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Modularity Analysis of Makerspaces to Determine Potential Hubs and Critical Tools in the 
Makerspace 

 
 
Abstract 
 
Globally, universities have heavily invested in makerspaces. Purposeful investment however 
requires an understanding of how students use tools and how tools aid in engineering education. 
This paper utilizes a modularity analysis in combination with student surveys to analyze and 
understand the space as a network of student-tool interactions. The results show that a 
modularity analysis is able to identify the roles of different tool groupings in the space by 
measuring how well tool groups are connected within their own “module” and their connection 
to tools outside of their module. A highly connected tool in both categories is considered a hub 
that is critical to the network. Poorly connected tools indicate insignificance or under utilization. 
Makerspaces at two universities were investigated: School A with a full-time staff running the 
makerspace and School B run by student-volunteers. The results show that 3D printers and metal 
tools are hubs at School A and 3D printers, metal tools, and laser cutters are hubs at School B. 
School B was also found to have a higher overall interaction with all the tools in the space. The 
modularity analysis results are validated using two-semesters worth of student self-reported 
survey data. The results support the use of a modularity analysis as a way to analyze and 
visualize the complex network interactions occurring within a makerspace, which can support 
the improvement of current makerspaces and development of future makerspaces.  
 
Keywords 
 
Makerspaces; Network Design; Engineering Education; Modularity; Bio-inspired 
 
Introduction 
 
Makerspaces have recently become integrated into a wide variety of engineering programs at 
universities worldwide [1]. This has drawn increasing attention as to how best to create an area 
where students gain hands-on experience [2, 3]. Several studies in the past few years have 
focused on barriers to entry and how tools vary in different makerspaces [4-6], identifying 
impediments to student use are often linked to a student's self-confidence, fear of failure,  their 
training and mentoring [7]. Research has identified the need for rapid prototyping tools in 
makerspaces [8], however, the success of a makerspace as a result of other tools has not yet been 
established. Preliminary work used a bipartite network analysis to understand makerspaces as a 
tool-student network, providing a standardized system-level view of the space missing from 
standard survey-based investigations that can be expensive[9-12]. This paper continues that 
work, analyzing makerspaces using a modularity analysis to establish tool-student interaction 
patterns. This analysis approach is then compared to a conventional survey-based investigation 
for validation.  
 
The work presented here tracks makerspace tool usage with surveys and log-in/check-out 
systems [10]. The tool usage data is quantified in a matrix and analyzed as a network using 
modularity analysis. Capturing interaction information in a matrix is used extensively in social 
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science to understand how events impact actors, which in this case is how the tools connections 
to the students drive the interactions of the space [13, 14]. A modularity analysis is commonly 
used in ecology to analyze complex networks, such as plant-pollinator networks [15, 16]. Two 
metrics are calculated, participation and z-values, that classify the patterns among network 
connections and the nature of those connections. This process is able to identify critical network 
components, known as “hubs” with participation and z-values aiding in quantifying the tools 
interactions with the students in the network [16]. Hub plant species in a plant-pollinator 
network, for example, have a wide variety of bees interacting with the hub and linking different 
species together. Tools in a makerspace are viewed as analogous to plants and students to bees in 
a plant-pollinator network: students from different majors use the hub tools when interacting 
with the space. A modularity analysis has also been used for mapping complex air transportation 
networks, visualizing the most important air traffic locations and their connections, aiding in the 
understanding of air transportation networks [17]. Analyzing the student and their interactions as 
a network can provide a better understanding of the makerspace and enable alternate data 
collection and analysis techniques to be used beyond survey-based methods.  
 
 
Methods 
 
Survey Data Collection 
 
The primary method for gathering results was through self-reported student surveys. The surveys 
consisted of end-of-semester surveys that focused primarily on the student's usage of the space 
throughout the semester. The order that students learned the tools and the classes students used 
the tools for were also self-reported in the surveys. This data was used to validate the modularity 
analysis results. Table 1 details the differences between the two universities and lists the tool 
categories. The nomenclature for the tools will be kept consistent in later parts of the analysis. 
Tool names are normalized between the two schools surveyed for consistency in comparisons. 
Table 2 shows the 11 general tool categories used for analysis along with a comparison of the 
tools at each school within that category. School A has more training before each of the tools can 
be used and did not teach laser cutting, while School B has fewer restrictions for tool usage and 
does teach the laser cutter. The difference in restrictions between the two schools is important to 
note when delving deeper into the analysis. 

Slight modifications were made to the survey between the two semesters, such as increasing the 
variety of tools students could pick to better reflect the selection within the makerspaces. The 
main difference is that three categories (crafts, paint booth, and CAD station) were not included 
for School A in the Fall 2020 survey, but do show up in the Spring 2021 survey. These tools are 
not included in the modularity analysis for School A for the Fall 2020 semester.  
 

 
  



 2022 ASEE Conference 

 © American Society for Engineering Education, 2022 

Table 1: The tool list included in the surveys. Relevant differences between the two schools (A 
and B) are highlighted in terms of the barriers to their use (training required, course directed use, 
and no supervision required). Tools that were not part of the Fall 2020 survey for School A are 

denoted with * and for both Schools A & B with **. 

TOOL CATEGORIES 
Requires 
Training 

Used by a 
Class 

Student Use 
Without 

Supervision 
A B A B A B 

Tool 1 3D Printing X X X X X X 
Tool 2 Metal Tools X  X X X X 
Tool 3 Laser Cutter X   X  X 
Tool 4 Wood Tools X    X X 
Tool 5 Handheld Tools   X X X X 
Tool 6 Electronic Tools   X X X X 
Tool 7 Studied at the Space     X X 
Tool 8 Got Help   X X   
Tool 9 Crafting* X      
Tool 10 Cad Station* X  X X  X 
Tool 11 Paint Booth**     X X 

 
 

Table 2: Tool category breakdown with specific tools available in the space. 

Tool Category Specific Tools Included 

(1) 3D Printing Ultimaker 3D Printer, Formlabs Form 2 Printer, Stratasys 3D Printer, 
3D Scanner Arm 

(2) Metal Tools Angle Grinder, Band Saw, CNC Metal Mill, Manual Mill, Manual 
Lathe, Drill Press, Belt Sander, Polishing Wheel, Table Vice 

(3) Laser Cutter Lasercutter 

(4) Wood Tools 
Band Saw, Belt Sander, Circular Saw, Miter, Jigsaw, Drill Press, CNC 
Wood Router, Router, Planer, Table Saw, Hammers, Measuring Tape, 
Hand Saw, Dremel 

(5) Handheld Tools Pliers, Vice Grips, Clamps, Screw Drivers, Hand Drills, Chisels, Tin 
Snips 

(6) Electronic Tools Circuit Board Plotter, Multimeter, Power, Supply, Soldering Station, 
Oscilloscope, Logic Analyzer 

(7) Studied Studied, Hung out, Met with a Group 

(8) Got Help Got Help From Makerspace Volunteer, Got Help From Someone Who 
Wasn’t a makerspace volunteer, Gave Help  

(9) Crafting* Embroidery Machine, Sewing Machine, Vinyl/Paper Cutter, X-Acto 
Knife, Scissors, Glue Gun, Wire Cutters 

(10) CAD Station* Cad Station, Workbench, Whiteboards  
(11) Paint Booth** Paint Booth 
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Makerspace Network Creation 
 
Survey data was used to map interactions between students and tools in a graph (Fig. 1b) and in a 
quantitively complete structural matrix (Fig. 1c) for the modularity analysis. The tool usage data 
from the surveys was converted into a bipartite network, which visualizes the connections 
between two groups: the students and tools [18]. A value of one or zero was used to 
quantitatively map these interactions into a matrix form (Fig. 1c), indicating if a student used a 
tool (one) or not (zero) [18]. An example interaction matrix with tool usage is shown in Figure 
1a, with seven students interacting with three tools. The matrix in Fig. 1c quantifies the presence 
of interactions for the network shown in Fig. 1a, enabling a modularity analysis to then be 
conducted. 
 

 
Figure 1: Bipartite network analysis with tool student interaction were a) is a hypothetical 

makerspace network with student-tool interactions, b) depicts this as a digraph, and c) shows the 
resultant bipartite interaction matrix. Figure used with permission from [9].  

 

Modularity Analysis 
 
A modularity analysis requires two steps: 1) creating modules and 2) calculating the participation 
and z-values [16]. Modules are calculated using the primary method with the MATLAB package 
BiMat, which allows for analysis of complex bipartite networks [19]. BiMat was used to identify 
sets of tools that students often use in combination with each other, assigning such tools to a 
module. The process takes an unordered, bipartite matrix and runs it through potential modular 
scenarios until it optimizes the modularity of the system [19]. Modularity refers to the degree 
that nodes in the network can be grouped into clusters with overlapping interactions. Modularity 
is calculated using Eq. 1, where E represents the total number of interactions between students 
and tools, Bij is the bipartite adjacency matrix (as shown in Fig. 1), and ki and dj represent the 
number of interactions for each individual tool and student, respectively [19, 20]. The δ function 
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checks the module indexes of each student-tool pairing, yielding a value of one if the two actors 
are in the same module and a value of zero if they are not [21]. 
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The Newman/Leading Eigenvector method was used for optimization, as it generates a 
reproducible set of module assignments given consistent inputs [22]. This method starts with a 
two-module structure and identifies module assignments for each node that optimize modularity. 
Additional modules can then be added by repeating this process within each module, accepting a 
new subdivision only if it increases the modularity of the entire network [23]. All new modules 
are then checked again, with the final, optimal assignments determined when no additional 
subdivisions exist that would result in an increase in modularity. 
 
The connectivity (z) and participation (p) values of Eq. 2 and 3 quantify how connected a 
particular tool is to the rest of the network. For these bipartite makerspace networks, tools and 
students act as nodes (N), while links between nodes represent the interaction of a specific 
student using a specific tool [24]. Since tools and students are both placed in modules within the 
space, all links between nodes can be classified as either links within a module or links between 
two modules. The ki in Eq. 2 is the number of links of node i to other students/tools within its 
own module, ksi is the average number of links of each node (other tools/students) in the module, 
and 𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘 is the standard deviation of ksi. The kis in Eq. 3 is the number of links of node i (a 
specific tool) to other nodes in module s and ki is the total number of interactions that node i has 
with other nodes [25].  
 

𝑧𝑧𝑖𝑖 =
𝑘𝑘𝑖𝑖 − 𝑘𝑘𝑠𝑠𝑠𝑠
𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘

 (2) 

𝑝𝑝𝑖𝑖 = 1 −�(
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𝑘𝑘𝑖𝑖

)2
𝑁𝑁𝑀𝑀

𝑠𝑠=1

 (3) 

While one tool may be in a module due to its dominant interactions, tools can still interact with 
tools outside of their module. As an example, while the mill and lathe may be used primarily by 
students who only use mechanical tools, there may still be students who primarily use craft tools 
but also the mill and lathe, thus creating a connection with tools outside of the mill/lathe’s 
module. The z or connectivity value quantifies the within module degree of a tool or student. If 
many students that use the same set of tools are also all using the laser cutter, the laser cutter 
would have a high connectivity value. If within that same group of students only one of them had 
used the laser cutter it would have a low connectivity value. These metrics are calculated from 
the modular network matrix and quantify the patterns and characteristics of connections between 
students and tools in the space.  
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Figure 2: Modularity analysis sectioning determined by connectivity (z) and participation (p) 

values. The regions R1-7 specify the role that a tool and/or student has in a network, as described 
in the main text. 

 
Equations 2 and 3 were plotted in Fig. 2, which illustrates the different regions as defined by the 
values of p and z. The regions describe seven different roles that students and tools can have 
within the space, and are used in network analysis as a cartographical representation of the roles 
in a complex network and better understand the functions of actors in the network [25]. The 
work here tests an analogy between makerspaces and mutualistic ecosystems, where the 
interactions between species groups (here students and tools) is mutually beneficial. Ecologists 
have classified each region as serving a different role for the network (or in this case, the 
students and tools). The cutoffs lines shown in Fig. 2 are non-trivial and come from the work of 
Guimerà and Amaral [25]. 
 

• R1 (p≈0, Z<2.5): Ultra Peripheral Nodes, niche or rarely used tools  
• R2 (p<0.625, Z<2.5): Peripheral Nodes, tools that are not used as often 
• R3 (p<0.8, Z<2.5): Non-Hub Connectors, tools that interact heavily within their own 

module 
• R4 (p>0.8, Z<2.5): Non-Hub Kinless Nodes, tools critical to their own module 
• R5 (p<0.3, Z<2.5): Provincial Hubs, tools that interact with a variety of tools of different 

modules 
• R6 (p<0.75, Z<2.5): Connector Hubs, tools That interact heavily within their module and 

with other modules 
• R7 (p>0.75, Z<2.5): Kinless Hubs, tools that interact heavily with everything in the space 

and cannot be assigned a module 
 

The seven roles in the space guide conclusions depend on where the tools/students fall when 
plotted. A tool in the R6 region is considered a Connector Hub, meaning it is critical to the space 
and interacts with a wide variety of students both in its own module as well as with other 
modules. A tool in the R1 region is considered an Ultra-Peripheral Node and is less important to 
the network’s functioning, likely being a niche or rarely used tool. 
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Results 
 
Tool Usage: Comparing Survey & Modularity Results 
 

 
 

Figure 3: Proportion of students (as a % of total survey population) at School A (blue, N=123) 
and B (orange, N=85) that indicated using a tool out of all survey participants for Spring 2021. 

 
Figure 3 highlights that there are substantial differences in the usage patterns at both institutions. 
School B has a higher overall tool usage than School A, with a particularly high usage for 3D 
printers, hand tools, and the laser cutter in both semesters. School A was found to have a 
relatively high 3D printer usage compared to its other tool groups.  School A’s metal room usage 
exceeded that of School B. Tools like laser cutters and craft-related tools had almost no usage at 
School A.  
 
These tool usage patterns directly correlate with the modularity analysis results in Fig. 4, where 
key tools can be quickly identified from the interaction data. The results of the modularity 
analysis for both School A and School B are shown in Fig. 4. Figure 4 bottom left image shows 
that two tools in School A fall in the R1 region (the bottom left most quadrant, as described in 
Fig. 2), labeling them as ultra-peripheral nodes and indicating that very few students used the 
tool, if any at all. The relative spread of the data points in Fig. 4 is also an important indicator. At 
School B a majority of the tools investigated were found to be hubs. School A had a wider 
spread, with some tools highly used by both students within the same module and those from 
others (and therefor hubs) and others less so. The modularity analysis easily identifies these tool 
usage roles and highlights heavily used tools that connect across the space (hubs). These hub 
tools have high numbers of interactions with a wide variety of students, confirming the 
importance of the tool to the overall success of the makerspace. These tools that are found in 
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region R7, the top right corner, of the plots in Fig. 4. Two major hub tools at School A are the 
3D printer and the metal tools. Hub tools at School B are the 3D printer, laser cutter, and craft 
space.  

 
Data about the order that students learn tools was also collected via surveys. The results of this 
question at both institutions can be seen in Fig. 5. The 3D printer, the manual mill, and the laser 
cutter at both schools were the tools that student most often reported as learning first, suggesting 
that these tools may act as a gateway into the space. 
 
 
 
 

 
Figure 4: School A (left) and B (right) modularity analysis results between two semesters, Fall 

2020 (top) and Spring 2021 (bottom). The regions delineated by the blue lines correlate with R1-
7 as described in Fig. 2. 
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Figure 5: Categories of the first five tools learned by students at Schools A (N = 61) & B (N = 

41) for Fall 2020, from self reported surveys. 

Discussion 
 
The modularity analysis quantitatively characterizes interactions within the makerspace, 
identifying high-impact tools (hubs) that serve as critical parts of the makerspace and low-impact 
tools that may need more support to encourage student use. A major advantage of this analysis is 
its ability to condense a vast amount of data and visualize it, as opposed to relying on more 
conventional methods that require far more analysis and graphics to convey the same 
information. With only a few graphs like those in Fig. 4, a modularity analysis can provide 
insight into both usage rates and the significance of tools for the successful functioning of the 
makerspace. 
 
The modularity analysis for the two schools is also able to provide insight into differences 
between the makerspaces. The tools that were found in Fig. 4 to be hubs may be due to their use 
for specific courses. For both schools, tools that were used within a course (for example the 3D 
printers, mill, and lathe at School A, and the laser cutter at School B) tended to have a higher 
usage within the space. Additionally, for both schools, 3D printing was a major hub for students 
and one of the major tools that students used first. Another key difference is that School A is 
staff-run and School B is student-run. The overall higher interaction rate at the student-run space 
of School B may be a result of this configuration. This is evident in the modularity analysis as 
the tools in Fig. 4 fall closer to the left side of the graph (due to fewer interactions) for School A. 
The survey data also supports this claim, indicating that a smaller percentage of the total 
population at School A uses many tools in the space. This can be seen in Fig. 5 with a side by 
side comparison of the tools with School B having higher percentage of students using a majority 
of the tools, often more than a 10% difference with each tool between schools, with the only 
exception being the metal tools. 
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Figure 5 highights the survey results about the order that students reported learning tools. At both 
schools, students reported that the 3D printer, the manual mill, and the laser cutter were the tools 
they learned first, suggesting that these tools may act as a gateway for students into the space. 
Introductory engineering courses often promote these tools as they are relatively easy to learn 
and teach the fundamentals of CAD. These tools represent a relatively small portion of the later 
tools learned, as expected students progress to more niche and specialized tools over the years. 
Specialized tools may be less promoted by classes, resulting in their use being more dependent 
on a student's interest and hobbies.  
 
The modularity analysis results are validated by the survey responses about percentages of tools 
used shown in Figure 3. Figure 3 shows that 3D printers and the lasercutter were the two highest 
use tools in the space for School B in 2021. Similarly, the modularity analysis shows the 3D 
printer as well as the lasercutter as hub tools with the highest participation and z-value. On the 
other hand for School A, the two least-used tools identified in the survey were craft tools and the 
paint booth. The modularity analysis gives these two the lowest participation and z-values out of 
all the tools investigated. This validation supports the ability of a modularity analysis to identify 
heavily used tools as well as tools not used as often, allowing for visualization of the roles and 
interactions of the tools in the network.  
 
The survey data from both Fall 2020 and Spring 2021 are impacted by each school’s COVID-19 
related rules. As a result, the results are not entirely reflective of normal space use as access to 
was heavily restricted. At School A, students were only allowed to work on class projects with a 
select few clubs granted limited access to the space. Personal use was explicitly prohibited 
during this time, although this policy was not enforced particularly strictly. School B, on the 
other hand, had significantly fewer restrictions than School A. The restrictions that were in place 
at School B consisted of requests for social distancingand reduced capacity for the space as 
opposed to blanket bans on categories of usage. Due to these differences, it is imperative that a 
follow-up survey be conducted when Covid-19 restrictions are lifted from these spaces.  
 
Future work will make slight modifications to the surveys to streamline tools that may have been 
added or removed from each of the spaces. Considering that self-reported frequency estimations 
have proved to be inaccurate, whether this dimension of the survey or not should be included is 
in question. That being said, whether such a change would render future surveys incomparable to 
the surveys herein and from previous semesters or not is a valid concern as well. The modularity 
analysis shown here primarily focuses on tools; however, the analysis can be expanded to learn 
more about the students who are using the tools. Expanding the general tool groups into specific 
tools can also provide a better understanding as to why certain tools may be considered hubs, 
such as Ultimaker 3D printers being used more than the Stratasys resin 3D printer. Further 
understanding of the student aspect of the makerspace is needed because the differences in 
student demographics and in the cultures of the spaces can also play a role in the space’s use. 
This work, however, does supports theuse of a modularity analysis to identify key tools and 
student-tool interactions, the method courses use a makerspace, and space culture to make 
recommendations for current and future makerspaces. Understanding how class schedules and 
tool usage relates to makerspace usage is vital to our implementation of spaces can implement 
courses to promote certain tool interactions or expand on course curriculum to better use gateway 
tools and increase overall student use of the space.  
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Conclusions 
 
Makerspace analysis investigating the aggregate of all tool-student interactions within a 
makerspace has not been previously conducted. The work within this paper demonstrates the 
utility of this style of analysis in characterizing university makerspaces. Understanding how 
different tools are being used in the makerspace allows for recommendations to be made to 
promote the tools that lead to advantageous learning outcomes. The research in this paper 
focuses on utilizing modularity analysis to better identify key role interactions with the space and 
identify potential "hub" tools. Analysis was conducted for two schools with different makerspace 
cultures, School A being run by staff and B primarily being run by students. Results from the 
modularity analysis revealed School A had a large number of tools that were not being used 
often with other tools acting as the "hubs" that would bring students in, primarily the 3D printer 
and the metal tools. On the other hand, in School B, most tools were being highly used in the 
space and many tools were considered hubs, with the 3D printer being the major huband the laser 
cutter as another hub. Several hypotheses regarding the difference between the two schools can 
be linked to the culture and to class schedule, as some tools are not as promoted by classes. 
Survey results expand on modularity analysis and corroborate the results discussed. 
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