
Proceedings of the 2010 ASEE Gulf­Southwest Annual Conference, McNeese State University
Copyright © 2010, American Society for Engineering Education

1

Session U-10

NETWORKING WITH EMBEDDED SYSTEMS

Antonio Alexander, Farrokh Attarzadeh
Engineering Technology Department

University of Houston
alalexander2@uh.edu, FAttarzadeh@uh.edu

Abstract

The fundamental building blocks for an embedded system are central processing, interfacing, and
communication; these blocks make up the embedded system triangle. One of the most complex
components is communication and as such Internet Protocol version 4 (IPv4) [1] was chosen for
this research because it is the standard on which the Internet functions. Furthermore, the relative
ease with which any embedded system can readily be connected to the network, and obtain
additional functionality with remote querying and access will be described and explained in later
sections. An introduction to socket programming and the creation of client/server programs will
be shown whose functionality can be easily enhanced and further developed. For demonstration
purposes, a simple embedded system was created to exhibit the depth of functionality available
through the research and later expanded upon.

1. Introduction

In Embedded Systems, there are always obstacles to overcome in areas dealing with
communications. Developing one’s own communications protocol is costly and may require
external expertise. The following sections will describe how to operate a communication stack
used on Ethernet-based IPv4 networks. The technique will also demonstrate simple interfacing
that can easily be applied to a more complex system such as process automation or computer
aided manufacturing. Only small portions of this research were synthesized and that most of the
research entailed learning different systems and making them work together. Three major
objectives had to be overcome in order to achieve the objective of the abstract: (1) how to
connect Embedded systems to IPv4 based networks, (2) use of socket programming with text
based communication, and (3) configuring and using communication’s stack.

2. How to Connect Embedded Systems to IPv4 Networks

To overcome the first obstacle, the Atmel Atmega168 [2, 3] connected to a Microchip
ENC28J60 [4] via SPI (Serial Peripheral Interconnect) was used. Software-wise, Adam Dunkel’s
Micro Internet Protocol (uIP) TCP/IP [5, 6] stack was used. The second problem was solved
using the Perl programming language and the sockets library. Prior to the present prototype,
shown in Fig. 1, the Tuxgraphics [7] communication stack was used. In the end, its use was
decided against because it was not a fully functional communications stack and was replaced
with the uIP stack rewritten for the AVR [8].

Proceedings of the 2010 ASEE Gulf­Southwest Annual Conference, McNeese State University
Copyright © 2010, American Society for Engineering Education

2

Figure 1. System Prototype

The implementation of the aforementioned objectives is based on the premise that most network
communication is text based. Text based communication is very simple because it is human
readable, as well as the fact that it is not binary therefore much easier to implement. The
Atmega168 has a wide community support, a Parallel Dual Inline Package (PDIP) applicable for
bread boarding and specialized internal hardware for communication using Serial Peripheral
Interface (SPI), Inter-integrated Circuit (I2C) or Two-Wire Interface (TWI) and Universal
Asynchronous Receive/Transmit (UART). The ENC28J60 Ethernet controller is useful because
it is available on an Olimex breakout board specifically made for breadboards. Perl was chosen
because of its powerful ability to handle text as well as its use of libraries for special functions
such as socket programming.

3. Communication

The communications stack consisted of two parts: a main driver program and an application.
The driver program was responsible for initializing everything from the Ethernet controller, to
the addresses used in the stack for communication over the network. Once the controller was
initialized and access to the network was established, applications were used to add extra
functionality to the communications stack such as a web server, or an interfacing script that used
I2C to communicate with other devices. For example, if you had an air conditioning system that
was controlled using the network, a temperature sensor network could be monitored via an
application.

The other side of the communication was accomplished with a client. A client was an end-user
program that allowed communication with a server. For example, when accessing a webpage, a
web browser is used to communicate with the web server. Socket programming was used to
create a client to match the specifications of the embedded system. A socket is defined as
connection to a system that consists of an IP address and port number. The general sequence of

Proceedings of the 2010 ASEE Gulf­Southwest Annual Conference, McNeese State University
Copyright © 2010, American Society for Engineering Education

3

events when the client communicated with the communication stack was as follows: (1) the
device listens on a specific port and IP address, (2) the client connects to the device on the
specific port and IP address, and (3) the device runs its application and performs a certain
function. This process is illustrated in Fig. 2. There are two primary ways of writing simple echo
based clients that receive and transmit text over the network: using a forking client or a non-
forking client. A non-forking client uses a static sequence of events for communication while a
forking client separates the sending and receiving processes so the client can easily communicate
with both passive and active servers.

4. Application: Network Enabled Displays

Figure 2. Flowchart

An example embedded system was devised to show the level of functionality attainable through
the use of interfacing, socket programming, and embedded systems programming. The example
interfaces four seven-segment displays using a seven-segment to BCD encoder with latch [9] a 3

Proceedings of the 2010 ASEE Gulf­Southwest Annual Conference, McNeese State University
Copyright © 2010, American Society for Engineering Education

4

to 8 multiplexer [10] and an I2C based 8-bit I/O Expander [11]. Figure 3 shows a simple block
diagram of each of the important system components. There are two important busses used in the
system to transmit data: a four bit data bus, and a three bit address bus. The data bus is used to
provide the input for the BCD to seven-segment encoders, and the address bus is used to control
multiplexer, which activates the latches.

The lower four bits of the I/O expander is connected to the data bus, while the upper four bits is
connected to the input of the multiplexer. If the microcontroller had to display a 9 on the first
seven-segment display, it would write 0x19 to the I/O expander and the digit 9 would be
displayed on the first display. Use of the multiplexer would allow continuous control of up to
seven seven-segment displays and hypothetically many more through use of the enable pins on
additional multiplexers as extra bits for the address bus.

5. Teaching within an Embedded Systems Course

All embedded systems have three main components: interfacing, central processing, and
communication. When teaching an embedded systems course to undergraduate students, the
communication aspect is often the most difficult to teach because it is often very time consuming
and the programming required has a steep learning curve. Thus ready-made code should be used
instead of the students developing their own code. One of the first obstacles to using this
research in a teaching module is that there is no formal curriculum to teach from. During the
progress of this research, it was found that documentation provided with the uIP stack [5] was
sufficient for programming the microcontroller and configuration of the stack while the books
“Network programming with Perl” [12] and “Learning Perl” [13] were invaluable resources
when designing the client while “Embedded C programming and the Atmel AVR” [14] was a
good source for programming the microcontroller.

Figure 3. Block Diagram

Proceedings of the 2010 ASEE Gulf­Southwest Annual Conference, McNeese State University
Copyright © 2010, American Society for Engineering Education

5

Also online resources such as the uIP mailing list and tutorials at AVRFreaks.com [15-17] were
very helpful in the learning process. The ATmega series of microcontrollers are community
driven, and aside from their informative datasheets and notes from Atmel, they describe the
functions of the microcontrollers themselves. Also with the inception of the Arduino [18], the
ATmega168 has such a large following that its available online resources are abundant. The only
prerequisite knowledge required for this module is basics of programming taught during or
before the course. Although the module involves networking, knowledge of its inner workings is
unnecessary to understand its practical usage.

Although the example developed during the research used the AVR Atmel microcontroller and
Perl, but different microcontrollers and languages can be used instead. Applicable
microcontrollers are the Microchip PIC or the Atmel 8051 and alternate programming languages
include Java, C or C++. Even another Ethernet controller such as the Micrel KSZ8851 can be
used in lieu of the Microchip ENC28J60 if drivers are available for the chosen network
communication stack. Using the Embedded Systems course taught at the College of Technology
in the University of Houston Main campus as an example, the module could easily be taught in
two classes and a lab session totaling seven hours easily during the last weeks of the class. Use
of the research for developing a teaching module would be extremely useful for teaching the
communication aspect of embedded systems.

6. Conclusions

This research combines knowledge from many sources such as networking, programming, and
embedded system interfacing. The research has a number of applications spanning from instant
global communication over the Internet with any embedded system to teaching undergraduate
students how to use communication stacks. The premise that most Internet exchanges are text
based opens the door to an infinite number of possibilities and applications for embedded
systems.

References

[1] Wikipedia, “Internet Protocol.” http://en.wikipedia.org/wiki/Internet_Protocol Web. 18
Dec. 2009.

[2] Atmel Atmega168 Datasheet.
[3] Atmel, “Atmel: Atmega168 Product Card.”

http://www.atmel.com/dyn/products/Product_card.asp?part_id=3303 Web. 18 Dec.
2009.

[4] ENC28J60 Datasheet – Microchip Ethernet Controller.
[5] A. Dunkel, “uIP Main Page.” http://www.sics.se/~adam/uip/index.php/Main_Page.

Web. 21. Dec. 2009.
[6] A. Dunkel, “uIP Documentation.” http://www.sics.se/~adam/uip/uip-1.0-refman/. Web.

16 Nov. 2009.

Proceedings of the 2010 ASEE Gulf­Southwest Annual Conference, McNeese State University
Copyright © 2010, American Society for Engineering Education

6

[7] Tuxgraphics, “An AVR microcontroller based Ethernet device.”
http://tuxgraphics.org/electronics/200606/article06061.shtml Web. 18 Dec. 2009.

[8] J. Derehag, “avr-uip - Port of uIP tcp/ip stack from Adam Dunkels to use with AVR
microcontrollers.” http://code.google.com/p/avr-uip/. Web. 12 Dec. 2009.

[9] CD74HC4511E Datasheet - BCD-7 segment encoder with latch.
[10] DM74138 Datasheet - 3-8 Decoder/Multiplexer.
[11] PCF8574P Datasheet - 8-bit I2C I/O port Expander.
[12] L. Stein, Network Programming with Perl. Addison-Wesley, 2004.
[13] T. Bryan, and R. Schwartz, Learning Perl. California: O’Reilly Media, 2005.
[14] S. Larry, R. H. Barnett, Embedded C programming and the Atmel AVR. Delmar Cengage

Learning, 2006.
[15] Camera, Dean, “AVR Tutorials - [TUT] [C] Newbie's Guide to AVR Timers.”

http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=50106. Web.
09 Sep. 2009.

[16] Weddington, Eric, “AVR Tutorials - [TUT] [C] Bit manipulation (AKA "Programming
101").”
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=37871. Web.
20 Sep. 2009.

[17] Worster, Ken, “AVR Tutorials - [TUT] [C] Newbie's Guide to the AVR ADC.”
http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=56429. Web.
20 Sep. 2009.

[18] Arduino, “Arduino – HomePage.” http://www.arduino.cc

Acknowledgment

The author would like to thank Dr. Farrokh Attarzadeh for the opportunity to pursue this research
and the Undergraduate Faculty for Computer Engineering Technology especially Dr. Bernard
McIntyre and Dr. Driss Benhaddou for generously imparting their knowledge inside the
classroom and out. The author would also like to thank the College of Technology and The
Provost's Undergraduate Research Scholarship Program (PURS) for funding this research.

Biographies

ANTONIO ALEXANDER is a recent graduate of the College of Technology with a Bachelor’s in Computer
Engineering Technology. He has plans to start his career in the Information Technology field as well as spend time
working on embedded systems related projects. He is currently employed by the University of Houston.

FARROKH ATTARZADEH earned his PhD in Electrical Engineering from the University of Houston in 1983.
He is an associate professor in the Engineering Technology Department, College of Technology at the University of
Houston. He teaches software programming, digital logic, and is in charge of the senior project course in the
Computer Engineering Technology Program. He has developed a concept referred to as EMFA (Electromechanical
Folk Art) as a vehicle to attract young students to the STEM fields. He is the Associated Editor for student papers at
the Technology Interface Journal (http://engr.nmsu.edu/~etti/), and Chair, Conference/Organization Member Affairs
for IAJC (http://www.iajc.org/). He is a member of ASEE and has been with the University of Houston since 1983.
Dr. Attarzadeh may be reached at FAttarzadeh@central.uh.edu

