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Modular Control of a Rotary Inverted Pendulum System 
School of Engineering Technology 

Purdue University, West Lafayette, IN, USA 
Abstract 
 

Control of an inverted pendulum is one of the most interesting and classical problems of 
control engineering. This paper addresses control design and implementation of a rotary inverted 
pendulum system. The system is developed for control instruction and laboratory exercise of 
feedback control for undergraduates. The control of the inverted pendulum system is to drive the 
pendulum from its hanging-down position to upright position and hold it there stably. The 
controller is decomposed into three sub-controllers: destabilizing controller, stabilizing 
controller, and mode controller. The destabilizing controller is employed to oscillates the 
pendulum back and forth until it builds up enough energy to break the hanging-down stable 
position and gets into a neighborhood of the upright unstable position. Then the stabilizing 
controller kicks in and maintains the pendulum in the upright unstable position with a capability 
of rejecting small disturbance to the pendulum. The mode controller is able to determine when to 
switch between the destabilizing controller and the stabilizing controller. The proposed control 
strategy of the inverted pendulum system is verified by both simulation and experiments. 
According to a qualitative student assessment survey, such a modularized control strategy helps 
students understand the control theory more effectively. 
 
I. Introduction 

 
An inverted pendulum system is one of the most interesting and classical mechatronic systems 

used for both research and education in control engineering. The aim of the control of an inverted 
pendulum system is to balance the pendulum using feedback control when the pendulum is in its 
upright unstable position. An inverted pendulum system has been known as an ideal 
demonstration in control laboratories when introducing basic feedback control concepts and 
theories1,2.  

 
There are two basic forms of inverted pendulum systems3, as shown in Fig. 1. The most 

common inverted pendulum system has the pendulum mounted on a carriage base. The pendulum 
is a driven link that can rotate freely in the vertical plane about a pivot on the carriage. The 
carriage base is usually a driving cart that can move in the horizontal plane, usually along a track 
or on wheels. Another form of inverted pendulum system has the pendulum installed on a rotating 
arm or disk. The driving rotating arm can rotate in the horizontal plane to balance the driven 
pendulum that can rotate in the vertical plane. The equations of motion of these two forms of 
inverted pendulum systems are different. This paper is concerned about the later form of inverted 
pendulum system (called rotary inverted pendulum system).  

  
Figure 1.  a) Inreted pendulum system on a cart; b) Inverted pendulum system on a rotating 

arm (Courtesy of Quansser, Ontario, Canada) 



As popular examples of unstable systems, various inverted pendulum systems have been used 
for research and education in control design for decades. Yamakita et al. demonstrated the power 
of modern control theory using an inverted pendulum system4. The inverted pendulum system 
was controlled in 3-D space by two robotic manipulators using visual feedback. An undergraduate 
laboratory for control system design was built with inverted pendulum apparatus for a feedback 
control course5. Such an inverted pendulum pivoting on a carriage moving on a straight rail is 
useful for stability analysis. Spong studied a two-degree-of-freedom planar robot (called Acrobot) 
with one actuator6. The swing-up control of the Acrobot was investigated using partial feedback 
linearization. An autonomous inverted pendulum cart was built and tested by White et al.3. The 
real-time control of the inverted pendulum cart was implemented using a battery-powered 
onboard processor that communicates with a laboratory host computer through Wi-Fi. Misawa et 
al. reported a low-cost rotational inverted pendulum system for demonstration of control theory7. 
Both linear quadratic controller and fuzzy controller were developed and their performance were 
compared. Reck and Sreenivas developed an affordable laboratory kit for multi-disciplinary 
controls education at both undergraduate and graduate levels8. With the kit, students can conduct 
labs of inverted pendulum control, DC motor control and so on. Sanchez et al. addressed an 
environment for teleoperation of real plant via Internet9. An inverted pendulum mounted on a 
linear motion cart was used to demonstrate the feasibility. Trajectory control of a mobile robot 
that is basically a wheeled inverted pendulum system was discussed by Ha and Yuta10. A gyro 
sensor was used to sense the inclination of the inverted pendulum and rotary encoders to detect 
wheels rotation. Such an concept has led to a commercial product, the Segway11. 
 

This paper addresses control design and implementation of a rotary inverted pendulum system 
for an undergraduate automatic control class. The objective is to design a controller which is 
capable of driving the pendulum from its hanging-down stable position to a neighborhood of the 
upright unstable position and then holding it there stably. Although students are excited about the 
rotary inverted pendulum system, they usually do not even know where to start to achieve the 
control objective when facing the hardware at the beginning. The strategy of this lab instruction is 
to divide and conquer. The control objective is divided into multiple ones that are small enough 
such that students are confident and capable of achieving each of them. In this way, students go 
through small objectives one by one and eventually accomplish the final control objective. 
Specifically, students will 1) create a mathematical model of the rotary inverted pendulum 
system; 2) design a proper position controller; 3) design a destabilizing controller to oscillates the 
pendulum back and forth; 4) design a stabilizing controller to maintain the pendulum in the 
upright unstable position; and 5) design a mode controller to determine when to switch between 
the destabilizing controller and the stabilizing controller. Such a strategy not only makes the 
controller design straightforward for students, but also allows students to move forward step by 
step and eventually to accomplish the laboratory successfully. Student feedback is very positive 
according to a qualitative assessment survey. 

 
II. Modeling of the Inverted Pendulum System 

 
In the laboratory, students are expected to develop a controller for the rotary inverted 

pendulum system from Quanser, as shown in Fig. 1(b). The system consists of a vertical 
pendulum, a horizontal rotating arm, a gear chain, and a servomotor which drives the pendulum 
through the gear transmission system. The rotating arm is mounted on the output gear of the gear 



chain. A rotary encoder is attached to the arm shaft to measure the rotating angle of the arm. The 
pendulum is attached to a hinge located at the end of the rotating arm. The hinge is instrumented 
with a rotary encoder to measure the motion of the pendulum.  

 
The inverted pendulum system (mechanical part only) shown in Fig. 1(b) is sketched in Fig. 2. 

The equations of motion of the system can be obtained using the Lagrangian formulation.  and 
  are chosen as generalized coordinates to describe the inverted pendulum system. The pendulum 
is displaced with an angle of   off the upright position while the rotating arm rotates an angle of 
 . Assume the pendulum to be a lump mass at point B  which is located at the geometric center 
of the pendulum. The xyz reference frame is fixed to the end of the arm at point A . Please refer to 
the Appendix for a complete list of symbols used in the mathematical modelling of the inverted 
pendulum system. According to the Lagrangian formulation, the nonlinear dynamics model of the 
system can be obtained as 

 
Figure 2.  Simplified model of the rotary inverted pendulum system 
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Linearizing (1) under the assumption of 0  and 0 , one gets the linearized dynamics 
model of the inverted pendulum system as follows: 
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To verify the linear model against the nonlinear model, the linear model has been compared 
with the nonlinear model by simulation. The simulation results showed that when 15 , the 
linear model diverges from the nonlinear model by less than 0.8%. Therefore, the linear model 
can describe the motion of the inverted pendulum system accurately. The controller design will be 
based on the linear dynamics model.  
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III. Controller Design 
 
The controller of the rotary inverted pendulum system is decomposed into three sub-

controllers, namely, destabilizing controller, stabilizing controller, and mode controller. The 
destabilizing controller, as the name implies, oscillates the pendulum back and forth until it builds 
up enough energy to break the hanging-down stable position and gets into the neighborhood of 
the upright unstable position. Then the stabilizing controller is turned on to stabilize the pendulum 
in its upright position. The mode controller determines when to switch between the destabilizing 
controller and the stabilizing controller.  

 
The destabilizing controller essentially drives the rotating arm to get the pendulum away from 

the hanging-down stable position. It simply makes sense that, by moving the rotating arm back 
and forth strongly enough, it can eventually swing up the pendulum. Hence, the first thing one 
needs to do is to design a position controller which can swing the rotating arm to achieve the 
destabilizing goal. The design of the destabilizing controller, the stabilizing controller, and the 
mode controller will be discussed in the next three sections. 

 
A. Design of the position controller 
 

The pendulum in the system has a length of (m) 335.02 L and its center of mass is located at 
its geometric center. Thus the natural frequency for small oscillation of the pendulum is given by 
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where AI  is the mass moment of inertia of the pendulum about point A . To have the rotating arm 
to react to the pendulum’s movements quickly, the closed-loop response of the rotating arm 
should be considerably faster than the natural frequency of the pendulum. It would then be 
reasonable to design a closed-loop position controller for the rotating arm which has the following 
specifications 

0.780 (rad/s), 512.26or    %2%OS ,4   npn 

where %OS is the maximum overshoot of the response of the rotating arm for a step input. For the 
rotating arm to track the desired position, a PD control law is designed as follows 

 
vdpm KKV  )( 

This is a position control loop that controls the voltage applied to the motor so that   tracks d . 

Now one needs to determine vp KK  and  according the above defined specifications (5). By 

obtaining the closed-loop transfer function of the input d and output   and comparing it with the 

standard transfer function of a second order system, the control gains can be solved as follows 

612.19   ;585.0  pv KK 

With these values of the control grains, the rotating arm is expected to track the desired position 
while meeting the required specifications (5). 
 



B. Simulation of the position controller 
 

The Simulink diagram shown in Fig. 3 is created to check the performance of the designed 
position controller in (6). For a step input, the dynamic response of the inverted pendulum system 
is shown in Fig. 4. One can see that the response has a maximum overshoot of approximately 2% 
and the first peak is at 0.689 second. So the designed position controller in (6) meets the required 
specifications in (5). 

 
Figure 3.  Simulink diagram for verifying the position controller 

 
Figure 4.  Dynamic response of the inverted pendulum system to a step input 

 
IV. Destabilizing Controller 

 
When the pendulum is at its hanging-down stable position, one has to bring it up to the upright 

position first before considering how to maintain it there. The destabilizing controller is designed 
for this purpose. Many schemes can be devised to achieve this. In this paper, the strategy to 
oscillate the pendulum back and forth until it builds up enough energy to break the hanging-down 
stable position and gets into the neighborhood of the upright but unstable position. In other words, 
a positive feedback controller is needed to destabilize the pendulum and eventually swing it up to 
the neighborhood of the upright position. Assume the position of the rotating arm can be 
commanded via d , then the positive feedback control law  
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can be created to destabilize the pendulum with the proper choice of the gains DP  and . Eq. (8) 
implies that the position of the rotating arm is commanded based on the position and velocity of 
the pendulum. Moreover, by limiting d , one can ensure that the rotating arm does not reach a 

position that will cause a collision with the nearby hardware (e.g., the table). The gains DP  and 
are crucial in bring up the pendulum smoothly. Based on experiments, the gains DP  and are 
chosen as  (deg/deg) 5.0P and )deg/(deg/s 00001.0D  to bring the pendulum to the 
neighborhood of the vertical position in about 4 seconds.  

 
Figure 5.  Simulink diagram of the Destabilizing controller using positive feedback   

 
Figure 6.  Position of the pendulum during the swing-up motion with the positive feedback 

destabilizing controller      

 
Figure 7.  Position of the rotating arm during the swing-up motion with the positive 

feedback destabilizing controller     
The Simulink diagram of the destabilizing controller using positive feedback is shown in Fig. 

5. The positions of the pendulum and the rotating arm are plotted in Figs. 6 and 7, respectively. 
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One can see that the pendulum is brought up for the first time (the curve passing through the 
0  line) in just about 1.25 seconds. It should also be noted that the motion range of the rotating 

arm is confined within  30 . 
 

V. Stabilizing Controller  
 
The stabilizing controller is to maintain the pendulum in the upright position, even there is a 

small disturbance. If the positions of the pendulum and the rotating arm can be fed back, one can 
calculate the control signal using both positions. Assuming the pendulum is almost upright, two 
PD controllers can be designed to maintain it at the upright position and to be capable of rejecting 
disturbances up to a certain extent. The PD controller for the rotating arm can be designed as 

 


ddp KKu  )( 

where d  is the desired position of the rotating arm. The PD controller for the pendulum can be 

designed as 

  ddp KKu  )( 

where d  is the desired position of the pendulum which is the upright position. Therefore, 

0d . The control signal (i.e., the input voltage of the motor) is then given by 
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Based on experiments, the four gains pK , dK , pK , and dK  are chosen as follows 

9.2  ;1.21  ;0.2  ;2.2   dpdp KKKK 

One can always adjust these four parameters to obtain an even better stabilizing controller. 
 

 
Figure 8.  Simulink diagram for verification of the stabilizing controller 



To verify the designed stabilizing controller, the Simulink diagram shown in Fig. 8 is created. 
The rotary inverted pendulum model is the linear dynamics model derived in (3). When an 
impulse disturbance with an amplitude of 5 degrees and a period of 5 seconds is added to the 
measured position of the pendulum, the control signal, the positions of the pendulum and the 
rotating arm are plotted in Fig. 9. One can see that the stabilizing controller is good enough to 
maintain the pendulum in the upright position and keep it there stably. When the same impulse 
disturbance is added to the measured position of the rotating arm, one can see from Fig. 10 that 
the stabilizing controller can also maintain the pendulum in the upright position and keep it stable. 

 

 
Figure 9.  Plots of control signal, positions of the rotating arm and the pendulum when an 

impulse disturbance is exerted on the pendulum 
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Figure 10.  Plots of control signal, positions of the rotating arm and the pendulum when an 

impulse disturbance is exerted on the rotating arm 
 
VI. Mode Controller 

 
The purpose of the mode controller is to track the position of the pendulum and facilitate 

switching between the destabilizing controller and the stabilizing controller. In other words, when 
the pendulum is brought up to the neighborhood of the upright position, the mode controller will 
enable the stabilizing controller to hold the pendulum in the upright position. On the other hand, 
when the pendulum somehow falls off the upright position by a certain amount, the mode 
controller will enable the destabilizing controller to bring the pendulum back to the neighborhood 
of the upright position again. Based on experiments, the neighborhood of the upright position is 
defined as  10 .  

 
The Simulink diagram shown in Fig. 11 is created to simulate the performance of the mode 

controller. The simulation results showed in Fig. 12 that the mode controller works very well. It 
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output 1 (the stabilizing controller is enabled) when 10  and 0 (the destabilizing controller is 

enabled) when  10 . 

 
Figure 11.  Simulink diagram for verification of the model controller 

 
Figure 12.  Plots of the input and output signals of the mode controller 

 
VII. Implementation of All Three Controllers 

 
All three sub-controllers, namely, destabilizing controller, stabilizing controller, and mode 

controller, have been designed and verified by either simulation or experiments. They all performs 
well. Now it is time to integrate all three sub-controllers and apply them to the physical rotary 
inverted pendulum system, as shown in Fig. 13. The Simulink diagrams of three sub-controllers 
are shown in Figs. 14-16, respectively. Experiments shows that the pendulum is destabilized in 
the hanging-down position, brought up to the upright position, and maintained there stably.  

 
Figure 13.  Simulink control diagram of the inverted pendulum system 
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After the pendulum is balanced at the upright position, the positions of the pendulum and the 
rotating arm are plotted in Figs. 17 and 18, respectively. One can note that the pendulum has some 
small oscillations (within a range of 5.1 ) around the upright position and the rotating arm also 
fluctuates back and forth a little bit (within a range of 8 ). Such small range oscillations of the 
pendulum and the rotating arm may be due to the errors in the linear dynamics model and the 
three sub-controllers, the friction in the hardware, the vibration of the experiment table, etc. 

 

 
Figure 14.  Simulink diagram of the destabilizing controller 

 

 
Figure 15.  Simulink diagram of the mode controller 

 

 
Figure 16.  Simulink diagram of the stabilizing controller 

 

 
Figure 17.  Position of the pendulum after balancing in the upright position 
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Figure 18.  Position of the rotating arm after balancing in the upright position 

 
VIII. Conclusion 

 
Inverted pendulum systems play an important role in research and education in control theory 

due to their simple structure and dynamics model. This paper reported work on the control design 
and implementation of a rotary inverted pendulum system that is developed for control instruction 
and laboratory exercise of feedback control for undergraduates. The control of the inverted 
pendulum system is decomposed into three sub-controllers: destabilizing controller, stabilizing 
controller, and mode controller. The destabilizing controller is to drive the pendulum from its 
hanging-down stable position to upright unstable position. The stabilizing controller then kicks in 
and maintains the pendulum in the upright unstable position. The mode controller is devised to 
determine when to switch between the destabilizing controller and the stabilizing controller. All 
proposed controllers have been successfully verified by the both simulation and experiments. 
Such a modularized straightforward control strategy helps students understand the control theory 
more effectively and get very positive feedback from students.  

 
Appendix 

 
Nomenclature of the rotary inverted pendulum system studied in this paper is listed in Table 1. 
 

Table 1. Nomenclature of the rotary inverted pendulum system 

Symbol Description 
Nominal Value 

(SI Units) 
  Pendulum position --- 
  Pendulum velocity --- 
  Pendulum acceleration --- 

eqB  Equivalent viscous damping coefficient 0.004 

g  Gravity acceleration 9.81 

mI  Current in the armature circuit --- 

BJ  Moment of inertia of the pendulum about its center of mass --- 

eqJ  Moment of inertia of the arm and pendulum about the axis of   0.0035842 
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lJ  Moment of inertia of the arm and pendulum about the axis of l  --- 

mJ  Moment of inertia of the rotor of the motor 3.87e-7 

gK  SRV02 system gear ratio (motor -> load) 70 

mK  Back-emf constant 0.00767 

tK  Motor-torque constant 0.00767 

L  Half length of the pendulum 0.1675 

mL  Armature inductance --- 
m  Mass of pendulum 0.125 
r  Rotating arm length 0.215 

mR  Armature resistance 2.6 

lT  Torque applied to the load --- 

mT  Torque generated by the motor --- 

  Load shaft position --- 

  Load shaft velocity --- 

  Load shaft acceleration --- 

l  Angular position of the arm --- 

l  Load shaft velocity --- 

l  Load shaft acceleration --- 

m  Motor shaft position --- 

m  Motor shaft velocity --- 

m  Motor shaft acceleration --- 

emfV  Motor back-emf voltage --- 

mV  Input voltage of the armature circuit --- 

g  Gearbox efficiency 0.9 

m  Motor efficiency 0.69 
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