
Paper ID #43386

Moving from Matlab to Python in a First-Year Engineering Programming
Course: Comparison of Student Achievement and Assessment of Self-Learning

Dr. Robert Scott Pierce P.E., Western Carolina University

Robert Scott Pierce is an Associate Professor of Engineering and Technology at Western Carolina University.
He received his Ph.D. in mechanical engineering from Georgia Tech in 1993. Prior to his teaching career,
he spent 14 years in industry designing automated positioning equipment.

Dr. Chaitanya Borra, Western Carolina University

©American Society for Engineering Education, 2024

Moving from Matlab to Python in a First-Year Engineering
Programming Course – Comparison of Student Achievement and

Assessment of Self-Learning

Abstract

Most engineering curricula include an introductory programming course in the first or second
year. This course typically assumes no previous programming experience and is intended to help
students learn the skills that they will need to solve problems in their upper-level engineering
courses. Learning outcomes for this course can include data typing, vector and matrix
manipulation, programming structures, function definition, and programming strategy.

The choice of programming language for this course varies depending on the curriculum
requirements. Common choices are Python, C/C++, Java, and MATLAB. At Western Carolina
Engineering, the introductory programming course has traditionally been taught using MATLAB.
MATLAB was selected for its relatively simple syntax, its focus on mathematical programming,
and its common use as an engineering language.

In recent years, Python has become one of the most widely used general programming
languages. The popularity of Python can be attributed to its relatively simple, readable syntax
and the fact that Python and virtually all associated modules are open source. This open-source
model has resulted in a huge base of modules in virtually every field of engineering and science.

In response to the popularity of Python, Western Carolina Engineering has changed from using
MATLAB to Python in the introductory computing course. The course topics and learning goals
for the course were not changed, and course lectures were only changed to reflect the change in
programming language.

This paper compares student achievement between classes that took the MATLAB-based version
of the course and those who took the Python-based version. Students in the two versions were
given very similar exams and final project problems so that their achievement of course goals
could be compared.

This work is the first phase of a longer-term project intended to assess the digital literacy of
Western Carolina Engineering graduates. Students’ programming skills will be assessed as they
progress through the four-year engineering curricula. A particular focus of this longer-term work
is to determine whether students who learn Python as their first programming language are better
prepared to adapt to new languages and programming platforms.

Introduction

Programming is an important professional skill for most engineers. An introductory
programming course is part of the first or second-year curricula in most engineering programs.
However, it comes with many difficult challenges for both students and faculty [1,2,3,4]. The
role played by the instructor in the development of these skills cannot be totally ignored but is
found to be minimal [5]. Students usually learn by trial and error using tutorials, homework,
textbook examples, peer learning, and web-based demonstrations [6]. Many studies [7,8] have
indicated high failure rates in a first programming course. Most of the failures are associated
with executing the logic with the proper syntax and the ability to debug. Some educators have

suggested starting out with block building programming tools, where the focus is on problem
solving rather than syntax [10,11]. However, this might be a drawback when coding skills are
necessary in higher-level engineering courses.

 Python as a high-level programming language solves this problem as it has relatively simple
syntax and is very algorithm centered. It was developed in the late 1980’s and is becoming more
and more prevalent in recent times due to its application in web development, engineering, and
gaming industries [12-14]. The open-source nature of Python, along with the wide array of data
types available, can be useful compared to the other common languages such as the family of
languages based on C. C requires knowledge of data structures, operating systems, and specific
compilers [4]. This steep learning curve can be intimidating to new programmers. C is
considered difficult for students [1,9] due to concepts like pointers and dynamic memory
allocation. Python programs are typically shorter and require less programming time than a
program written in C. Python’s interactive interpreter helps with testing various features as code
is written. Python’s standard library is also evolving with time, making it applicable to new fields
of science and engineering.

The MATLAB programming environment is often used in introductory programming courses as
an alternative to lower-level languages like C. The Matlab syntax is similar to C, however it does
not require explicit variable type declaration, memory management, or array sizing. MATLAB
also has add-in toolboxes for specific purposes and tasks used in engineering-based courses.
Once a toolbox is purchased and installed, all of the toolbox functions are immediately available
to the student, without explicit references to external libraries. Some of the prominent toolboxes
used in many junior and senior engineering courses are Simulink, Simscape, Signal Processing
and Image processing.

This paper describes an introductory programming course for engineering students at Western
Carolina University (WCU). These were mostly first- or second-year BSE-Mechanical or
Electrical Engineering students. There were also a few fourth-year students from the
Engineering Technology program who were taking the course as a technical elective.

The paper presents modifications that have been made to the course to increase the overall digital
literacy of our students. The most significant of these modifications was to change from
MATLAB to Python as the primary programming language [21,22]. This change was made for
three main reasons: 1) Python has more of the attributes common to “true” programming
languages, such as explicit consideration of data types and references to external libraries, 2) Due
to its widespread use and open-source architecture, the quantity and range of external resources
for Python is far greater than those for MATLAB, 3) Market demand for engineers who are
proficient in Python is far higher than the demand for proficiency in MATLAB [16-20].

This change of programming languages was not met with universal support amongst the
engineering faculty at WCU. There are several courses in the engineering curricula that require
extensive use of MATLAB. Faculty who teach these classes expressed concern that students
who learned Python as their first language would not be able to transfer their skills to the use of
MATLAB.

In response to this concern, the course was changed to include instruction in MATLAB near the
end of the semester. Students were then allowed to choose either MATLAB or Python for their
final project. Results of this choice are presented in the Results section.

There was also a concern that the higher level of complexity of Python could lead to a lower
level of student achievement in the course. Python is a relatively easy language to learn,
however MATLAB is even easier. Some faculty members felt that students learning Python
might progress more slowly and finish the course with fewer programming skills than those who
learned using MATLAB.

An objective of this paper is to explore the extent to which the second concern is true. Student
work from two different semesters is compared. Instruction during Fall 2022 used MATLAB
only; during Fall 2023, most of the course was taught using Python. Assignments used in this
paper for comparison of student achievement are identical or almost identical between the two
years. Student achievement at specific skills is measured using student self-assessment and
assessment by the authors. It is hypothesized that the choice of first programming language will
not have a significant, negative effect on the final level of students’ programming skills.

Description of the Course

The introductory programming course described in this paper is EE 200, Computer Utilization.
The catalog description for the course is as follows:

Computer Utilization: An introduction to computers and computing methods to solve engineering
problems.

Course Outcomes: Upon completion of the course, students will be able to accomplish the
following:

 1. Master fundamentals of high-level program coding.

2. Design and formulate logical flow of an algorithm from a problem statement.

3. Implement an algorithm by writing and debugging high level program code.

4. Demonstrate the use of software in engineering applications.

The results presented in this paper come from two sections of the course that were taught during
Fall Semester, 2022 and two sections that were taught during Fall 2023. The 2022 sections were
taught using MATLAB only, the 2023 sections used Python during the first ten weeks, followed
by a week of “MATLAB for Python Users.” Table 1 compares the schedule of topics for the two
versions of the course.

Both versions of the course were heavily oriented towards a “learn-by-doing” approach.
Lectures were brief and were followed by in-class examples in which students tried to work a
problem, then immediately discussed the solution. About half of the class time was spent with
students working together on in-class or homework problems while the instructor answered
individual questions.

Students were strongly encouraged to use online resources for all their programming
assignments, including exams. During exams, and for the final project, students were told they
could not use “live” references but that all online references (including A.I. tools) were allowed.
This approach reflects the current state of programming, which has become less focused on
memorizing syntax and more focused on effective problem-solving strategy.

 Table 1: Schedule of Topics for the Two Versions of the Class

The courses started with a “History of Computing” lecture that was intended to put the hardware
and software used in the course in its historical context. Next, students were introduced to the
Integrated Developing Environment (IDE) that they used throughout the course. MATLAB was
taught using the MATLAB IDE, Python was taught using the Python Interpreter and the
PyCharm IDE. It is worth noting that both versions of the course started immediately with
writing script files in a code editor, as opposed to an interactive Console window or an online
command interpreter. This approach is efficient, as students immediately begin programming in
the environment that they will use throughout the course.

For the Python-based version of the course, it was necessary to spend extra time at the beginning
to discuss data types. Like most programming languages, Python requires close attention to data
types and will frequently throw an error when the wrong type is used. This is less important in
MATLAB, particularly for numeric data types. In MATLAB, all numeric values default to
double-precision, floating-point numbers. This allows users to ignore most of the issues related
to data types, however it is inefficient. Furthermore, students who only learn MATLAB may not
be prepared to learn other programming languages such as Python or C where attention to
numeric data typing is required.

Both versions of the course included mathematical, Boolean, logical, and relational operators in
the first few weeks of the course. The courses then moved to library-defined functions, in the
form of random-number generating functions. In the Python version, this is the point at which
students learned to import outside libraries into their code. The process of importing and calling
external functions, and methods for using Python standard modules and external packages from
the PyPI repository were introduced. In particular, the numpy and MatPlotLib packages were
introduced for advanced mathematical and plotting operations.

Vectors and matrices were introduced in the sixth week of the course. Two weeks were spent
covering vector and matrix algebra and solution of linear systems of equations. These topics
were significantly more challenging for the Python programmers. In MATLAB, the default data
structure is an array, the size of which can be changed at will. Python requires programmers to
distinguish between Python lists, numpy one-dimensional arrays, and numpy higher-dimensional
arrays. Furthermore, the size and shape of a vector or array must be explicitly declared and
modified.

Flow control algorithms such as loop structures and decision structures were introduced to the
students on an as-needed basis. For loops were introduced at the same time as vectors in order
facilitate repeated evaluation of an equation over a range of input values. While loops were
introduced in the context of input validation, where a user must remain in a while loop until a
valid input is entered. If, elif, …, else structures and switch structures were introduced in the
context of state machine programming. A quick summary and comparison of these flow control
structures was then included in Week Ten of the course.

In Week Eleven of the Python-based course, students were given a rapid introduction to
MATLAB and the MATLAB IDE. This introduction leaned heavily on concepts and skills that
the students had already learned using Python. Students were given a handout that compared
most of the Python commands that they had already learned with the equivalent MATLAB
commands. These handouts included code snippets from in-class problems that the students had
already worked in Python. MATLAB code snippets were presented next to the equivalent Python
snippets. This translation document was key to helping students transition very rapidly from
Python to MATLAB.

At the end of Week Eleven of the Python-based course, students were given a homework
assignment to be completed in MATLAB. This assignment consisted of homework problems
that the students had already done in Python earlier in the semester. Using the translation

document and the programming skills that they had already learned; most students were able to
re-solve the problems using MATLAB. After this assignment, students were given an exam that
required them to solve problems using Python and using MATLAB.

Week Twelve of the course was spent introducing user-defined functions. This topic was
covered in a pair of short lectures, then used heavily for the final project. Students in both
versions of the course were given the same final project, which involved solving the equations of
two-dimensional particle kinematics through multiple stages of motion. Students in the Python-
based version of the course were allowed to use either Python or MATLAB for their final
projects. The final project is discussed in more detail in the next section.

Data Collection

An objective of this paper is to examine whether the increased complexity of Python results in a
lower level of overall student achievement in the course. Python has some distinct advantages
over MATLAB in terms of user base, similarity to other programming languages, and cost,
however these advantages could be outweighed if students have a reduced ability to solve
engineering programming problems when they finish the course. To investigate this possibility,
student achievement levels for individual programming skills are compared between the Fall
2022, MATLAB-only classes and the Fall 2023, Python plus MATLAB classes. Student
achievement is quantified using student work from three sources: 1) Homework problems that
were self-graded by the students, then verified by the authors, 2) Exam problems from the two
years, and 3) Evaluation by the authors of selected sections of the final project. As previously
mentioned, the assignments were identical or nearly identical between the two years.

Table 2 presents scores for skills that were assessed using assigned homework problems.
Homework assignments in the course were focused on the use a newly acquired skill in the
solution of an engineering problem. Figure 1 shows an example of one such problem. Students
must solve an algebraic equation for the shear stress in a driveshaft for a range of shaft
diameters. They must then construct a plot of the factor of safety against static yielding vs. shaft
diameter, then use this plot to select a minimum safe shaft diameter.

It is worth noting that the homework assignments were originally graded by the students
themselves. The course used a “self-grading” approach for homework in which the student was
required to compare their work with the instructor solutions, evaluate the correctness of their
work, and assign grades to their work based on a rubric provided by the instructor. Thus, the
“Student Self-Assessment” columns of Table 2 are the students’ own assessment of their
achievement, normalized to a percentage. This self-grading approach has been well-received by
students; it is frequently cited as one of the best aspects of the class in student evaluations of the
course.

To ensure that the student self-grading was an accurate reflection of their actual achievement, the
authors re-assessed a large sample of the homework problems. The results of this re-assessment
are included in Table 2.

Table 2: Skills Assessed via Student Self-Grading of Homework Problems

Table 3 presents assessment by the authors of skills that were evaluated as part of an in-class
exam. The problems were short programming assignments that could be completed in about 20
minutes. Scores have been normalized to a percentage.

Table 4 gives assessment by the authors of skills that were evaluated as part of the final project.
For each row in the table, the authors examined and ran the piece of student code that
implemented the skills, then assigned a score of zero to three (where three represents the highest
level of achievement) to each student’s work.

The final project constitutes a large portion of the course grade and is intended as a cumulative
test of the students’ programming skills. Students were asked to write a computer game that

Figure 1: A sample homework assignment.

 Table 3: Skills Assessed Using In-Class Exams

 Table 4: Skills Assessed Using the Final Project

simulates jumping a moon buggy over a crater on the Moon. Figure 2 describes the steps that the
game should follow.

The project required the students to write several user-defined functions, and to call functions
defined in a file provided by the instructor. The project utilizes most of programming skills that
were taught during the semester. These include input verification, selection from alternatives,
iteratively constructing a data matrix, loop structures, manipulating elements of a data matrix
using indexing, and plotting.

The final projects that were used in both versions of the course were identical. Students in the
2023 class were allowed to use either Python or MATLAB for the final project. Of the 55
students in the 2023 classes who submitted the final project, 11 used MATLAB.

Results

Amongst the programming skills that were assessed using student self-graded homework (Table
2), most of the skills do not show a significant difference between the primarily Python-based
class (Fall 2023) and the MATLAB-only class (Fall 2022). Students in both versions performed
at roughly the same level. The Fall 2022 class did significantly better on the problem that
required solving algebraic equations.

The scores from the student self-graded homework problems correlate well with the scores that
were assigned by the authors when they re-graded these problems. This re-grading was done as a
check on the correctness of the grades that students assigned to themselves. In all cases, there
was no significant difference between the student self-grading and the author re-grading.

Table 3 shows relatively small differences between the two classes on in-class exam problems.
The only significant difference was in implementing a while loop. The Fall 2023 class performed
significantly better than the Fall 2022 class at this skill.

Table 4 is noteworthy, since the final project is by far the most challenging assignment of the
course. Differences between scores on the input validation and decision structure skills were not
significant. There was, however, a significant difference in student performance on the data
matrix manipulation task. The data matrix manipulation task in the final project is by far the
most challenging task assigned during the course. There are several calculations that must be
performed and there is extensive manipulation of matrix elements using indexing. The Fall 2022
(MATLAB only) class performed better at this complex programming task than the Fall 2023
(primarily Python) class.

To investigate this disparity more thoroughly, scores from the Fall 2022 class were compared
with the scores of only those students who used Python for their final projects in Fall 2023
(students who used MATLAB for the final project in 2023 were removed from the data set).
Table 5 shows this comparison. With this modification to the 2023 data, the difference between
the two years becomes more pronounced. The students who took the MATLAB-based class were
significantly better than the Python users at performing complex, multi-step matrix manipulation
tasks.

Figure 2: The final project assignment

Table 5: Assessment of the Data Matrix Manipulation Skills in the Final Project
With the Matlab-Users Removed from the Fall 2023 Data

Discussion of Results

For the most part, the achievement levels between the Fall 2022, MATLAB-only class and the
Fall 2023, mostly-Python class were quite similar. The self-graded homework seemed to show
that the Fall 2022 class was more skilled at solving algebraic equations, but the exam-based
evaluation showed the Fall 2023 cohort to be better at identifying the need for a while loop and
correctly implementing the loop structure.

The most concerning result is the significantly better performance of the MATLAB-only class at
complex, multi-step matrix manipulation tasks. This difference is even more significant when
the students who used MATLAB for the final project are removed from the 2023 data. It appears
that the increased complexity of matrix manipulation in Python does affect the ability of the
Python programmers to carry out these complicated matrix manipulation tasks. Since MATLAB
was developed specifically for this sort of task, it is not surprising that the MATLAB
programmers exhibited a higher level of achievement. Engineering calculations are packed with
matrix manipulation tasks; therefore this issue needs to be addressed in future versions of the
class.

Conclusions and Future Work

This paper has presented comparisons between the achievement of MATLAB-based, and Python-
based versions of an introductory engineering programming course at WCU. In most cases, the
level of achievement between the two versions was comparable. In the case of complex, multi-
step matrix manipulation tasks, the MATLAB programmers demonstrated a significantly higher
level of achievement. This shortcoming needs to be addressed in future versions of the class. It
is possible that earlier introduction of matrix manipulation functions, combined with an extra
assignment on the topic could help. Of course, adding new course content on matrix
manipulation will require the removal of some part of the current content.

It is worth noting that, despite the more challenging matrix manipulation functions, there are still
reasons to use Python in the introductory programming course. The increased use of data types
and required references to external libraries make Python a closer match to lower-level languages
that students may need to learn in the future. The much larger base of users, large number of
external packages available, and open-source paradigm make Python a choice that must be
considered.

The work described in this paper is intended to be the first results from a longer-term study of the
effects of moving to Python as the programming language of choice at WCU. In the future, the
achievement of the MATLAB programmers and Python programmers will be monitored as they
apply their skills in higher-level engineering courses. A particular focus will be placed on
monitoring the ability of students who learn Python as their introductory programming language
to move to MATLAB in courses that require it. Use of Python programming in higher-level
engineering classes and project-based courses such as the Senior Capstone class will also be
monitored. This work is intended to guide the faculty in ongoing efforts to raise the level of
digital literacy of our graduates.

References

1. Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. "A study of the difficulties

of novice programmers." Acm sigcse bulletin 37, no. 3 (2005): 14-18.
2. Piteira, Martinha, and Carlos Costa. "Learning computer programming: study of

difficulties in learning programming." In Proceedings of the 2013 International
Conference on Information Systems and Design of Communication, pp. 75-80. 2013.

3. Sobral, Sónia Rolland. "The first programming language and freshman year in computer
science: characterization and tips for better decision making." In Trends and Innovations
in Information Systems and Technologies: Volume 3 8, pp. 162-174. Springer
International Publishing, 2020.

4. Balreira, D.G., Silveira, T.L.D. and Wickboldt, J.A., 2023. Investigating the impact of
adopting Python and C languages for introductory engineering programming
courses. Computer Applications in Engineering Education, 31(1), pp.47-62.

5. Zingaro, Daniel. "Examining interest and grades in Computer Science 1: a study of
pedagogy and achievement goals." ACM Transactions on Computing Education
(TOCE) 15, no. 3 (2015): 1-18.

6. Porter, Leo, Mark Guzdial, Charlie McDowell, and Beth Simon. "Success in introductory
programming: What works?" Communications of the ACM 56, no. 8 (2013): 34-36.

7. Bennedsen, Jens, and Michael E. Caspersen. "Failure rates in introductory
programming." AcM SIGcSE Bulletin 39, no. 2 (2007): 32-36.

8. C. Watson and F. W. Li, Failure rates in introductory programming revisited, Proc. 2014
Conf. Innov. Technol. Comput. Sci. Educ., 2014, pp. 39–44.

9. Malik, Sohail Iqbal, Roy Mathew, Abir Al‐Sideiri, Jasiya Jabbar, Rim Al‐Nuaimi, and
Ragad M. Tawafak. "Enhancing problem‐solving skills of novice programmers in an
introductory programming course." Computer Applications in Engineering Education 30,
no. 1 (2022): 174-194.

10. Resnick, Mitchel, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner et al. "Scratch: programming for
all." Communications of the ACM 52, no. 11 (2009): 60-67.

11. Pea, Roy D. "Logo programming and problem solving." (1987).
12. McGugan, Will. Beginning game development with Python and Pygame: from novice to

professional. Apress, 2007.
13. Soikkeli, Eero. "Scaling out Big Data Distributed Pricing in Gaming Industry." (2019).
14. Da Silva, Josivan Pereira, Paulo Henrique Gonçalves Pimentel, Luciano Gonçalves

Pimentel, and Ismar Frango Silveira. "Pixel Python RPG: Repurposing an Entertainment
Game to an Open Educational Resource for Computer Programming Fundamentals."
In 2021 XVI Latin American Conference on Learning Technologies (LACLO), pp. 326-
333. IEEE, 2021.

15. Gutschnidt, Tom. Game Programming with Python, Lua, and Ruby. Premier Press, 2003.
16. Gurcan, Fatih, and Cemal Kose. "Analysis of software engineering industry needs and

trends: Implications for education." International Journal of Engineering Education 33,
no. 4 (2017): 1361-1368.

17. Gao, Xinkai. "Python based IT industry recruitment data automatic collection,
warehousing, and analysis system." In 5th International Conference on Computer
Information Science and Application Technology (CISAT 2022), vol. 12451, pp. 572-
577. SPIE, 2022.

18. Kurennov, Dmitry V., Natalia G. Ryzhkova, Yury V. Serdyuk, Maya L. Mayants, and
Elena A. Timokhova. "Formation of IT Competences of Future Mechanical Engineers."
In ITM Web of Conferences, vol. 35, p. 01008. EDP Sciences, 2020.

19. Scardua, Leonardo Azevedo. Applied Evolutionary Algorithms for Engineers Using
Python. CRC Press, 2021.

20. Ozgur, Ceyhun, Taylor Colliau, Grace Rogers, and Zachariah Hughes. "MATLAB vs.
Python vs. R." Journal of data Science 15, no. 3 (2017): 355-371.

21. Guedes, Priscila FS, and Erivelton G. Nepomuceno. "Some remarks on the performance
of MATLAB, Python and Octave in simulating dynamical systems." arXiv preprint
arXiv:1910.06117 (2019).

22. Colliau, Taylor, Grace Rogers, Zachariah Hughes, and Ceyhun Ozgur. "MATLAB vs.
Python vs. R." Journal of Data Science 15, no. 3 (2017).

