in computer programming is a lack of consensus on what is

and is not ethical to copy and use without acknowledgement when it comes to computer code.

Many programmers gladly share code openly, and being able to find examples of code that can

help you write a program can be a valuable and valid skill for a programmer. However, when

courses are tasked with teaching and assessing the basic principles of computer programming,

there is a dissonance between the free-sharing, open culture often found in some programming

communities, and the needs of instructors when it comes to determining that students understand

those basic principles. Additionally, we often encourage students to work in groups (and group

work can be a boon to motivation, engagement, and learning) in engineering courses [e.g. 1],

which can sometimes lead to confusion about the limits of plagiarism when submitting

individual work. Some computer programming courses may avoid plagiarism by focusing on

closed book testing for assessment. However, in addition to the universally acknowledged

drawbacks to test-centric assessment[2],[3], the knowledge displayed in test answers is a less

authentic representation of computer programming skill than projects that ask students to write

and test real computer programs.

To combat plagiarism, project-centric programming courses often use plagiarism software

like Stanford MOSS in order to flag and investigate potential plagiarism cases. The idea behind

the use of such a program is that of deterrence: If these tools are good enough at detecting

plagiarized code, and students are aware of their existence, then students will not plagiarize, lest

they get caught with solid, algorithmic proof behind the potential accusation. In practice, it is not

so simple. Some students attempt to beat plagiarism programs. More difficult still is when

students are not aware of their own plagiarism, or when students work together and wind up with

similar code. As discovered in the course discussed in this paper, plagiarism detection does not

solve the problem of plagiarism, it merely confronts it, along with all of the gray areas that

surround it. In the right context, this confrontation could be beneficial. However, we found that it

simply produced an array of additional time and energy-intensive problems.

The result of these problems was the realization that a different approach was needed in order

to curb plagiarism: one that circumvents and dis-incentivizes direct plagiarism while allowing

students the freedom to use once “gray” areas such as working closely together. Our strategy

involves assigning projects as normal, while using open note and open computer quizzes to

assess those projects instead of direct submission of code. We will discuss the process we went

through in creating this new assessment strategy, as well as the strategy itself, throughout the rest

of this paper. Note that this paper is not a traditional research paper. The goal of this paper is to

give the reader an understanding of why certain course design decisions were made, and provide

some insight into the potential underlying causes of plagiarism in computer programming

courses.

What do we know about plagiarism?

Plagiarism is the theft or unauthorized use of intellectual property. While traditionally

thought to be at home in the realm of writing, computer programmers have long acknowledged

the potential for high prevalence of internet-assisted plagiarism in programming classrooms [4].

More recent research suggests that up to 10% of computer programming assignments might

contain plagiarized code, though such results vary from assignment to assignment [5].

Research outside of computer programming suggests that students have a wide range of

reasons for plagiarizing, ranging from laziness, to a desire to help friends (in cases of facilitation

of plagiarism) [6]. However, where students might traditionally see plagiarism as immoral or an

action to be avoided when it comes to writing, studies suggest that students might hold a

different perspective with regards to computer programming, and may not always see actions

that may be considered plagiarism as wrong [7]. While one option may be to educate students on

what is considered plagiarism in computer programming courses, such interventions have had

mixed effectiveness [5], [8]. In reality, plagiarism is likely to be a persisting problem in

computer programming courses. Given what we know about plagiarism in general, we will now

describe how it has affected the programming course at the center of this paper.

Course Description

The course described in this paper is a large (400-700 student), first-year programming

course at a large, land-grant university in the Mid-Atlantic United States. The programming

course teaches the MATLAB programming language, and focuses on the fundamentals of

computer programming for student learning objectives. The course covers topics including logic,

binary, variables, data types, user-defined functions, conditional statements, loops, data

visualization, data processing, data analysis, and engineering applications.

The current format of the programming course has a lecture/recitation format, with 3 lectures

of 100-250 students and 14-16 recitations of 20-44 students. Teaching strategies focus on student

activities and hands-on, active learning, although some traditional lecturing techniques are used

in large lecture meetings out of necessity. Lectures and recitations meet once a week, each, and

both are 80 minutes long. Lectures consist of 15-20 minute blocks of more traditional lecture,

where new information is presented, interspersed with activities. Recitations consist almost

entirely of hands on activities and projects that follow up on the previous week’s lecture topics.

Homework and reading are assigned online, via an online textbook platform. There are also two

midterm exams and one final exam, which account for approximately 50% of the course grade in

total. Individual projects and quizzes account for 20% of the course grade. The remaining grade

distribution has evolved over the past few years, but has been some combination of team-based

final projects (now no longer in use), homework, in-class assignments, attendance, and

participation.

Instructional staff consists of 1 faculty member, who teaches all lecture sections and

sometimes teaches recitations, 7-8 graduate student instructors who teach recitations, and 15-20

undergraduate teaching assistants who help facilitate recitation activities.

The course has undergone significant redesign over the past 4 academic years, starting with a

complete overhaul and redesign in the Fall of 2016 [9]. Since then, various changes have been

made to the course, including the addition of an online textbook and the introduction of larger

projects in addition to smaller homework and recitation assignments. The percentage of students

who must retake the course due to poor performance or withdrawal has remained lower than pre-

redesign levels, as one goal of the redesign was to stop the course from being a “weed out”

course. However, there are notable fluctuations from semester to semester.

Semester Total Students Who

Had to Retake

Course*

Initial Course

Enrollment

Percentage

Fall 2015** 123 573 21.5%

Spring 2016** 135 530 25.5%

Fall 2016 # 34 596 5.7%

Spring 2017 80 611 13.1%

Fall 2017 27 621 4.3%

Spring 2018*** 63 505 12.5%

Fall 2018 65 672 9.7%

Spring 2019 $ 66 449 14.6%

Fall 2019 $ 56 624 9.0%

* Students who withdraw or receive a D or F must retake the course to remain in engineering

** Prior to current course design *** Individual projects introduced

 # Prior to use of online text or projects $ Semesters with quizzes for project assessments

Table 1: History of Enrollment and Performance in Programming Course

Table 1 shows the history of student performance outcomes from the past 5 years of the

course. One notable trend from before and after the redesign is that more spring semester

students perform poorly or withdraw from the course than fall semester students. The co-authors

of this paper and course instructors have theorized about possible reasons for this. Our main

theory is that the population of students in the fall are almost entirely true first-year students,

while the population in the spring is a mixture of first-year and transfer students, as well as

students retaking the course, and that students from these distinct groups have different outcome

likelihoods.

In general, the introduction of individual projects has coincided with a slightly higher number

of students performing poorly, overall. We theorize that, among other possible reasons, the

introduction of official plagiarism checking protocols while assessing individual projects, and the

issues that result in some students plagiarizing, are an influence on higher rates of poor

performance.

Course Projects and Plagiarism

Throughout the first two years of the course redesign, students were required to submit

smaller, weekly coding assignments in the form printouts or online uploads of code. The idea

behind these submissions, in addition to some automatically graded online homework, was to

give students detailed, individualized feedback on their code.

Faculty and graduate instructors noticed a high number of identical or similar submissions on

these assignments. While plagiarism checks were considered, they were not widely implemented

due to a lack of resources. Though applications like Stanford MOSS are excellent at flagging

submissions for potential plagiarism, such flags are the beginning of a long process that includes

human confirmation of potential plagiarism, and collecting and formatting plagiarism reports for

potential academic integrity submissions. Graduate instructors were already reporting heavy

weekly grading loads with exams and homework, and course faculty did not have time to sift

through potentially hundreds of plagiarism flags per week. Reporting was reserved for the most

egregious cases of identical submissions.

However, as some assignments were nullified due to the large number of identical

submissions, we realized that there was a need for a new format of assignment where individual

feedback could be given, and where we could also hold students accountable for doing their own

work. Starting in the spring of 2018 we began assigning individual projects 3-4 times a semester.

To compensate for this added work load for students and instructors, individual homework

assignments were moved to being completely online and graded automatically, and were slightly

reduced in number.

Individual projects were designed to tie together multiple concepts from throughout the

semester, and progress in complexity through the semester as more concepts were introduced to

the course. Though we do not reuse project prompts from semester to semester, there are many

similarities in the concepts covered by projects from semester to semester. Project 1 usually asks

students to create a user-defined function that can choose from an assortment of mathematical

equations to perform. Project 2 usually asks students to write a function that processes 1-

dimensional arrays using loops, and sometimes conditional statements. Projects 3 and 4 involve a

variety of topics related to engineering applications, usually involving some combination of

multi-dimensional arrays, multiple data types, and multiple user-defined functions in addition to

data analysis and visualization. Appendix A includes an example Project 2 from the fall 2019

semester.

In assessing individual projects, we wanted to see whether students were able to both

understand and implement various concepts, and apply them to practical applications in

engineering. Initially, we assessed submissions of code. Code had to be fully commented, with

descriptions of how different programming methods worked and why they were used. Grades

were assigned both on correctness, style, and the use of appropriate or required programming

methods.

In an effort to curb plagiarism, students were repeatedly informed of the use of anti-

plagiarism software (Stanford MOSS) on project submissions. The first project of the spring

2018 semester was excluded from this process due to the relatively small size and simple

implementation of the project. However, using Stanford MOSS, the course faculty found

evidence that a large number of students were sharing code or copying code on Project 2 and

Project 3 (see Table 2). Note that Table 2 only has numbers for students who were officially

reported for plagiarism, and that there were some students reported multiple times each semester.

When using Stanford MOSS, we used an 80% similarity as the cut-off for a potential

plagiarism flag. Any two submissions containing that level of similarity or higher were then

inspected by the course faculty. If the faculty thought the similarities were likely due to copying

or improper sharing, the student was given an opportunity to meet one on one to discuss the

similarities. Students who were thought to have plagiarized after this process were given a 0 on

the assignment and reported to central offices responsible for student conduct.

Many potential cases were dismissed without being reported, as some gray areas were

quickly identified. What should be done with students who worked closely together, but put in

significant amounts of work and clearly understood the code they submitted? What happens in

complicated situations where some students shared a modest number of ideas, but then one of

those students shared a complete program with an additional student? While instructions did say

to work individually, it was clear that those instructions were potentially untenable within the

reality of the course.

In the following semester, fall 2018, efforts were

made to clarify expectations of what constituted

plagiarism in these assignments. Students were allowed to

work together, so long as they reported who they worked

with in a comment and did not submit code that was

identical. Comments played a big role in determining

what was acceptable: students with very similar code but

descriptive comments clearly written in their own words were not reported for plagiarism, while

students with similar or identical comments were reported. There were repeated reminders about

how to approach projects, including a one-page guide of recommendations that was included

with each project. However, rates of suspected plagiarism from the Stanford MOSS tool were

still high, and more of the “gray area” cases were reported due to evidence that students were

clearly ignoring or disregarding specific instructions about how to avoid plagiarism.

It was clear that we could not possibly continue to administer these assignments as such.

From an instructor’s point of view, processing potential plagiarism was taking up an inordinate

amount of time, and took time away from pursuing tasks that are more conducive to course

improvement and student learning. However, before altering these assignments, we needed to

Semester Plagiarism Cases

Reported

Spring 2018 74

Fall 2018 138

Table 2: Plagiarism Cases in

Programming Course

understand what some of the underlying issues at play were. Examining notes from meetings

with students flagged for plagiarism, as well as observations from faculty, graduate, and

undergraduate instructors, we first tried to understand why students were making choices that

lead to plagiarism.

Why did students plagiarize?

To understand the potential causes of plagiarism, it is first important to understand the

different kinds of work that might get flagged for plagiarism. Tools like Stanford MOSS are

simply measures for similarity, and there are many different reasons why two pieces of code

might score highly in similarity. Table 3 breaks down three general categories: Those that are not

plagiarism, those that fall in a gray area, and those that are definitely plagiarism. Please note that

we will not reference specific cases, even with pseudonym, so as not to risk identifying students.

Instead, we will discuss generalities, and when necessary, hypothetical cases that may be

amalgamations of details observed while processing plagiarism cases.

Category Example
Result with Project

Submission

Result with Quiz

Submission

Not Plagiarism

Students use a similar obvious,

concise method
Potentially flagged

by Stanford MOSS,

but no action taken.

Student likely

passes quiz.

Students talk to each other and

share some ideas.

Students give each other

feedback on written code.

Gray Area

Student gets tutor-like help

from another student who

completed the project.
Likely flagged by

Stanford MOSS,

potentially reported

as plagiarism

depending on level of

similarity

Students given

opportunity to

demonstrate

knowledge and

understanding:

those who did work

pass, those who did

not likely fail.

Two students work very

closely together, sitting side by

side while writing code.

A community of students

shares a significant number of

ideas.

Plagiarism

A student provides another

student with code as a

“reference,” and that reference

is copied.
Almost certainly

flagged, reported as

plagiarism.

The student likely

fails the quiz

A student retrieves code from

an online resource like Chegg

or MATLAB Central and uses

that code.

A student steals code from

another student.

Table 3: Examples of types of submissions that could be flagged for plagiarism

Not plagiarism

In interviewing students flagged for plagiarism, there are some cases that, after examination,

reveal themselves to not be plagiarism. Often, when students find concise ways to write

programs, or portions of programs, they might stumble upon a sequence of code that others are

also likely to come up with. Upon inspection, these programs are often formatted using slightly

different style, and with clearly different comments. Other causes for similar situations might

include academically honest communication: sharing ideas without directly sharing code could

theoretically result in similar programs, as could providing feedback on another students’ code,

especially if changes are suggested that lead to similar strategies. These are not reasons for

plagiarism, but rather, reasons for false alarms. While they are easier to deal with than the other

examples in Table 3, they still take up time and energy to resolve.

Gray areas

The second, broad category of cases are the “gray” areas: Those that, depending on the

perspective or details that have been revealed, can be thought of as acceptable, or academically

dishonest. These cases have the greatest variety in rationale behind them, but generally center

upon what “acceptable” collaboration is. For instance, we ran into many cases where groups of

students had very similar code. Upon speaking to parties involved, the following story might

evolve:

- Student A and B worked together closely, but have clearly different submissions via

comments and style, and report each other as collaborators.

- Student C, in a panic, asks Student B for help after Student B submitted their project.

Their submission is very similar to Student B, and thus Student A, but they do not report

working with Student A.

- Student C finish up their code while working with Student D. They wind up with nearly

identical programs. Student D forgets to include collaborators in their comments.

Upon interviewing all of these students, it may be clear that few if any of them may have

intended to be academically dishonest. Nevertheless, depending on the similarity of code, and

how they shared it with one another, some of them may have plagiarized or facilitated

plagiarism. Nevertheless, also dependent on the nature of each interaction, each student may

have developed an understanding of how to accomplish the project. While not always ideal ways

to learn, these gray areas may not be things we want to discourage. We want students to build

connections with peers as learning resources, especially in large courses where other personal

resources might be scarce. However, code submission assessments do not give us adequate ways

of determining the difference between students who learned in this situation, and those who

simply copied an answer.

Students in these gray areas often discussed their peers as being the most convenient resource

available to them, while also being in need of additional learning resources. They also often

reported being confused about what was and was not acceptable collaboration. Though we

provided specific, detailed instructions for how to approach these assignments, and the

possibility of working together, it was clear that these often got lost in the mix as students

focused, first, on how to complete the assignment. Many students reported, true or not, that they

forgot or did not realize that they were supposed to report collaborators. It is possible that, in

providing so many details of what to do and not to do in these assignments, the cognitive load

was too much for students who may have also been expending a great deal of energy on learning

a potentially difficult subject. While our individual expectations of students may have been

reasonable, the overall collection of them may have been too much in some cases.

Plagiarism

Our final broad category is that of cases that are clearly plagiarism or facilitation of

plagiarism. While these might be easy to identify, they can be harder yet to understand. Why do

students risk penalties beyond a 0 on an assignment in order to pass somebody’s work off as

their own? Why do some students choose to give their work to another, knowing that person

could easily copy it?

Despite the obviousness of the cases, some students in these situations were still confused

about the bounds of plagiarism in computer programming. Many insisted that there was only one

or two ways to write a given program, despite evidence that their program was only a match with

one other student in a class of 600. Many students said they were simply trying to give or receive

help on an assignment, and did not intend to commit plagiarism. Still others admitted to being

desperate, and feeling like they had no other way of completing assignment.

Semester and

Assessment

Project N Pass Fail

Spring 2018

Submit Project

Code

1 453 421 (93%) 32 (7%)

2 453 339 (75%) 114 (25%)

3 453 357 (79%) 96 (21%)

Fall 2018

Submit Project

Code

1 600 573 (96%) 27 (4%)

2 600 378 (63%) 222 (37%)

3 600 406 (68%) 194 (32%)

4* 600 203 (34%) 397 (66%)

Spring 2019

Quiz

Assessment

1 431 206 (47%) 225 (53%)

2 431 129 (30%) 302 (70%)

3 431 161 (37%) 270 (63%)

4 431 271 (62%) 160 (38%)

Fall 2019

Quiz

Assessment

1 599 557 (93%) 41 (7%)

2 599 407 (68%) 192 (32%)

3 599 423 (71%) 176 (29%)

4 599 419 (70%) 180 (30%)

*In the Fall of 2018, students knew that one project would be dropped. Many students did not

submit Project 4 for this reason.

Table 4: Project pass and failure rates before and after quiz assessments.

Looking at the numbers on a whole, as seen on Table 4, it’s clear that there were more

students who failed their project submissions than there were students who plagiarized. While

Table 4 does not show this information, the vast majority of project failures in the Spring and

Fall of 2018 were through non-submissions, and the vast majority of passing project grades

received nearly full marks. For every student that gave up on a project and plagiarized, there

were two or three students who gave up and did not submit anything.

This is a stark, but not unexpected, situation. Computer programming courses, more than

almost any other family of courses, have a distinct issue of differences in preparation between

incoming students. In an earlier study of this course, we found that approximately half of the

class had programmed before, while the other half had not [10]. While we designed this course

with non-programmers in mind, it can be difficult to gauge the needs of the most at-risk students

in a course when they are not necessarily the loudest voices. In that previous study, it was found

that students with no prior programming experience had worse outcomes than students with prior

programing experience. As we discovered in subsequent semesters with quiz assessments, many

of these students were not learning essential skills such as running their own programs and

testing code because project submissions, and likely homework assignments before them, were

not guaranteeing that those skills were being assessed. Excepting facilitators of plagiarism, the

vast majority of students reported for plagiarism were students with no prior programming

experience.

It was with these considerations that we went into the following semester with the idea that

we would combat plagiarism by making it a non-factor in assessment. The results were, at first,

not as positive as we had hoped.

Circumvention and Prevention

In the Spring of 2019, we decided to keep our individual projects, but change the way they

were assessed. Instead of having students submit project code, we instead required students to

take a 30-minute open note, open computer quiz to demonstrate their completion of the project.

Quizzes are administered in an active learning style classroom, with large, round tables. The

capacity if the classroom is approximately 72 students, but sections never have more than 45

students, allowing for adequate spacing. Quizzes were proctored by one graduate student

instructor and two undergraduate teaching assistants. To attempt to prevent unauthorized access,

quizzes were password protected and time limited. To curb cheating, questions with numerical

answers had multiple, randomized versions administered in each quiz session. While students

could use computers, phones and chat-related computer apps were forbidden, and proctors were

mindful to check for inappropriate applications on computer screens.

The format of these quizzes has not evolved much since their inception, and is exemplified

by Appendix B. Students are given a selection of short answer questions via our course

management system’s quiz application. These questions take the following format:

- Asking that students use their programs with specified inputs, or as part of pre-written

scripts, and report the result.

- Asking students to make a minor modification to their program, and show us the entire

modified program or just he code that was added or modified.

- Asking students to describe how certain code works, or which programming methods

they chose in accomplish a certain task.

Through these questions, the hope was that students who completed the project would have

no trouble getting full credit, assuming that the project was correct and they understood how it

worked, while students who attempted to complete the project dishonestly would not be able to

answer questions in the time allotted. While we believe that this is what occurred, Table 4 shows

that a very large portion of students were unable to answer most quiz questions correctly,

suggesting that most students were not completing the projects to the level that we were

expecting.

Repeated efforts were made throughout the semester to make students aware of how the

quizzes work, and the types of questions they should be prepared to answer. The quiz format did

not change significantly, but quiz results, for the most part, did not improve throughout the

semester. One cause of this could be the atmosphere of the class that semester. Many students

were upset that, after their colleagues were allowed to submit code the previous semester, they

had to take quizzes for the same assignments. Some were adamant that we were making the class

more difficult for difficulty’s sake, and continued to answer quiz questions by copying and

pasting project code throughout the semester. While we tried to be clear about our reasons

behind our project assessments, and our intention to give projects that were roughly equivalent to

the previous semesters’, the damage was done and the mood of the course did not improve.

There are many potential reasons for the atmosphere encountered in the spring of 2019. As

mentioned previously, the population of students in the spring semesters may be less prepared

than fall semesters, overall. Some of it could be attributed to personality clashes between

students and some instructors. However, we believe the biggest cause of these problems was that

quizzes were assessing essential skills that previous assessments were not. Specifically,

students struggled with using their own code to answer questions, and performing tasks that

required them to run code that we prepared for them. While these topics are a focus of the early

portion of the course, they may not have been as essential to completing previous assessments,

many of which called and tested student code for them. Students also struggled with describing

how code worked, and making simple changes such as changing the parameters of a conditional

statement (i.e. deciding to check the value of two pieces of data instead of one). We believe that,

when students experienced these failures at the beginning of the semester, a large portion of them

“gave up” on the course, and simply attempted to secure a passing grade, rather than learn.

Without being fully aware of the reasons why students struggled on quizzes, we wound up

making the decision to significantly deemphasize projects in final grade calculations, as we were

unsure whether they were fair assessments at that point. Over summer break we were able to re-

evaluate what the quiz results meant. Quizzes pointed to a lack of basic programming

knowledge, so we redoubled our efforts to teach and reinforce that knowledge in the subsequent

semester. The results (again, shown in Table 4) demonstrate an improvement in quiz outcomes

without a significant alteration of quiz format. Adjustments to course curriculum were also

minor, but clearly necessary. Greater emphasis was placed on how to test code, including code

that uses different programming methods, and additional instructions were included in project

documents about how to test code (See Appendix A).

Discussion and Conclusions

Throughout the process of first combatting plagiarism, and then circumventing it, we arrived

upon some potentially useful take-a-ways. First, plagiarism is a symptom, not a disease. Second,

many programming assessments may not guarantee that essential programming skills are

assessed, even if those skills seem trivial. Finally, initial failures of new assessments can still be

useful within the iterative process of course assessment. We would also like to acknowledge the

limitations of what is discussed in this paper.

Plagiarism is a symptom

When we first approached the issue of plagiarism in our computer programming course, it

was easy to take the viewpoint that plagiarism was the fulcrum of the battle we are fighting. And

it is easy to see why: it can be infuriating that people blatantly copy the work of others for

personal gain, especially when it occurs on such a large scale. It is also pervasive at many

different levels in computer programming course, a fact that has even received national media

attention [10]. However, the focus on plagiarism hides a host of underlying issues. In our course,

we encountered gray areas where the enforcement of plagiarism rules and student learning may

not be in alignment. We also discovered that plagiarism cases were mostly among students with

no prior experience, suggesting that plagiarizing could be as much a last-ditch attempt to salvage

a lost situation, rather than a devious plan to break rules.

This is not to suggest that we should scale back efforts to detect plagiarism or report

individuals who commit it. However, we should also be understanding of what the underlying

issues might be. Previous research has suggested [5], [8], and we have experienced in teaching

this course, that it can be difficult to educate students on what constitutes plagiarism in computer

programming classrooms as a means of preventing future plagiarism. In greater likelihood,

plagiarism will remain a problem as long as the underlying causes do.

The basics can be hard to assess

The first two years of our course had a wide variety of assessments: hands-on group work,

exams, auto-graded and hand-graded homework assignments, and in-class activities. However,

while we had some idea that some students were struggling with understanding how to call their

programs, or run code that was provided for them, we did not realize how pervasive this problem

was until we introduced project quizzes. Thus, an array of assessments, many of which would

seem to imply a basic skill, have the potential to produce false positives for the presence of that

skill. We would recommend that other introductory programming courses consider this

possibility.

Failed assessments are not always failures

When we first began assessing projects with quizzes, we were taken aback by the sheer chaos

that we encountered. Students were not happy, and they were not able to answer questions we

considered trivial. Our first, and possibly second and third inclinations were that there was

something seriously wrong with the format of the quizzes. However, with some hindsight, we

realized that the quizzes were simply highlighting something that was seriously lacking in the

course: a significant focus on running and testing code. Again, this seemed like something that

students should have been able to do given other assessments, but we were wrong. Large courses

and limited one on one time with students can, clearly, hide large problems.

Limitations

This paper is not a traditional research paper. The data discussed within was collected for

assessment purposes, and in some cases, was not in an ideal format for reporting. Interviews for

plagiarism cases were not collected for research purposes, and thus could only be summarized in

general terms.

We also realize that the assessment suggested in this paper may not be possible to easily

implement for every programming class. Open-computer assessments carry the risk of other

types of academic dishonesty, require universal access to computers, and can be difficult to

proctor. While we are confident that we deter most students from attempting to cheat in our

quizzes, you may not be as confident. It should also be noted that project quizzes do not

necessarily decrease the time spent grading projects, and thus may require resources not

available to other programming courses.

Conclusions

We believe this paper highlights some of the issues related to detecting and preventing

plagiarism in computer programming courses. As plagiarism continues to be a key issue in the

assessment of computer programming ability, we believe that a deeper examination of the causes

of plagiarism, and potential solutions outside of plagiarism detection, should continue to be

examined. We also believe the project quiz assessment strategy may be a viable strategy for

similar programming courses.

References

[1] Terenzini, Patrick T., et al. "Collaborative learning vs. lecture/discussion: Students' reported

learning gains." Journal of Engineering Education 90.1 (2001): 123-130.

[2] Vitasari, P., Wahab, M. N. A., Othman, A., Herawan, T., & Sinnadurai, S. K. (2010). The

relationship between study anxiety and academic performance among engineering

students. Procedia-Social and Behavioral Sciences, 8, 490-497.

[3] Bell, A. E., Spencer, S. J., Iserman, E., & Logel, C. E. (2003). Stereotype threat and women's

performance in engineering. Journal of Engineering Education, 92(4), 307-312.

[4] Joy, M., & Luck, M. (1999). Plagiarism in programming assignments. IEEE Transactions on

education, 42(2), 129-133.

[5] Daly, C., & Horgan, J. (2005). Patterns of plagiarism. ACM SIGCSE Bulletin, 37(1), 383-387.

[6] Devlin, M., & Gray, K. (2007). In their own words: A qualitative study of the reasons

Australian university students plagiarize. High Education Research & Development, 26(2),

181-198.

[7] Aasheim, C. L., Rutner, P. S., Li, L., & Williams, S. R. (2019). Plagiarism and programming:

A survey of student attitudes. Journal of information systems education, 23(3), 5.

[8] Le, T., Carbone, A., Sheard, J., Schuhmacher, M., de Raath, M., & Johnson, C. (2013,

March). Educating computer programming students about plagiarism through use of a code

similarity detection tool. In 2013 Learning and Teaching in Computing and Engineering (pp.

98-105). IEEE.

[9] Brown, P. R. (2017, June). Work in progress: From scratch-the design of a first-year

engineering programming course. In ASEE Annu. Conf. Expo. Conf. Proc.

[10] Bidgood, J., & Merrill, J. B. (2017). As Computer Coding Classes Swell, So Does

Cheating. New York Times, A1.

Appendix A – Example Project

Project #2 – Sifting Data and Calculating Statistics

Oftentimes in engineering, and in other applications, we collect raw data that needs to be sorted into

different groups, or strata before we can process it and make use of it. For example, if an engineer were

assisting in a maintenance project on an existing bridge, they might be tasked with taking measurements

of any deformations on any load bearing joints. When collecting data, she may take measurements of

different joints (joints connecting sections of roadway, joints connecting trusses, joints connecting

support beams, etc.), and it may be most convenient to store all of that data together during the collection

process.

Once the data collection process is over, however, the engineers performing analysis on this data might

need to sort it into different categories. One team might be working on designs for retrofitting roadway

joints, for example, and might only care about the data collected for those joints.

In this project, you will be writing a function that will take raw data in the form of arrays, and return the

subset of that data from a desired category, along with statistics about that data. Please note that while I

used bridge joint data as an example, the function you are writing will apply to any generic raw data

that needs to be sorted.

Inputs and Outputs

Inputs

Your function will take three inputs:

- rawData – An array of doubles – This is the array that contains all of the raw numerical data

that was collected, from which you will select the desired subset of data.

- categories – An array of doubles – This array contains category labels that correspond do the

elements in the same indices of rawData. For example, somebody may label four different

categories of data with the numbers 0, 1, 2, and 3. In this case, the rawData input might look

like this:

0.671 -1.207 0.717 1.630 0.489 1.035 0.727 -0.303 0.294 -0.787

While the categories input might look like this:

0 3 2 0 2 1 3 3 2 1

Note that the categories above are just an example. You should not assume a specific number

of categories in your categories input, nor should you assume that they will be in a specific

format (i.e. integers).

- selectedCategory – A double – This is the category of data that you are sifting out of

rawData. In the above examples, if we were to use 0 for selectectedCategory input, we

would be looking to sift out the numbers 0.671 and 1.630 from rawData. Again, as both the

categories and the category to select are both inputs, you should not make any assumptions

about the format of either except that they will be of the Data Type double.

Outputs

Your function will have four outputs:

- siftedData – An array of doubles – This will be the elements of rawData for which the

elements in the corresponding indices of categories match the value of

selectedCategory.

- siftedMean – A double – This will be the mean (average) of all the values in siftedData.

- siftedStd – A double – This will be the standard deviation of all the values in

siftedData.

- siftedNorm – An array of doubles – This will be the data from siftedData normalized so

that its mean is 0 and its standard deviation is 1. This conversion is performed by subtracting

the mean and dividing by the standard deviation. Often, when we are making decisions with

multiple dimensions (i.e. sources) of data, it is necessary to normalize all data before using any

data analysis tools.

Methods

You will need to consider the following programming methods in implementing this project:

- Using loops to index arrays.

- Creating multiple counting variables to track different things:

o The indices of rawData and siftedData will be different!

- Using conditional statements inside of loops.

- Calculating statistics (use of MATLAB built in functions to do this is OK.

- Performing calculations with the elements of arrays.

Testing Code

To test your code, we recommend generating a collection of matching rawData and categories

arrays. These do not need to be incredibly long. Try this out with different numbers of categories, and try

to select different categories from the same arrays. As always, we recommend using scripts for your

tests so that you can modify them and perform them again as you need.

Appendix B – Example Quiz Questions

Note – All quizzes are open note and open computer.

1. Please copy and paste the following code into a script in MATLAB, replacing "yourFunction"

with the name of the function you wrote for this project.

rng('default')

rng(2)

data = randn(30,1)*5+2;

categories = ceil(rand(30,1)*3);

selectedCategory = ceil(rand*3);

[~, answer1, answer2, ~] =

yourFunction(data,categories,selectedCategory);

What are the values of answer1 and answer2? You only need to include up to 4 decimal places in

scientific notation.

2. Please copy and paste the following code into a script in MATLAB, replacing "yourFunction"

with the name of the function you wrote for this project.

rng('default')

rng(1)

data = randperm(9);

categories = ceil(rand(9,1)*3);

selectedCategory = ceil(rand*3);

[answer1, ~, ~, answer2] =

yourFunction(data,categories,selectedCategory);

What are the values of answer1 and answer2? You only need to include up to 4 decimal places in

scientific notation.

3. In 2-3 sentences. Please discuss how you implemented loops, counting variables, and array

indexing in this project.

4. Assume that, in addition to the conditions described in the project document, we only wanted

to accept numbers from selectedCategory with a magnitude (i.e. absolute value) greater than 0.5

into siftedData. Any numbers with lower magnitude in rawData of selectedCategory would be

ignored. Please update your code to accomplish this, and paste your entire program as the answer

to this question.

5. In 3-4 sentences, describe the code you had to edit in the previous question to accomplish the

desired changes. Was it inside of any other programming structures? Why or why not?

