
AC 2008-2882: NETWORK PROCESSES COMMUNICATION: CLASS PROJECTS

Mohammad Dadfar, Bowling Green State University
MOHAMMAD B. DADFAR Mohammad B. Dadfar is an Associate Professor in the Computer
Science Department at Bowling Green State University. His research interests include Computer
Extension and Analysis of Perturbation Series, Scheduling Algorithms, and Computers in
Education. He currently teaches undergraduate and graduate courses in data communications,
operating systems, and computer algorithms. He is a member of ACM and ASEE.

© American Society for Engineering Education, 2008

P
age 13.925.1

Network Processes Communication: A System Project for Students

Mohammad B. Dadfar, Ray Kresman

Department of Computer Science

Bowling Green State University

Bowling Green, Ohio 43403

Phone: (419)372-2337 Fax: (419)372-8061

email: {dadfar, rama}@cs.bgsu.edu

Abstract

In this paper we discuss two projects dealing with communication between network processes.

They are assigned in our undergraduate data communications course. The implementation

language is C/C++ and the platform is Unix. We introduce a project where students create

processes using Unix utilities such as fork that includes different levels of processes such as

parent, children, and sibling processes. We also describe a practical client-server application

students are already familiar with.

1. Introduction

Data communications and networking courses have been among the most popular courses in

computer science departments during the past two decades. Most students try to complete at

least one course in this area. Instructors assign different types of projects for their data

communications and networking courses
1, 2

. In our department we have offered a sophomore

level mandatory course (Operating Systems and Networks) that introduces both operating

systems and data communications concepts. Following this course, we have elective courses in

each of operating systems and data communications. A variety of topics including protocol

architecture, transmission technologies, data compression, data integrity, flow control, client

server communication and remote procedure calls are covered in the data communications

course. There are several text books that address these topics
3, 4, 5

.

We consider practical projects as a main component of this course. Hands-on programming

projects are used to enhance the learning process and to gain additional insight into specific

topics. The projects are implemented in C/C++. However, they are applicable to other

programming languages as well.

We start with simple projects where students create child processes using Unix utilities including

fork statement. There are different levels of processes such as parent, children, sibling, and grand

children processes. The communication between the parent-child and sibling processes would be

interesting, and at the same time challenging for some students.

P
age 13.925.2

We then concentrate on the communication between independent processes and discuss popular

concepts such as message passing, TCP/IP networking calls, and asynchronous communication.

By this time students have had the opportunity to work with UNIX commands and they are able

to develop programs that use communication between processes on different machines.

2. Communication between Processes (Inter-process Communication)

The purpose of this assignment is to establish a communication between several processes (inter-

process communication; IPC). In the past we have assigned other projects related to different

aspects of communication for this course
6, 7

. We simulate an environment where a number of

processes communicate with each other.

The processes are created by a parent process P0. There would be bidirectional communication

links (pipes) between processes. One of the objectives of this assignment is to demonstrate the

functions performed by intermediate nodes in a data network. When a node Pi receives a

message (frame) it checks the destination address and if it is not intended for Pi it will send the

frame to the destination node directly or through other nodes.

The number of the processes (nodes) is given as an input. Processes send and receive data

frames containing source address, destination address, frame type, and data. A frame is either a

data frame that contains a message or an acknowledge frame that contains either an

acknowledgement or a negative acknowledgement. A sending process prepares a data frame (or

an acknowledge frame) and attaches its address as well as the address of the final destination, and

the message. Then it sends the frame to the next process. A process that receives a frame checks

the destination address and if the frame is intended for this process, it handles the frame (e.g.

reads the data and sends an acknowledgment to the sender). Otherwise it sends the frame to

another process as mentioned above until the intended destination process eventually receives the

frame. A process that sends a data frame expects an acknowledgment from the destination

process. The following is a more detailed description of the project.

The parent process P0 creates n processes P1, P2, … , Pn (using fork statement). Then these n + 1

processes communicate with each other using bidirectional pipes (using socketpair call). The

program should create m pipes (m >= n) between these processes as shown in Figure 1. The

bidirectional Pipe i connects the parent process P0 to processes Pi. As Figure 1 shows there are n

such pipes. There may be additional bidirectional pipes that connect other processes to each

other. In general each process Pi has the information about the pipe that connects Pi to P0 (Pipe i)

and any additional pipes that connect Pi to other processes. In Figure 1 process P1 is directly

connected only to process P0 while process P2 is directly connected to process P0 and process P3.

It is possible that a process is directly connected to more than two other processes.

Each process Pi has two roles. It may communicate directly with other processes by sending and

receiving messages to/from them. It may also act as an intermediate node. The program should

accept three numbers (n, m, and k) as command line arguments. Each process Pi will send k

messages (for example random numbers in the range 1 to 1000) to other processes. At the end

process P0 sends a final frame containing a -1 to each of the other processes and then each of the

processes will send a final frame containing a -1 to P0.

P
age 13.925.3

Process P0 will terminate when it has sent its k messages as well as n final frames to each of the

other processes and has received the final frames from those processes. Each of the n processes

P1, P2, … , Pn will terminate when it has sent its k messages and has received the final frame

from P0 and has responded to P0.

Figure 1: The n+1 processes and the m connecting pipes

There are two types of frames: a data frame (contains a 1 as its frame type) and an

acknowledgment frame (contains a 0 as its frame type). Each frame contains four fields: source

address, destination address, frame type, and data. The format of a frame is as follows.

 Source Address Destination Address Frame Type Data

The source address and destination address could be 0, 1, 2, …, n. If the frame type is

acknowledgement, then the last field (data field) is checked for acknowledgement (0) or negative

acknowledgement (-1). When a process sends a message to another process, it waits until it

receives an acknowledgment from that process. A data frame will also serve as an

acknowledgment. For example when Pi sends a message to Pj, it waits to receive an

acknowledgment from Pj. However, Pi may receive a data frame from Pj and in this case Pi will

consider this frame as an acknowledgment from Pj.

Each process may act as a source, a destination and also as an intermediate node. In the latter

case a process Pi forwards the received frames to another process. If there is a pipe connecting Pi

to the destination process, this can be done directly. Otherwise Pi will send the frame to the

parent process P0 or another connecting process.

A sample solution for this project is given in Figure 2. Due to the length of the actual program

we use a pseudo code to describe the solution. Readers may request a copy of the program from

the authors.

The main module creates m bidirectional pipes, n processes, and calls the other modules. Each

process sends its messages independently. The idea is to interleave the terminal output as seen

by the end user. Each process Pi generates k random numbers (messages) that sends to other

 P3 P2

Pipe 1

 P1

 P0

 Pn

Pipe 3

Pipe n+1

Pipe n Pipe 2

P
age 13.925.4

processes. For each message the sending process Pi generates a random destination address j,

(j = 0, 1, 2, i-1, i+1, …, n), and indicates the source address as i (to represent process Pi) and

the frame type (1 for a data frame). These four items are placed in a data frame and passed to the

destination process Pj through a connecting pipe if there is one or through Pipe i to parent

process P0.

When process Pj receives a message from Pi it checks the destination address. If the destination

is Pj, it handles the message and sends an acknowledgement to Pi. If the destination is not Pj, it

forwards the message to the intended destination either directly or through another process.

Extensions to this basic message passing assignment include varying the topology, frame

(message) format, and flow control options.

/* List the required header files. */
/* Declare the global variables. */

main (int argc, char *argv[])
 {
 /* Declare the ID of processes P1, P2, P3, … Pn and other variables. */

 /* Check the number of arguments, if it is not correct terminate the program. */

 /* Create the m >= n pipes. This can be done by calling a small function that also
 verifies the status of the operation. */

 /* The parent process P0 creates n processes. For example, after creating the first
 process P1, the parent receives the process ID for P1 and continues with its
 operation. The following is an example:*/

 Pid1 = fork(); /* Process P0 create a new process P1. The ID of P1 is
 returned to parent.*/
 if (pid1 = 0) /* The new process P1 receives a 0 for variable Pid1. */
 doProcessP1 (); /* P0 will supply the required argument to each process. */

 pid2 = fork();) /* Parent process P0 continues. */
 if (pid2 = 0)
 .
 .

 }

doProcessP1 (k, and other arguments)
 {
 /* Create k random numbers and place them in data frames. Send these frames
 to processes P0, P2, P3, … or Pn randomly through bidirectional pipes.
 For each frame wait for an acknowledgement.

 If a received frame is not intended for this process, forward the frame
 to destination process if there is a direct connection to that process.
 Otherwise, send the frame to the parent process P0 or some other process.

 When the process is done and has received the final frame from P0, it
 sends its final acknowledgement to P0 and quits.
 */
 }

Figure 2: The Description of A Sample Solution for Process Communication

P
age 13.925.5

3. A Practical Application

The previous section discussed inter-process communication among multiple processes. In this

section we discuss a project that provides a more real-life context of an actual application that the

students are already familiar with. Request For Comments (RFCs) are documents available over

the web that describe the inner workings of various protocols and applications
8
. One such

document, 'rfc821' relates to the Simple Mail Transfer Protocol (SMTP)
9
.

The project is to build a client application to communicate with an SMTP server. The client

application is run on command line. The application sends a "hello world" email message to a

specific user on a specific machine by talking to an SMTP server, all given as command line

arguments or in some other form. The RFC, noted above, describes messages and their formats

for transmission between the client and the SMTP server. Students read it on their own and try to

implement a few basic primitives.

The instructor may specify a class prototype that captures the client server communication and

have the students build the body to complete the application. A typical prototype is given in

Figure 3. If necessary Figure 3 may be explained in class. The constructor is called to initiate a

connection with the SMTP server on machine, machineName, at port number, portNumber. We

identify the sender and receiver by invoking the method senderAndReceiver. The RFC allows

the actual body of the email to be sent in multiple packets. When the server receives a '.' on a

line by itself, it assumes the end of the message body. The client application invokes the method,

messageBodyPrefix, as many times as are necessary to send the different parts of the message.

And, at the end messageSuffix is invoked once to complete the transmission, that causes '.' to be

sent to server. Method logout closes connection with the server. For each item that is sent to

server, the server responds with a message. The student can examine the correctness of her/his

solution by checking what the client sent, what the server response is, and finally checking

whether the receiver actually received the email that was sent through the application. All of

these items along with the program may be submitted for grading. The prototype of Figure 3

involves implementation of a few primitives from rfc821: Helo, mail from, rcpt to, data and

quit.

Class smtpClient
{
 public String smtpClient (String machineName, int portNumber);
 public String senderAndReceiver (String sender, String receiver);
 public String messageBodyPrefix (String message);
 public String messageSuffix ();
 public void logout ();
}

Figure 3: Class prototype for SMTP Client Application

Figure 4 shows a sample interaction between the client and the SMTP server. Actual machine

and domain names are not shown. As can be noted from the SMTP rfc, lines that begin with a 3

digit number are server responses, while the others are client transmissions.

P
age 13.925.6

As an additional complexity one may implement a number of other primitives that the RFC

supports, for example, sending the message as an attachment, verifying the receiver, etc.

Connected to smtpServerMachineName.

220 serverDomainName ESMTP timeStampOfConnection //response
helo //client txn

501 5.0.0 helo requires domain address
helo domainName

250 smtpServerMachineName.domainName //response
 Hello clientMachine clientIPAddress, pleased to meet you
send from:<senderUserName@domainName>

502 5.5.1 Command not implemented: "send
from:<senderUserName@domainName>"
MAIL FROM:<senderUserName@domainName>

250 2.1.0 <senderUserName@domainName>... Sender ok
RCPT TO:<receiverUserName@ReceiverDomainName>

250 2.1.5 <receiverUserName@ReceiverDomainName>... Recipient ok
data

354 Enter mail, end with "." on a line by itself
hello world
.
250 2.0.0 Message accepted for delivery
quit

221 2.0.0 smtpServerMachineName.domainName closing connection

Figure 4: SMTP and Server Communication

4. Concluding Remarks

We described two simple projects for a data communications course. Due to the length of the

program, the actual solution was not listed in this paper. The listed short description of the

solution should give enough information to develop a program. Some of our students find the

projects challenging and others believe these are worthwhile learning experiences and they are

excited by completing the projects. The complexity of the projects could be modified by

changing the input parameters (number of processes, number of bidirectional pipes, and

relationship between processes). For example the first project could be assigned in several

different stages from a simple limited number of processes to a more complex set of processes

involving parent, children, sibling, and grand children processes connected with many

bidirectional pipes.

P
age 13.925.7

Bibliography

1. DeHart, J., Kuhns, F., Parwatikar, J., Turner, J., Wiseman, C., and Wong, K., "The Open Network

Laboratory," Proceedings of the 37
th

 SIGCSE Technical Symposium on Computer Science Education, 2006

(pp 107-111).

2. Elsharnouby, T., Udaya Shankar, A., "Using SeSFJava in Teaching Introductory Network Courses,"

Proceedings of the 36
th

 SIGCSE Technical Symposium on Computer Science Education, 2005 (pp 67-71).

3. Halsall, F., "Computer Networking and the Internet," (Fifth Edition), Addison-Wesley, 2005.

4. Kurose, J., and Ross, K., "Computer Networking," (Third Edition), Addison-Wesley, 2005.

5. Shay W., "Understanding Data Communications and Networks," (Third Edition), Brooks/Cole, 2004.

6. Ramakrishnan, Sub and Dadfar, Mohammad B., "Data Compression and Data Integrity: Projects for Data

Communication Courses," ASEE 2005 Annual Conference, 3420-05.

7. Dadfar, Mohammad B. and Ramakrishnan, Sub, "Systems Project for a Computer Science Course", The

American Society for Engineering Education (ASEE) J. Computers in Education, Vol. XIV, No. 3 (July -

September 2004), pp 2-9.

8. Internet RFC/STD/FYI/BCP Archives. http://www.faqs.org/rfcs/

9. RFC 821 - Simple Mail Transfer Protocol. http://www.faqs.org/rfcs/rfc821.html

MOHAMMAD B. DADFAR
Mohammad B. Dadfar is an Associate Professor in the Computer Science Department at Bowling Green State
University. His research interests include Computer Extension and Analysis of Perturbation Series, Scheduling
Algorithms, and Computers in Education. He currently teaches undergraduate and graduate courses in data

communications, operating systems, and computer algorithms. He is a member of ACM and ASEE.

RAY KRESMAN
Ray Kresman is a Professor of Computer Science at Bowling Green State University. From 1985-1987, he held a
visiting appointment with the Department of Computing Science, University of Alberta, Edmonton, Alberta. Dr.
Kresman’s research interests include distributed computing, performance evaluation, parallel simulation, and fault-
tolerant systems.

P
age 13.925.8

